
AutoNote

Jason Fagerberg, Eric Wahlstrom, Calvin Phung, Kevin Mick and Mira Yun
Department of Computer Science and Networking

Wentworth Institute of Technology
Boston, MA 02115, USA

{fagerbergj1, wahlstrome, phungc, mickk, yunm}@wit.edu

Abstract—Online courses and mobile applications have been
offered to provide diverse and convenient learning opportunities.
However existing online learning services are not designed to
help audio and visual processing disorders. AutoNote is a web-
based platform that provides audio and white board
transcriptions from online learning services offered with any
video presentations. By using Watson’s audio recognition service
and machine-learning technology, AutoNote provides both audio
and white board transcriptions from videos where the users can
explore and learn at their own pace.

Keywords—Transcription Generator, Machine Learning,
Image Processing, Audio Recognition.

I. INTRODUCTION
In a classroom or meeting setting, it can be difficult to keep

up to speed with what the lecturer or presenter is presenting.
People often struggle to determine what to write down during
lectures or meetings. There is a lot going on during a lecture or
presentation, so the individual may not be able to capture every
main concept perfectly. For some people, it could be a slow
processing speed issue or the lecturer’s rapid presentation skills.

Processing speed is the pace at which an individual take in
information, make sense of it, and begin to take another course
of action. This information can be visual, such as letters and
numbers, or auditory, such as spoken language [1]. Having
slow processing speed has nothing to do how smart an
individual is - just how fast they can take in and use
information. For example, when a student with slow processing
speed is in class taking notes and he/she sees a word that they
are not familiar with, the student will have to slow down to
understand the meaning of the word, which makes it more
difficult for the student to keep up with the lecturer [1].

Hearing problems such as auditory processing disorder
(APD) is deemed as issue as well when it comes to learning.
When an individual has APD, they are unable to process the
information they hear due to miscommunication between the
ears and brain. They have difficulty recognizing subtle
differences between sounds in spoken words. This is very
common within a typical classroom when there is background
noise.

The most common learning disability is dyslexia. Dyslexia
is a problem with language, not vision. It causes difficulty with
reading. A key sign of dyslexia would be troubling decoding
words. In a classroom or meeting setting, the individual would
miss out many of the important details due to these conditions
[2]. Accommodations that could help with Dyslexia include the
following: extra time for reading and writing, extra time on

exams, allowing the individual to show comprehension in
different way, and simplified directions [3].

Current mobile phone applications such as Lumosity [4]
and Elevate [5] are designed to help train the brain to build a
daily habit around acquiring how an individual thinks. These
applications put critical thinking, memory, and problem-
solving skills to the test. Online courses such as Lynda by
Linkedin [6], Coursera, Udemy, edX, and Khan Academy are
also alternative solutions for those who has visually or auditory
processing issues. Lynda is an American massive open online
course website that offers video courses taught by industry
experts in software, creative, and business skills. They generate
learning paths that are comprised of multiple videos pertaining
to the specific subject matter. Each video that’s watched,
Lynda offers sections with available timing and transcripts, as
shown in Figure 1.

Fig. 1. Lynda’s Interface

Online courses such as Lynda are very beneficial towards
those who cannot afford a college education and would like to
only obtain certificates within a certain subject matter. This
does not solve the issue of learning within a classroom or
meeting without missing crucial details. Massive open online
courses (MOOCs) benefit those interested in cyber learning,
but it may not always be applicable to the subject matter a
person is looking to learn. With problems such as Audio/Visual
processing disorders, AutoNote is created with the goal of

improving the lifestyle of those who have trouble processing
important information in a classroom or work setting.

The remainder of this paper has the following sections.
Section II presents how each module of AutoNote was
designed and implemented. Section III concludes our work and
addresses the possible improvements that can be made to the
system in the future.

II. AUTONOTE
AutoNote is a web-based platform that provides audio and

white board transcriptions from online learning services
offered with any video presentations. From the video
presentation, AutoNote extracts audio transcription through
audio processing algorithm and Watson’s audio recognition
service. In addition, AutoNote creates a board transcription
through a machine-learning model from the word and letter
image extractions of the video frames. These transcriptions will
be passed back to the front end where the user can explore the
transcriptions connected to their video and learn at their own
pace.

2.1 Front End
The front end website is a single page application that was

built using the reactJS framework for function and bootstrap4
for styling. ReactJS utilized a domain object model to
dynamically change elements in a single HTML file. These
elements may be contained in variables or objects known as
components. The base for the website is the div that is styled
with the bootstrap root tag and colored with custom CSS. The
main controller for swapping UI elements and components will
be the applications state variable. This variable can have a
value of PENDING, PROCESSING, or RESULT.

The initial state for the application is PENDING. In this
state, the welcome component will be rendered. The welcome
component is a bootstrap jumbotron, which contains some
welcome and instructional text and an upload video button as
shown in Figure 2. When the user clicks the upload video
button, a standard video file input dialog will appear. The user
will only be allowed to select video files in this dialog. After
the user selects a video file, the file will be placed into a form
data object created using the standard form data library [7].
The form data object will then be passed to a processPost()
function along with arrow functions that handle the data after a
response is received and that displays error messages if the
request failed.

Fig. 2. Welcome Component

In the PROCESSING state of the application, the upload
button will be replaced with a loading spinner and a cancel
button. The application will remain in this state until a response
is received from the API. If the user presses the cancel button,
then a new request is sent to the API with a null file. If the post
was successful, then the callback() function will be called. This
callback() function will create a URL from the video file using
the standard URL library [8]. This function will also parse the
boardTranscription and audioTranscription lists from the
response. After this data is saved, the state of the application is
changed to RESULT.

In the RESULT state, the welcome component is swapped
for the result component as shown in Figure 3. The result
component contains a back button, the video uploaded by the
user, two tabs for switching transcriptions, a text box that holds
the transcription, and a footer that contains a download results
button.

Fig. 3. Result Component

Every quarter second, the application will loop through the
active transcription looking for the line that has a time stamp
that is closest to the current video’s time without going over.
Once the closest line is found, it is then selected and
highlighted. This allows the application to always have the
most relevant transcription line highlighted yellow so the user
can track the transcription as it is said or written. Since this
function is run so often, some measures were taken to help
increase the time efficiency. If the current video time is equal
to the currently selected transcription timestamp, the function
returns. If the current video time is greater than the current
transcription line timestamp then each of the next
transcriptions lines is checked until the correct line is found.

The user may hover over any line in the transcription and
see the corresponding timestamp as shown in Figure 4. The
user may also click on this line to skip the video to that
corresponding timestamp.

Fig. 4. Highlighted Transcription Line

The download results button is an HTML link element that
downloads the files from a URL that is created when the link is
clicked. The text from the transcriptions is parsed out of the
transcription lines and saved to a zip file by utilizing the JSZip
library [9]. Then the standard URL library creates a URL that
references that zip file so the user can download it when they
click the link [10].

2.2. Image Processing
For the transcription process to take place, written

information needs to be gathered from the submitted video.
The video goes through a process that strips individual frames
and collects their timestamps to be referenced post process. By
taking the framerate of the video, the program can compute the
correct time of each frame.

The individual frames go through a process of image
manipulation that will allow the program to recognize words
and letters, based on the contours of each written element. The
manipulation to get the words from each frame is a three-step
process that takes each frame through a series of changes [11]:
Grady-scaling (Figure 5), Gaussian Blur (Figure 6), and Black-
white threshold (Figure 7).

Through OpenCV2's function “findContours”, the program
approximates boundaries for the words that will allow for the
program to be able to “group” each individual word based on

the contour of the blurred words, these worlds will be saved as
separate images. In Figure 7, each word can be seen as a white
blur, through OpenCV2 the boundaries of the white “words”
will be used by the program to collect the area of each element
to be split. A separate directory will be created to collect every
word from the frame that was processes.

Now that the words written on each frame are collected, the
next step is to split each word into their individual letters so
they can be analyzed by the CNN. A similar process takes
place to strip the letters from the words. First, the images of the
previously processed words are taken and processed in a
similar fashion as before, except now, instead of blurring the
images to group them the blurring process is skipped to retain
accurate contours of each letter: Gray-scaling and Black-white
threshold. Skipping the blurring step results in accurate
boundaries for each letter, Figure 8 displays the boundaries of
each letter to be stripped from the word, which can now be sent
to the letter recognition model to give a prediction on what
letter was found.

2.3 Letter Recognition
We have trained a model by utilizing the EMNIST [12]

data set, which is comprised of over 800,000 images of hand
written alphanumeric characters. We use this data set with a
convolution neural network to build a model that can predict
hand written letters, and the Tesseract-OCR library tricking
eyes images that are potentially not alphanumeric characters,
that our Computer vision software picks up.

Fig. 9. Our current models level of accuracy (blue) compared of the
test data (orange).

Fig. 5. Gray scaled video frame

Fig. 6. Blurred video frame

Fig. 7. Video frame with Black-white threshold filter

Fig. 8. Letter stripping of a word

To briefly elaborate on what a convolution neural network,
it is a machine-learning algorithm that is mainly used for image
recognition [11]. The optical character recognition (OCR)
Tesseract program is generally used for converting printed
texts such as alphanumeric characters on credit cards,
billboards, or in textbooks into digital files. Unfortunately
however, it is not trained for handwritten letters and therefore
works very poorly with our images. For our project however,
when we check a character against our model it returns the
results array from Figure 9,which is a list of probability
between zero and one we check to see if the highest probability
is less than 75% if so we can utilize the Tesseract library due to
the likelihood that what the image is is more likely a symbol
such as a period, comma, or some other possible symbol.

2.4 Audio Recognition
Speech recognition is the ability of a program to identify

words and phrases in spoken language and convert them to a
machine-readable format. Rudimentary speech recognition is
deemed imprecise at times and may only identify words if they
are spoken very clearly and slowly. Algorithms are utilized
through acoustic and language modeling. There are many
available packages for speech recognition out there that works
with AutoNote, such as google-cloud-speech, assemblyai, apiai,
pocketsphinx, and Watson-developer-cloud. AutoNote takes
advantage of IBM Watson’s Speech to Text APIs to produce
transcripts of spoken audio [13]. AutoNote utilizes IBM
Watson’s Speech to Text synchronous and asynchronous
HTTP REST interfaces. Users are able to send requests and
receive results over a single connection asynchronously, thus
resulting in faster transcription. Figure 10 shows the process of
implementing IBM Watson’s Speech to Text API libraries and
receiving the transcribed audio text.

def	
 get_audio_transcription(self,	
 video_file):	
 	

	
 	
 	
 	
 	
 	
 	
 	
 stt	
 =	

SpeechToTextV1(
 	
 	
 	
 iam_apikey='t0rpKCce8HfPqMi
e-­‐2bz3QPi301_0Dj5Nfc-­‐ypuxsb1m',	

url='https://gateway-­‐
wdc.watsonplatform.net/speech-­‐to-­‐text/api')	

	
 	
 	
 	
 	
 	
 	
 	
 clip	
 =	
 mp.VideoFileClip(video_file)	

	
 	
 	
 	
 	
 	
 	
 	

clip.audio.write_audiofile("theaudio.mp3")	

	
 	
 	
 	
 	
 	
 	
 	
 audio_file	
 =	
 open("theaudio.mp3",	

"rb")	

	

	
 	
 	
 	
 	
 	
 	
 	
 with	
 open('transcript_result.json',	

'w')	
 as	
 fp:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 result	
 =	
 stt.recognize(audio_file,	

content_type="audio/mp3",	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

continuous=True,	
 timestamps=True,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

max_alternatives=1)	

Fig. 10. Code snippet of audio transcription

III. CONCLUSION AND FUTURE WORK
AutoNote aims to provide an on demand and

comprehensive experience that modern online learning sites
provide, but with any lecture video. AutoNote generates audio
and white board transcriptions from online learning services

offered with any video presentations. From the video
presentation, AutoNote extracts audio transcription through
audio processing algorithm and Watson’s audio recognition
service. From the video frames, AutoNote extracts a white
board transcription through a machine-learning model of image
processing. These transcriptions will be passed back to the
front end where the user can explore the transcriptions
connected to their video and learn at their own pace.

AutoNote is our very first solution for extracting
transcriptions from online learning videos. The path that word
and image files are created does not allow multiple users to
access a server at a time, in the future this should be changed to
allow as many users to process videos at the same time as
possible. The processing speed of the server program can be
improved by multithreading the letter detection portion of the
algorithm as well as making the audio recognition portion it’s
own thread.

REFERENCES
[1] G. Charbonneau, A. Nertone, F. Lepore, M. Nassim, M.

Lassonde, L. Mottron, O. Collignon, “Multilevel
alterations in the processing of audio–visual emotion
expressions in autism spectrum disorders,”
Neuropsychologia, 2013.

[2] U. Team, “Understanding Dyslexia,” Understood.org.
https://www.understood.org/en/learning-attention-
issues/child-learning-disabilities/dyslexia/understanding-
dyslexia.

[3] P. Rosen, “The Difference Between Dyslexia and
Dyscalculia,” Understood.org.
https://www.understood.org/en/learning-attention-
issues/child-learning-disabilities/dyslexia/the-difference-
between-dyslexia-and-dyscalculia.

[4] https://www.lumosity.com
[5] https://www.elevateapp.com/
[6] https://www.lynda.com/
[7] Form-Data, “form-data/form-data,” GitHub, 17-Oct-2018.

https://github.com/form-data/form-data#readme.
[8] Axios, “axios/axios,” GitHub, 04-Mar-2019.

https://github.com/axios/axios.
[9] JSZip. https://stuk.github.io/jszip/. \
[10] K. Kelly, “Processing Speed: What You Need to Know,”

Understood.org. https://www.understood.org/en/learning-
attention-issues/child-learning-disabilities/information-
processing-issues/processing-speed-what-you-need-to-
know.

[11] Githubharald, “githubharald/WordSegmentation,” GitHub,
26-Aug-2018.
https://github.com/githubharald/WordSegmentation.

[12] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik,
“EMNIST: an extension of MNIST to handwritten
letters,” arXiv.org, 01-Mar-2017.
https://arxiv.org/abs/1702.05373.

[13] A. Nadas, "Estimation of probabilities in the language
model of the IBM speech recognition system," in IEEE
Transactions on Acoustics, Speech, and Signal
Processing, vol. 32, no. 4, pp. 859-861, August 1984

