
RokuControl–Conducting MITM Attacks on Roku
Devin Coles

School of Computing and Data Science
Wentworth Institute of Technology

Boston, MA, USA
colesd@wit.edu

Michael Peterson
School of Computing and Data Science

Wentworth Institute of Technology
Boston, MA, USA

petersonm4@wit.edu

Sunjae Park
School of Computing and Data Science

Wentworth Institute of Technology
Boston, MA, USA

parks6@wit.edu

Mira Yun
School of Computing and Data Science

Wentworth Institute of Technology
Boston, MA, USA

yunm@wit.edu

Abstract—Smart TVs are increasingly common in many house-
holds as an alternative to traditional cable television. Smart
TVs utilize high-speed Internet and allow people to watch
streaming video services in a TV format. Man-in-the-middle
attacks (MITM) insert the attacker between two devices that
are communicating with each other. In this paper, we implement
a MITM attack on a Roku device by capturing packets and re-
playing them using a packet crafter. Through such unauthorized
control, this paper shows how the security of these devices can
be impacted.

Index Terms—Authentication, Multimedia Information Sys-
tems, Unauthorized Access

I. INTRODUCTION

Ever since the invention of television (TV), human life has
become more connected all over the world. If the invention
of the telephone was the first step in connecting people, TV
was the giant next step. People being able to see what’s going
on all over the world has made for huge jumps for the news,
along with storytelling.

With the advance of high speed internet, Smart TVs have
started to take hold with the rise of streaming services replac-
ing traditional cable television [1]. Plug-in streaming devices
such as the Roku Premiere and the Amazon Firestick are two
popular options watching string TV services. These devices
often contain entire operating systems and sophisticated soft-
ware, and plug in using HDMI and give TVs easy access to the
internet. Because of the low cost of these devices compared to
a new televisions, these devices are wildly popular and have
many users. However, the security put into preventing outside
control of these devices has been limited [4], [5].

Man-in-the-middle (MITM) attacks is a wide-spread method
of attacks on online devices [2]. While two devices are com-
municating, a third device has access to the communication
and in some cases is able to even manipulate them. In other
words, the victim devices failed to ensure both confidentiality
and integrity of their communication.

Our goal while looking at this issue was to see if we could
try and replicate some of the packets that would be used
to control the device, establishing a MITM attack. By using
packet creation tools we can send packets to the device to

control it and see what potentially damaging attacks could
be conducted. To do this we first locate the devices using
an Nmap [3] scan. Once we find the devices, traffic between
the devices are captured and analyzed. Finally, we then use
a packet crafter to recreate those same packets. We want to
highlight how gaining access to unsecured smarts TV’s can be
potentially dangerous and can be used to attack them. We show
that by accessing unauthorized content or using the browser
to navigate to potentially malicious websites, this negatively
affects the security of these devices.

II. PACKET SNIFFING THE ROKU SMART TV

We set up a local network as shown in Figure 1. This setup
is meant to replicate the average setup that an average user
of a Roku device is going to be using when setting up the
device and connecting it to their Wireless Network. The Roku
device, shown as an “SmartTV‘ in the diagram, is connected
to the same network as a “Controller App.“ Both of these
devices are on the same wireless network. The Controller App
is running the Roku smartphone app, which sends commands
over the wireless network. The attacker is connected to the
same network as both devices, which allows it to sniff the
packets moving between the SmartTV and the Controller App.

Fig. 1. Network Setup for MITM Attack on Roku

00443480

20
22

 IE
EE

 1
3t

h
An

nu
al

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
, E

le
ct

ro
ni

cs
 a

nd
 M

ob
ile

 C
om

m
un

ic
at

io
n

Co
nf

er
en

ce
 (I

EM
CO

N
) |

 9
78

-1
-6

65
4-

63
16

-4
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IE

M
CO

N
56

89
3.

20
22

.9
94

65
02

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on December 21,2022 at 01:57:59 UTC from IEEE Xplore. Restrictions apply.

The first step is to packet sniff data [7] being sent to and
from devices and see if any of the data was insecure. This
can be done in three steps using Kali Linux [6], a Linux
distribution that focuses on penetration testing and security
analysis.

First, Nmap is used to find the IP address of the target
device. Next, Ettercap is used to ARP poison the target device
and its router which allows your device to sniff the packets
being sent to and from the target device. Lastly, as long as
they are unsecured, the packets and the data in them can be
viewed using an application like Wireshark.

A. Locating Device with Nmap

Nmap [3] is a command which can list out the MAC address
and IP address for each device connected to a router. To launch
the Nmap command the subnet for the network being targeted
must be known, this can be found by using the ipconfig
command while connected to the targeted network. Once this
is figured out, we can use nmap to scan all devices currently
active in the subnet. For example, if the subnet of the network
was 192.168.1.0, then the Nmap command would be written
like the following:

nmap -sn 192.168.1.0/24

Listing 1. nmap command to identify device

The above command would result in output similar to that
in Figure 2.

Fig. 2. NMap results

B. Capturing Packets

Once the IP address of the targeted client is identified, the
packets sent to and from the device can then be captured.
The attack initiated using the Ettercap command and requires
that the attacker provide the subnet for the router and the IP
address of the targeted client, both of which has been figured
out in the previous step. Using the same subnet in the previous
example and if the IP address of the client was 192.168.1.3,
the Ettercap command would look like the following:

ettercap -T -S -i wlan0 -M arp:remote
/192.168.1.0// /192.168.1.3//

Listing 2. ettercap command to capture packets

Aside from the IP addresses for the router and client, there
are still some other important parts in the Ettercap command
listed in Listing 2. -T makes the command return text only, so
there will be no graphics displayed when receiving the data.
-S specifies to not use Secure Socket Layer (SSL) which

means the command will not establish secure links when
connecting to the client and router. -i wlan0 states the
interface where the data will be received. -M establishes that
it will be a MITM attack. Lastly, arp:remote selects ARP
poisoning as the method of attacking. This is demonstrated in
Figure 3.

Fig. 3. Ettercap Command Results

C. Viewing Packet Contents using Wireshark

The captured packets can easily be viewed from Wireshark
which can be opened manually or in the console. When a cap-
tured packet is viewed from within the Wireshark application,
it looks like Figure 4.

While observing the packets in Wireshark there are some
important things to look out for. First off, since our focus is
on data being sent to and from the client it leads us to look for
the client’s IP address in the source and destination columns.
Because of this, a filter can be used in Wireshark by typing
ip.addr=(IP address) in the search bar. The next clue
for finding unsecured data is to focus on the protocol header.
While some protocols provide encryption for data being sent,
HTTP is a very insecure protocol for sending data since it can
easily be read by programs like Wireshark. After finding data
being sent to or from the targeted device using the HTTP
protocol, the next place to look to figure out if the data
it contains can be used maliciously is in the info column.
Here you access the data being sent, which can be images,
passwords, commands, and many more that can be used by
the attacker.

III. MAN-IN-THE-MIDDLE ATTACK ON ROKU

We then start sending commands from the Roku app and
capture the packets and view them using our earlier set up.
Once we are able to view the command packets sent from
the Roku app, we were then able to replicate and mimic the
commands sent from the app.

A. Command Replication

Once we were able to view the messages the Roku app
uses to communicate with the device, we noticed they were
left unencrypted. For example, we tried pressing down the

04390441

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on December 21,2022 at 01:57:59 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Wireshark Window

right button on the remote-control app, which would issue a
command. The sent packet would be look like the row in the
middle of the Wireshark application (Figure 4, and reproduced
in Figure 5.

Fig. 5. Data captured in Wireshark

We use this information to craft commands we could use.
We used to a tool called “curl“ [8]. Curl is a command-line tool
in Linux that can be used to communicate with a server to send
data to and from. It can mimic various network protocols, such
as HTTP, FTP, and so on. When we were using this tool, we
were primarily interested in its ability to send HTTP messages,
as that is what the controller app uses to communicate with
the device.

We translated the message from Figure 5 to craft a new
message targeted at the device. We do this by specifying
the URL as the IP address followed by the message data.
We also know that this message needs to be sent as a
POST message. That leaves us with the command curl
-X POST http://192.168.0.192:8060/keydown/
Right. We specify that this message is to be sent with no
data from our device. We have now replicated an unauthorized
keypress event.

B. Automating Controls

While the curl command works for basic control and
experimentation, it would be an issue for automation of control

as the command takes a while to go through. To have an easier
time controlling we developed a basic python script to speed
up the process of sending basic commands to the device. To
do this, we first specify the IP address and port we want to
communicate with.

Using that we open a transport layer TCP stream with the
device. We do this by first sending a “connecting“ message
to the device’s IP, then waiting for an acknowledgment from
the Roku. Once we receive that message, we are clear to
communicate with the device.

We then have two possible types of messages we can send
the device. First is a button push. From the button push
we have the press down ”keydown/Right” and let the button
press up ”keyup/Right”. We send the messages using these
commands where we set up the URL. We specify the IP
address of the device, the port 8060, where commands are
sent to, and the command we want to send. We then send this
URL as an HTTP POST message.

The second type of message is used to get infor-
mation from the device by querying it and getting re-
sponses back. The two messages to query the de-
vice are appsQ ="/query/apps" and deviceQ =
"/query/device-info". We then create the same URL
as above using the query as the action. We then send that as an
HTTP GET message, and then print the content we received.

We were able to receive two types of data: app data and
device info. App data is a list of formatted info about all the
apps downloaded onto the device and their version.

An example response is shown in Figure 6. For example,

04400442

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on December 21,2022 at 01:57:59 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Pulled App Data

in the third line we can see that Netflix has been installed:
<app id="12"type="appl"

...>Netflix</app>
The next type of data that can be pulled is the device info.

The device info contains a list of formatted data containing
information like the Device ID, Network, Device type, Mac
Address, advertiser ID, UUID, Software version, time zone,
and different features the device may have. An example
response is shown in Figure 7.

Fig. 7. Pulled Device Data

C. Potential Threats

Being able to remotely control the device could lead to
several potential threats. If an unsecured app were posted on
the Roku app store you would be able to have a script install
a malicious app. Outside of that, there is potential to have
a script install a browser and navigate to an unsafe website.
From either of those, a botnet or any number of potentially
malicious attacks could be taken without the user’s knowledge
of any attack ever taking place.

The key features of this project were the initial discovery
of the device commands from packet sniffing with Wireshark.
This could be done on any computer that is running Wireshark
and compatible with a Roku controller whether the mobile
app or a web application. They initially let us discover the
commands that could be used to control the device. Once we
were able to get the controls, we were able to move on to the
Python Script.

The other key feature was the control of the device using a
python script, which is shown in Figure 8. Upon completion
of the python script, there was testing across Windows, Linux,
and OSX. The tests of the script showed the ability to navigate
through commands of right, left, up, down, home, back, enter,
info, and select. We were also able to send two types of
queries: the app query, and the device query.

Fig. 8. Python Script

It is also available at the authors Github page [9]. This script
should run on any computer that has python installed. It should
maintain compatibility as long as the device does not require
credentials to communicate with it along with as long as the
Wi-Fi remote setting remains enabled on the device.

IV. FINDINGS

In this paper, we were able to discover insecure data and
use it for our own gain to remotely control a Roku from a
laptop. We were able to do this by discovering that wireless
Roku remote apps used the insecure HTTP protocol to send
commands to the Roku which we could easily decipher and use

04410443

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on December 21,2022 at 01:57:59 UTC from IEEE Xplore. Restrictions apply.

ourselves. We also created a python script that could remotely
send commands to a Roku. This is dangerous since the python
script could send commands to the Roku which make it delete
all of the apps installed on the device. The Roku itself stores
a lot of valuable information as well, such as where the Roku
is located, what applications it has on it, what software it has,
and so on. which can easily be obtained via a command.

A. Security of Other SmartTV Devices

The Roku is not the only smart TV on the market, so
when approaching our solution to make Roku wireless remotes
more secure, could solutions be found by taking inspiration
from competitors on the market? The Amazon Firestick is a
popular competitor to the Roku, however, there is not enough
information at the moment to determine whether or not the
wireless remote is more secure than the Roku wireless remote.
Both Firestick and Roku have wireless remote communication
to the TV over a wireless network, although Amazon has a
dedicated app made by amazon while most of the apps used
for Roku are developed by third parties.

Wen it comes to the Apple TV, connecting a wireless remote
involves a few requirements which makes it more secure than
the others. The first requirement is that the device that sends
commands to the TV must be running iOS. This is a good
security feature since iOS is a difficult operating system to
use for malicious purposes. Another good security feature is
that the connection between the remote and the TV is set
up through apple airplay. Apple airplay is a secure Bluetooth
connection that is encoded so that only other Apple products or
devices running iOS can easily view it. Most importantly, the
device connecting to the TV must input a four-digit security
passcode which is randomly generated and displayed on the
TV screen. Although it is a relatively simple check, it is very
powerful in the fact that it requires the user to be able to
physically view the TV. This would stop someone outside of
a home where a TV is located from tampering with the TV.

B. Potential Solutions

After researching methods used by competitors and using
past knowledge, we can develop some methods for making
communication between the wireless remote and the Roku
more secure. One method, and most likely the easiest to
implement, would be to take inspiration from the Apple TV’s
feature of querying the wireless remote app for a randomly
generated security key that is displayed on the TV. This feature
would greatly improve the security of Roku wireless remote
apps since before the device would be able to send commands
to the Roku, it must first enter the passcode which can only
be seen the user has a view of the TV, so anyone trying to
access the Roku from outside a house would not be able to
send commands to the Roku as long as the TV screen was not
visible from a window.

Another method to make the wireless remote more secure
would be to employ HTTPS instead of HTTP for the com-
mands sent to the TV. This would increase security for the
Roku since the data being sent to and from the Roku would

be encrypted, making it more resistant to MITM attacks and
other forms of eavesdropping so it would prevent hackers
from intercepting and reusing the commands that the wireless
remote uses.

The final security measure we came up with was to provide
some sort of identification by having to sign into the same
Roku account that is used by the Roku TV in order to send
commands to the Roku TV. While this may be difficult to
implement, it would be able to prevent any device from
sending commands to the Roku if the account credentials
did not match up. If this was implemented, it would also
be critical to make sure that the account credentials were
encrypted, or else the account security information would be
very easily accessible from MITM attacks or other forms of
eavesdropping.

These are all the recommendations we can provide based
on our work and research, hopefully, wireless remote apps on
phones will focus more on security in the future so malicious
hackers will have a more difficult time accessing devices such
as the Roku.

V. CONCLUSION

In this paper, we set up a MITM attack between a SmartTV
device and the controller smartphone app. By sniffing the
packets that are sent between the two devices, we were able to
understand what commands are being sent. Using Python, we
were able to recreate the same packets and get the accepted,
thus enabling unauthorized access to the SmartTV. We propose
extensions to existing solutions that should prevent this attack
in future devices.

REFERENCES

[1] Shin, J., Park, Y. and Lee, D., ”Google TV or Apple TV?—The Reasons
for Smart TV Failure and a User-Centered Strategy for the Success of
Smart TV.” Sustainability, 7(12), pp.15955-15966.

[2] Conti, Mauro, Nicola Dragoni, and Viktor Lesyk. ”A survey of man in
the middle attacks.” IEEE communications surveys & tutorials 18, no.
3 (2016): 2027-2051.

[3] Lyon, Gordon Fyodor. ”Nmap network scanning: The official Nmap
project guide to network discovery and security scanning”. Insecure.
Com LLC (US), 2008.

[4] Nelson, Patrick. “Beware of Hackers Targeting Smart TV
Owners Who Lack Strong Cybersecurity.” KOAA News,
https://www.koaa.com/news/on-your-side/beware-of-hackers-targeting-
smart-tv-owners-who-lack-strong-cybersecurity (accessed Aug 1,
2022).

[5] B. Michéle and A. Karpow, ”Watch and be watched: Compromising
all Smart TV generations,” 2014 IEEE 11th Consumer Communications
and Networking Conference (CCNC), 2014, pp. 351-356.

[6] Hutchens, Justin. Kali Linux network scanning cookbook. Packt Pub-
lishing Ltd, 2014.

[7] Ansari, Sabeel, S. G. Rajeev, and H. S. Chandrashekar. ”Packet sniffing:
a brief introduction.” IEEE potentials 21.5 (2003): 17-19.

[8] ”curl-command line tool and library for transferring data with URLs”,
https://curl.se/ (accessed Aug 6, 2022).

[9] https://github.com/petersonm4atwit/RokuControl (accessed Aug 6,
2022).

04420444

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on December 21,2022 at 01:57:59 UTC from IEEE Xplore. Restrictions apply.

