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Abstract—In this paper, we consider the important aspect of
Quality of Service (QoS) in Wireless Mesh Networks, focusing
on packet delays and packet drops. We observe that the options
of solely focusing on throughput, and of only depending on the
QoS type characterization by the application level protocol is
not sufficient. We propose the use of multiple queues to hold
the packets based on their QoS requirement (not necessarily
corresponding to the QoS application types). We suggest the
technique of reinforcement learning (RL) for the important
step of assigning packet to one of the queues, and present an
implementation using the TD(0) algorithm. We present various
simulation results comparing our algorithm to other known
algorithms and frameworks. Our results indicate that our RL-
based algorithm is significantly better than previously known
results in packet drop ratio.

I. INTRODUCTION

Multi-radio multi-channel Wireless Mesh Networks
(WMNs) are envisioned as one of the key infrastructures in
the next generation of wireless networks. The anticipated
role of WMNs has gradually increased from small
community/rural/neighborhood networks to also include
enterprise-wide networks and other ad hoc wireless backbone
networks, such as a disaster recovery network. In order to
be successful, these infrastructure networks must meet the
QoS requirements from a rich set of applications, including
existing applications, mission critical applications, and
emerging multimedia applications. A wide variety in the
anticipated network topologies also imposes a significant
onus on QoS parameters in these networks. A more complete
discussion of QoS related challenges in WMNs can be found
in [2].

In such multi-radio multi-channel environment, the problem
of link and channel scheduling is a critical factor in optimizing
the network interferences and throughput. The network must
decide which links should transmit at what time, and over
which channels. Further, as each node receives packets, it can
decide the relative priority that that packet enjoys as compared
to other packets waiting at that node.

Many channel assignment strategies have been proposed in
the previous research work. [3] provides the Greedy Maximal
Scheduling (GMS) generalization for multi-channel network
with low-complexity and the same level of efficiency-ratios
as single-channel networks. In [4], the author proposes a
tree-based 802.11 WMNs architecture with channel assign-
ment and routing algorithms. A distributed channel scheduling

algorithm that guarantees the same efficiency ratio as the
centralized GMS algorithm in multi-channel wireless networks
is proposed in [3]. [5] provides a method in which QoS
is supported in WMNs via admission control and routing
algorithm at the same time. Further improving the QoS support
in lower layer, [6] applied Differentiated Queueing Service
(DQS) in WMNs. However, DQS does not address the problem
associated with multiple channel environment. In this paper,
we propose an algorithm that takes into account differentiated
queue management and channel assignment in multi-channel
multi-radio environment using Reinforcement Learning [1].

Rest of the paper is organized as follows. In Section II,
we present the system model and define the problem. In
Section III, we describe our proposed approach, and present
the results in Section IV. Our conclusions are presented in
Section V.

II. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we first describe a network model considered
in this paper. Then, we present the problem for queue and
channel assignment and the packet scheduling.

A. System Model

We consider a time slotted multi-hop WMN, represented by
a directed graph G = (V,L), where the node set V denotes the
transmission nodes and the edge set L denotes the links. Each
directed edge (vi, vj) ∈ L represents a link where packets
can be transmitted from the transmitter node vi to the receiver
node vj . If there exist two nodes vi and vj whose distance is
in the transmission range, two links (vi, vj) and (vj , vi) will
be generated respectively. For a link l ∈ L in a transmission,
the transmitter and the receiver nodes are denoted by b(l) and
e(l), respectively. For a node v ∈ V , the set L(v) denotes the
set of links attached to node v.

The network has multiple data channels used for data
transmission, and each one is on a separate frequency. Let C
denote the set of data channels in the system. It is assumed that
each node v is equipped with δ(v) radios for data transmission
such that at any time, v can be involved in up to δ(v)
transmissions as either transmitters or receivers. Each radio
can periodically switch from one channel to another according
to the channel assignment algorithm. The network also uses an
additional control channel to maintain the network topology
on a dedicated radio. In this paper, the time is equally divided
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into slots of unit length, and the overhead of switching between
two channels can be negligible. For simplicity, we assume all
packets have the same size in our network and ψ(l, c) denotes
the transmission rate (packets/per time slot) the link l can
provide on channel c, i.e., at each time slot, at most ψ(l, c)
packets can be transmitted from the transmitter to the receiver
on channel c in link l as long as the link-channel pair (l, c)
is not interfered by others. We assume a general interference
model, in which for each link-channel pair (l, c), l ∈ L and
c ∈ C, there is a set of link-channel pairs I(l,c) that interfere
with (l, c). When (l, c) is in transmission, the link-channel
pairs in I(l,c) can not transmit packets during that timeslot.

There are S data flows in the system and each one is
specified by a source node and a destination node. We assume
the packets are generated by flow s at the source with a rate λs
and the traffic of s follows a fixed path during the scheduling
period, since the routing table is able to remain steady in a
certain period in the reality. We also assume both the transition
delay and propagation delay for a packet from one node to
another can be ignored, and the queueing delay is the only
delay factor we consider in this paper.

B. Problem Statement

We are interested in designing an efficient approach to im-
prove the overall network data throughput, and simultaneously
minimize the packet drop ratio.

- GIVEN: A graph G = (V,L) with interference model I
and arrival process λ

- TO DO: Schedule the packets on link channel pairs
- SUCH THAT: Total number of packet drops is mini-

mized

III. PROPOSED TECHNIQUE

In our system, the WMN provides the basic QoS supports
on packet delay. According to the maximum end-to-end delay,
each packet is categorized into a corresponding QoS class. In
the network, each link l ∈ L maintains a set of K queues,
Ql = {q0l , q1l , q2l , ..., qK−1

l }, which has decreasing scheduling
priorities. We have several principles for the queue design,

• When a packet arrives at a link, it will be inserted
at the end of an appropriate queue based on its QoS
requirements.

• Once a packet has entered a queue, it can not be
relocated to another queue.

• In the same link, the packets in a queue with higher
priority are always transmitted before the packets in a
queue with lower priority.

If a packet needs to be transmitted earlier, it should be
placed in a queue with a higher priority, but conversely, all
packets in the queue with a relatively lower priority will
have an increased probability to be delayed since that packet
has been inserted before them. We need find an appropriate
queue for a packet according to how “urgent” this packet is to
reach its maximum end-to-end delay. The urgency reflects the
probability that the packet will be dropped due to exceeding

its maximum end-to-end delay, and it is able to be represented
as a utility by a marginal utility function.

Since the resource of channels and radios are limited,
some links can not be simultaneously scheduled due to the
interference. In the next section, we will present our approach
of the queue and channel assignment and packet scheduling
using reinforcement learning.

A. Reinforcement Learning

The reinforcement learning is a methodology aiming to
provide a solution of minimizing (maximizing) the long-
term cost (reward) through iterations of choosing appropriate
actions. The learner learns the behavior by trial-and-error
interactions and finally figures out a correct or optimal answers
during the iterations in a dynamic system.

A standard RL model consists of
• A set of states S
• A set of actions A
• An expected immediate cost R under the cost function

S×A → R. Given the current state s ∈ S and the action
taken a ∈ A (determined by the policy) at iteration
n, Rass′ amount of cost is generated if the next state
is transited to s′, i.e., Rass′ = E{rn|sn = s, an =
a, sn+1 = s′}, where rn = r(sn, a) represents the
instant scalar cost generated at iteration n.

The value function of a state s under a policy π, denoted
V π(s), is defined as the expected cost of the learner starting
from state s and following policy π thereafter, i.e., V π(s) =
E{∑∞k=0 γ

krk|s0 = s}, where γ(0 ≤ γ ≤ 1) is called the
discount factor. In the RL, the ideal is to find out an optimal
policy π∗ which achieves a minimized long-term cost. The
optimal value function of state s, denoted V ∗(s), is defined as
V ∗(s) ≡ V π

∗
(s) = minπ V π(s).

Temporal Difference (TD) [1] is a general approach of RL
to update V (s) in a bootstrapping process. The simplest form
TD(0) is a one-step-ahead prediction, and it uses the following
equation to update V (s),

V (sn) = (1 − αn)V (sn) + αn
[
rn + γV (sn+1)

]
, (1)

where αn is the learning rate. Given bounded costs |rn| and
the learning rates 0 ≤ αn < 1, the value function V (s)
converges to V ∗(s) with probability 1 if

∑∞
n=0 αn = ∞ and∑∞

n=0[αn]
2 <∞ [7].

B. States, Actions, Costs

The WMN model we proposed can be considered as
a discrete event system. The events of packet generation,
transmission in the WMNs can be modeled as stochastic
variables with appropriate probability distributions. In this
section we elaborate how to define appropriate states, actions,
costs respectively in our WMN model.

1) States: In WMNs, each packet can be considered as a
discrete object. In the actual WMN environment, the situation
is often observed that multiple packets with the same source
and destination arrive at one node successively and usually
these packets have similar QoS requirements. Consequently,
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these successively arriving packets have large probability to
be assigned to the same queue. We say link l is in the
state of preferring queue q if the current packet is assigned
to q. Therefore, the state sn at iteration n is defined as
sn = (l, q)n,where l ∈ L, q ∈ Ql, which is a combination
of the link and the queue.

2) Actions: For a link l, the state of l might change
whenever a packet coming in. The queue choice, say ql, of
the current packet is defined as an action a, such that a = ql,
where ql ∈ Ql. There are K possible actions, i.e., choices, for
a packet when it is choosing one queue out of K. The link
state does not change if a packet is leaving from the queue.

3) Costs: The cost r(s, a) indicates the immediate cost that
the system generates at interation n when action a is taken at
state s. In the network mode we proposed, that is equivalent
to the cost the system generates when packet p is assigned
to queue q ∈ Ql. First, we quantify the “urgency” of packet
p using a marginal utility function U(p). Suppose there are
H hops for p on its routing path from the source to the
destination, and the maximum end-to-end delay of p is D.
Therefore, on the average, the maximum tolerable queueing
delay at each node is D

H . p is created on time t0 and it is in
the dth node on its path at the current time t. d = 0 means
the source node on the path.

U(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε if t− t0 ≤ dD
H(

t−t0− dD
H

D
H

)(H−h)φ

if dD
H < t− t0 <

(d+1)D
H

1 if t− t0 ≥ (d+1)D
H

(2)
where ε denotes an extremely small positive value close to 0
such that any action is guaranteed to generate a valuable cost.
φ denotes an urgency factor with φ > 0 and we have φ = 3 in
our simulation. We can see that U(p) is a function with range
(0, 1]. The larger value of U(p) indicates that p is more urgent
to be scheduled and it should be more likely to be assigned
to a queue with a higher QoS priority.

Suppose packet p resides in queue qli ∈ Ql, and p is the
jth (j ≥ 0) packet in queue qli, where (0 ≤ i ≤ K − 1). Let
N(q) denotes the number of packets in q, and N(l) denotes
the number of packets in l, N(l) =

∑
q∈Ql

N(q). Let L(p)
denote the absolute location of p in l and it can be represented
as L(p) = j +

∑i−1
k=0N(qk). The cost r(s, a) of link l is

defined as r(s, a) =
∑

p(U(p)·L(p))

N(l) , which reflects the average
weighted urgency of the packets in the link. L(p) can be
considered as a weight on the urgency U(p) since the larger
L(p) may lead to a later scheduling on p which makes p more
urgent.

C. Algorithm Design

We now describe the design of our algorithm using TD(0).
1) Queue Assignment: When a packet p arrives at one node,

it has to be assigned to one of the K queues. We take a greedy
action with respect to the cost r(sn, a) and value function
V (sn+1), a “better” policy π of choosing queue qπ is updated
continually by the equation,

qπ ≡ aπ = argmin
a∈A

E
{
r(sn, a) + γV (sn+1)

}
, (3)

From action aπ , we keep the average weighted urgency of
each link as small as possible, this is reasonable because we
could figure out those links which are really in urgency then
they can be scheduled in the higher priority. From (2), we
know that U(p) is in the range of 0 and 1, and L(p) is also
bounded by the summation of queue length, such that cost
r(sn, a) is bounded too. In the simulation, we define αn = 1

n .
Therefore, from the previous description in III-A, we know
the value function V π(s) will always converge to V ∗(s) after
sufficient iterations following equation (1).

2) RL-based Distributed LubyMIS Channel Assignment:
The channel assignment algorithm is applied every ρ time
slots. In the algorithm, we use the Luby Maximal Independent
Set (LubyMIS) algorithm [8] for each channel c. The algorithm
consists of three rounds. In the first round, each link updates its
link-channel pair weight w(l, c, t) and send it to interference
neighbors through the control channel, where w(l, c, t) is
defined as w(l, c, t) = V (s) ·N(l) ·ψ(l, c), and s is the current
state of link l. By the end of the first round, links with highest
weight are marked as the winner. In the second round, each
winner notify their interference neighbors the fact that they
have won. Thus at the end of second round, the interference
neighbors knows that they are the losers. In the third round,
each loser notifies its neighbors. Then all the winners, the
losers, and the loser’s neighbors remove the appropriate link-
channel pairs from the network. After the third round, the
algorithm repeats from the first round to find the winners, the
losers, and the loser’s neighbors in remaining nodes and links.
This process is repeated until no more link-channel pairs are
left. The algorithm implementation is showed in Algorithm 1.

IV. SIMULATION RESULTS

Our simulation runs on a 5 × 5 grid topology where each
node could potentially communicate with up to four neighbors.
We create 10 data flows by randomly picking 10 source-
destination pairs in the network, and each flow has a predefined
fix routing path. The network supports 2 QoS classes which
have maximum end-to-end delay of 50 and 100 time slots
respectively. The number of queues K is also initiated as 2
in the simulation. Each data flow is randomly assigned with
one QoS class. All packets in the same data flow have the
same QoS requirements. The number of radios used for data
transmission on each node varies from 1 to 3 . Each radio has
12 non-overlapping data channels. For simplicity, all channels
have the fixed rate with ψ = 5 packets per time slot. In
the simulation, the packets are generated at each source node
following an exponential distribution. We respectively measure
the packet drop ratio of the network with different mean values
of the packet interarrival time varying from 1 to 1.15 time
slots. Every 5 time slots the channel assignment algorithm is
called and the overall simulation time is 10000 time slots. The
discount factor γ is 0.8 and the urgency factor φ is 3 in the
simulation.
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Algorithm 1 RL-based Distributed LubyMIS Channel Assignment
t← current time slot;
Let Z = {(l, c)|l ∈ L, c ∈ C};
Let F = ∅;
Initialize β(v)← δ(v) for all nodes v;
Define w(l, c, t) = V (s)N(l)ψ(l, c);
for c ∈ C do

Let Z′ = {(l, c)|(l, c) ∈ Z};
while size(Z′) > 0 do

use LubyMIS to find (l, c) ∈ Z′ which has the largest weight w(l, c, t) in
(l, c) ∪ (I(l,c) ∩ Z′);
(l, c)← winner;
β(b(l))← β(b(l))− 1;
β(e(l))← β(e(l))− 1;
remove (l, c) from Z′ and Z;
add (l, c) into F ;
for all (l′, c) ∈ (I(l,c) ∩ Z′) do

remove (l′, c) from Z′ and Z;
end for
if β(b(l)) = 0 then

for k ∈ L(b(l)) do
Remove (k, c′) from Z for all channels c′;

end for
end if
if β(e(l)) = 0 then

for k ∈ L(e(l)) do
Remove (k, c′) from Z for all channels c′;

end for
end if

end while
end for
return F ;

In the first scenario, we evaluate the performance of the
RL-based LubyMIS algorithm we proposed by comparing it
against another two algorithms. In the first algorithm, only one
queue is available in each link. All packets are sequentially
inserted into the queue according to their incoming order
and scheduled in the way of FIFO. The second algorithm
provides crude QoS considerations. Each QoS class has its
corresponding queue in the link. A queue is simply assigned
to each incoming packet according to the QoS class. The
channel assignment in these two algorithms is similar as the
algorithm we proposed, except that N(l)ψ(l, c) is used instead
of w(l, c, t). The results are shown in Figure 1(a). We notice
the RL-based LubyMIS algorithm can provide a better QoS
performance on packet drop ratio compared with the other
two algorithms. With the increasing of the packet interarrival
time, the packet drop ratio decreases almost linearly in our
algorithm. When the mean value of the packet interarrival time
reaches 1.125, the traffic load in the network is low enough
such that it can be well supported with a low packet drop ratio
no matter what algorithm is used.

In the second scenario, we measure the impacts of the
number of queues K on the packet drop ratio using the RL-
based LubyMIS algorithm. The simulation runs with different
mean values of the packet interarrival time from 1.0 to 1.1 us-
ing our algorithm. Figure 1(b) presents the simulation results.
Generally, the network with the larger number of queue is able
to provide better performance since each packet can choose a
queue more accurately based on its weighted delay urgency,
that is also to say, each state of RL can be represented more
accurately such that the action made on the state is more likely
close to the optimal. But the system can not keep achieving
better performance with the increment of K. Once K exceeds
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Fig. 1. Simulation results

some threshold, the system performance keeps stable.

V. CONCLUSION

In this paper, we proposed a Reinforcement Learning based
queue management scheme that supports QoS in multi-radio
multi-channel mesh networks. Simulation results show that
our proposed multiple queues scheme significantly performs
better than other existing queue management scheme, namely
using a single queue or using multiple queues classified based
on application layer QoS types. It should be also noted that
the performance of our algorithm improves when the number
of queues increases but only up to a certain threshold point.
For future work, we plan to consider the convergence speed
of value function in the RL design. How to control the
convergence speed using an appropriate learning rate in our
model is still a problem which needs to be considered.
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