
Data Transmission over Audible Spectrums with OOK

Miles Macchiaroli, Spencer Bourassa, Adam Beauchaine, Subin Bastola, and Mira Yun

Department of Computer Science and Networking

Wentworth Institute of Technology

Boston, MA 02115, USA

{macchiarolim, bourassas, beauchainea, bastolas, yunm}@wit.edu

Abstract—By utilizing on-off keying (OOK)

modulation, we build a data transmission system in

which two nodes are able to communicate via an

audible AM radio band. In this paper, we focus

primarily on both the implementation of an OOK

system and an analysis of its merits in the modern

world of wireless networking technology, which are

largely limited to simple specialized tasks in

requiring high spectral efficiency.

Keywords—Wireless Communication System; On-Off

Keying; Amplitude Modulation; Hands-on Example;

I. INTRODUCTION

In the current state of network engineering, the use of
efficient and reliable wireless communication standards
is paramount to the success of any modern organization.
Because of the growing demand for wireless
professionals in all network engineering fields, many
schools introduce wireless networks and applications to
undergraduates. Wireless communication, like other
networking courses, can be too dry and abstract for
undergraduates without hands-on learning experience [1].
Thus, off-the-shelf devices, open-source software, and
third-party firmware including wireless routers,
Raspberry Pi, Arduino, Kismet [2], DD-WRT [3],
BATMAN-adv [4], and so on, have been introduced into
undergraduate classrooms [1][5].

In order to understand whole wireless transmissions,
it is beneficial to construct one's own systems for
wireless transmission. In this paper we demonstrate how
to build a wireless transmission system with the on-off
keying (OOK) modulation scheme, and amplitude
modulation (AM) radio broadcasting technology. OOK is
the simplest form of amplitude-shift keying (ASK)
modulation that represents binary one or zero with carrier
presence [6]. Although OOK is not widely used, as it has
poor noise sensitivity, the simplicity of the protocol aids
it in being very spectrally efficient [7]. This characteristic
alone makes the protocol a great foundation for
development both as a protocol, and a platform for highly
specialized applications. This paper aims to outline the

methods of creating a simple communication system that
is capable of transmitting information wirelessly from
one host to another. This system withholds the ability to
parse, modulate, transmit, receive, demodulate, and
convert the received information into a copy of the
original data.

The rest of this paper is organized as follows: Section
2 outlines the system modules and functionalities.
Section 3 describes our implementation details. Section 4
presents our findings and improvements from system
performance. Finally, we conclude our work in Section 5.

II. DATA TRANSMISSION WITH OOK

Our data transmission system is designed with
modularity in mind, meaning all parts should be easily
obtained or substituted for materials of adequate
equivalence. This not only makes the system easy to
troubleshoot but also opens the doors to anyone
interested in the methods developed to implement
individually into their own projects. By segregating the
project into six sections A - F each system will be
independently variable for fine-tuning.

A. Convert text or a file into its binary equivalent

In order to modulate the data, it must first be parsed to
its binary equivalent. The importance of this step is to
create a singular string of raw data that can be easily
interpreted by a program.

B. Modulate parsed data

Once the parsed string is received, it may be
modulated. This act requires a program that will be able
to both interpret the string of binary and generate an
audio file in which the presence of ‘0’ results in the
absence of a carrier wave, and the presence of ‘1’ results
in the presence of a carrier wave.

C. Transmission of modulated data

Once the data has been successfully modulated into
an audio format, it needs to be transmitted over an
audible spectrum. This process requires an AM radio
broadcast transmitter. The audio file generated has to be

played or relayed to the broadcast transmitter, which
broadcasts the data to a predetermined frequency. The
length of each bit also must be consistent for the
demodulation to be successful.

D. Receiving of modulated data

In order to receive the transmission of data, a receiver
unit must be configured to the predetermined frequency.
This receiver needs to be connected to a computer
capable of recording the broadcast transmission and
saving the transmission to disk. This process prepares the
transmission for demodulation.

E. Demodulation of data

To demodulate the received audio file, a program
needs to be created that interprets the audio file. This
program must ingest the file, slice it into segments of a
predetermined length, then read the amplitude of each
segment. If the segment has an amplitude over a certain
threshold, then the program writes a ‘1’ to the output
string, if the segment amplitude is below the threshold,
the program concatenates a ‘0’ to the output string.

F. Conversion of data into a message or file

After demodulating the transferred file, the received
data needs to be converted back into its original message,
be it a string, or a photograph. The application must be
capable of collecting the output string from the
demodulation program and convert it to a copy of the
original message. This program has to interpret the string
bit by bit to reconstruct the original contents.

Fig. 1. System Architectural Layout

III. SYSTEM IMPLEMENTATION

Our system is constructed to parse, modulate,
transmit, demodulate, and convert data into its final
formation. This system utilized a host node, receiver
node, transmission broadcaster, and transmission receiver
as shown in Figure 1. Software that was used to obtain

results is developed in Python, with the inclusion of
default Unix programs.

A Raspberry Pi model 3B running Raspbian (Release
2019-04-08) is used as the host. The Linux command xxd
[8] is used to convert our source files into their binary
equivalent. xxd creates a hex dump of a given file or
standard input, the flag of ‘-b’ was used to switch the
output of the program to bits, rather than providing the
default hex dump. As shown in Figure 2, the program
outputs binary bits as groups of octets that can then be
read into the modulation program.

Fig. 2. Image of an apple with its equivalent binary dump

A modulation program is constructed using python.
The program makes use of the PyAudio Library [9]. The
program follows the CD-DA standard [10] when
calculating the bitrate with the equation bitrate = sample
rate x bit depth x channels. The program by default
works much like Morse code. Each bit has a length of
50ms in Figure 3, whether it is filled with radio silence or
a blip. The software modulates the equivalent of 550Hz
with a wpm of 120, and a Farnsworth speed of 105 by
generating a waveform as shown in Figure 4.

Fig. 3. Example of modulation output.

Fig. 4. Snippet of waveform function.

Data transmission is handled by an external AM
broadcast transmitter. The transmitter used is equipped
with an 8’ indoor antenna, with an RF output power of
100mW. The operating frequency for this experiment
was 1650kHz, with a stability of +/- 30Hz [11]. Audio

Host

Transmission Broadcaster

Receiver

Transmission Receiver

receivers used are generic handheld AM/FM radios with
the addition of a 3.5mm Tip Ring Sleeve (TRS) phone
connector for audio output.

Retrieval of the transmitted data utilizes the client, in
this case, a laptop computer, that has audio recording
software running, and the microphone input connected to
the phone output of the handheld AM/FM radio receiver.
Audio received needs to be trimmed to the start and end
of the transmission by the end-user and saved as a
windows audio (WAV) file.

Demodulation of the audio back into a binary form is
to be handled by a python program based on the pydub
project [12]. This program completes a number of tasks.
First, it segregates the audio file into sections of a
predetermined length. In this installment, the sections
were 50ms in length. The program then performs an
analysis on each segment, capturing the amplitude of
each section as shown in Figure 5. The amplitude is
compared to a predetermined threshold of -80dB. If the
recorded value is above this threshold, the program will
write a ‘1’ to file, if it is below the threshold, a ‘0’ will be
appended to the output as shown in Figure 6. When the
script is finished, a string is returned to the user that is
ready for final conversion.

Fig. 5. Example of slices made to an audio file by the demodulation

script

Fig. 6. Example of demodulation script writing each case to file.

Conversion of the output string back into the original
message can be handled via various methods and tools.
For ease of use, the methods utilized in this project were
readily available web applications. Depending on the
filetype of the original data, the received data was
processed differently. For plaintext, the binary octets
were fed directly into a binary to text converter. For

image processing, additional steps were used. Before
converting an image from its bit form, the octets are
converted into their base64 equivalent. From there the
base64 data was able to be processed as a file and
converted into its original container. This process is time-
consuming yet allows for the validity of data to be
verified against the original data.

IV. FINDINGS AND IMPROVEMENTS

Transmission of the data was completed utilizing an
external AM broadcast transmitter, as to maintain
modularity of the project. There are multiple factors that
can improve the transmission quality of the data. One
method is to conduct a preliminary spectrum scan of the
operating area, as to locate the frequency that has the
least interference for that operating area. Additionally,
the gain for both the input device and the RF antenna
should be adjusted as to avoid clipping and distortion to
the data transmission as shown in Figure 7.

Fig. 7. Comparison between a transmission that contains interference

(left), and the original audio transmission (right)

Demodulation of the data was handled by a python
script based on the Pydub Library. This method for
interpreting data was effective but very inefficient. The
program is required to segregate, or slice, each section of
audio and copy it into a new file. The software then is
required to open and check every single file it had
created. This method works for small text string
transmissions, however, for larger files, the program
would make thousands of files and must scrub through
each one individually. Other methods are advised for
larger transmissions; however, the process would benefit
from some of the previously stated alterations to the
project. Additional changes to be made to this segment
would include a more accurate threshold for the
demodulation, possibly comparing the section of audio to
others. Implementing more careful timings would also
benefit the process, as the program only splices in 50ms
sections. This requires the audio file to be prepared very
carefully prior to processing it, as the slightest
misalignment would prove to throw off the returned data.

Fig. 8. Comparison between the octets of a transmission that contains

the expected received bits (left), and the demodulated bits after

transmission (right)

Fig. 9. Comparison between data sent (left) and interpreted data

(right)

The system as a whole is inefficient and inaccurate,
given all the listed improvements. Transmissions made
over the AM spectrum proved to be full of interference,
causing for constant misinterpreted bits as shown in
Figure 8. Because of the inaccuracy, text transmissions
sometimes return invalid characters rather than the
expected information, as shown in Figure 9. When
working with other filetypes, the transmission would
yield a file the client computer cannot interpret as shown
in Figure 10. Or when working with a similar file
structure, as shown in Figure 11 we can find the addition
of corrupted segments in the reconstructed images.

Fig. 10. Demodulated file that, after converting, was uninterpretable

by the client machine

Fig. 11. Comparison between original image (left) and reconstructed

file that has suffered from corruption (right)

V. CONCLUSION AND FUTURE WORK

This paper presents how to create a system that allows
the examination of OOK and radio transmissions, and

how they operate in real-world implementations. Our
system showed the ability to parse, modulate, transmit,
receive, demodulate, and convert the received
information into a copy of the original data. We firmly
believe that experience of building a complete system
motivates students to learn actively and encourages them
to seek out wireless technologies and improve them.

Future incarnations of this project will contain a more
robust solution for each section A – F. As the system is
modular, each project section can be worked on
separately, and swapped into the production system.
Additionally, redundancy could be implemented by
simply adding more modules in parallel to the existing
systems.

REFERENCES

[1] Mira Yun, Charlie Wiseman, and Leonidas
Deligiannidis, "802.11 Wireless Networks:
Incorporating Hands-On Learning Experience into
the Undergraduate Classroom", In Proc. of the 2013
International Conference on Frontiers in Education:
Computer Science and Computer Engineering
(FECS'13), pp.140-146, Las Vegas, USA, July 2013.

[2] Kismet, https://www.kismetwireless.net/
[3] DD-WRT, https://dd-wrt.com
[4] BATMAN-Adv, https://www.open-mesh.org
[5] Mira Yun, Magdy Ellabidy, and Bowu Zhang,

"Project-based Learning Example: Wireless Mesh
Networks for Undergraduates", The Journal of
Computing Science in Colleges, Vol 30:2, pp.52-59,
December 2014.

[6] Tom McDermott, “Wireless Digital
Communications: Design and Theory”, Tucson
Amateur Packet Radio Corporation, Tucson,
Arizona, 1996

[7] “A 15-Gb/s Wireless ON-OFF Keying Link.” IEEE
Access, Access, IEEE, 2014, p. 1307. EBSCOhost.

[8] Linux man page: https://linux.die.net/man/1/xxd
[9] PyAudio Library:

https://people.csail.mit.edu/hubert/pyaudio/
[10] Schouhamer Immink, Kees. (2007). Shannon,

Beethoven, and the Compact Disc, pp.43-44, April
2019.

[11] TalkingHouse / I A.M. Radio Transmitter:
http://www.talkinghouse.com/pdfs/talking-house-i-
am-radio-manual.pdf

[12] Pydub Library: http://pydub.com/

http://myweb.wit.edu/yunm/pdfs/FECS13.pdf
http://myweb.wit.edu/yunm/pdfs/FECS13.pdf
http://myweb.wit.edu/yunm/pdfs/FECS13.pdf
http://myweb.wit.edu/yunm/pdfs/FECS13.pdf
http://myweb.wit.edu/yunm/pdfs/FECS13.pdf
http://myweb.wit.edu/yunm/pdfs/FECS13.pdf
http://myweb.wit.edu/yunm/pdfs/CCSC14.pdf
http://myweb.wit.edu/yunm/pdfs/CCSC14.pdf
http://myweb.wit.edu/yunm/pdfs/CCSC14.pdf
http://myweb.wit.edu/yunm/pdfs/CCSC14.pdf

