
LiGET: Transfering files via Li-Fi
Benjamin Creem, Brett Grossman, and Mira Yun
Department of Computer Science and Networking

Wentworth Institute of Technology
Boston, MA 02115, USA

{creemb, grossmanb1, yunm}@wit.edu

Abstract—With the radio spectrum growing ever
more crowded and demands for faster, more secure
wireless connections continuing to skyrocket, the
prospect of communication via the light spectrum
grows. This technology, known as Light Fidelity (Li-
Fi), has been generally considered state of the art and
not sufficiently accessible either as a commercial
product or for educational use. This paper will
demonstrate the viability of undertaking an Arduino
based Li-Fi file transfer system as undergraduate
work.
Keywords— Li-Fi; Arduino; File Transfer system;

I. INTRODUCTION
Light Fidelity (Li-Fi) is a wireless communications

technology that substitutes usage of the radio spectrum
with that of visible light [1]. This is a powerful,
relatively new technology that draws a great deal of
interest due to its potential for speed, security and
avoidance of spectrum crowding. However, Li-Fi
generally only sees experimental work and is highly
unlikely to be found in the undergraduate classroom
setting. With the growing prospect of commercial use of
Li-Fi, integration of basic lessons in its usage and
capabilities can be a great asset to undergraduates.

In this paper, we propose LiGET, a one-way Li-Fi
based file transfer system, to introduce Li-Fi technology
and applications for undergraduate education. At around
$60, the build for our project was relatively cheap and
had assembly that can be easily accomplished with
proper instructions. With off-the-shelf and low cost
hardware, it would be feasible to re-create our project in
a classroom environment in order to gain crucial
experience working with Li-Fi.

The rest of this paper is organized as follows. Section
II provides Li-Fi introduction for undergraduate
education. Section III describes the proposed system
design and implementation details. Finally, Section IV
summarizes the paper and outlines ideas for future work.

II. LI-FI FOR UNDERGRADUATES
Li-Fi works by use of LEDs to transmit data over the

visible light spectrum [2]. By using visible light
spectrum, transmission speed can be significantly
increased. This can be accomplished by using the
presence of light, and conversely the lack thereof, to
represent 1s and 0s. The LEDs blinks at extremely fast
speeds in order to send data at desired rates.

 It is commonly known that light’s movement through
air has the fastest velocity of anything harnessable by
today’s technology. By transmitting data on this
spectrum, the travel time of data between any given
devices is significantly decreased. Another incentive for
using Li-Fi is the consistently growing problem of
spectrum crowding. As more and more wireless devices
enter the market, the radio spectrum becomes
increasingly crowded, increasing problems of
interference and making it difficult to find spectrum
bands to license [3]. Moving wireless communication to
the visible light spectrum circumvents this problem
altogether, opening up a massive spectrum of unused
frequency for commercial use. Lastly, the use of Li-Fi
inherently provides a high level of security due to the
predictable and easily retractable paths that light travels
through. Without being able to physically place a
receiver in the path between the access point and the
user device, there would be no way to intercept
transmitted data [4]. These factors greatly enhance the
potential for commercialized Li-Fi usage in the near
future.

According to this industrial trend, our undergraduate
students must be explored and experienced with that
state-of-the-art technology. Experience in setting up a
Li-Fi system and working with its protocols can give a
massive advantage to any student looking for an edge.
The demand for this technology will only grow, and we
have shown that it is not too advanced to be brought into
the classroom.

III. LIGET
 LiGET requires two Arduino Uno Rev3s, two Arduino
SD card modules, one light dependent resistor (LDR),
one clear light emitting diode (LED), two breadboards, a
100ohm resistor, a 1000ohm resistor, and 17 wires as
shown in Figure 1. Other Arduino variations may work as
well, however the only tested build uses Arduino Unos.
One Arduino needs to be setup as the client, or receiver,
and the other Arduino needs to be setup as the server, or
transmitter.

 The server is easier to setup due to it requiring less
wiring than the client. To setup the LED, we use two
wires, the 100ohm resistor, and a GND pin and pin 8 on
the Arduino. The Arduino pin number can be any of the
digital pins, except for 11, 12, and 13, because those will
be used for the SD card module. One wire goes from the
GND pin on the Arduino to an empty spot on the
breadboard. The positive pin on the led goes to a space
on the breadboard in the same row that the wire from the
GND is. The negative pin on the LED goes to a different
row. One end of the 100ohm resistor comes from the
same row as the negative pin on the LED, and the other
goes to a new row. The end of another wire then goes
from that new row with the resistor in it to digital pin 8
on the Arduino.

 The client is slightly more difficult to set up. To set up
the light dependent resistor, we use the second
breadboard, three wires, the 1000ohm resistor, a GND
pin, the 5V pin, and pin A0. It should be noted that this
setup is on the second Arduino. One wire is connected to
pin A0, another wire is connected to GND, and the last
wire is connected to 5V. The LDR needs to be placed on
the breadboard, with both of its ends in different rows.
The other end of the wire connected to GND goes to one
of the same rows that the LDR is connected to. The other
end of the wire connected to A0 goes to the row that has
the opposite end of the LDR than the one that is

connected to the GND pin. The wire that is connected to
the 5V pin goes to a new row on the breadboard. One end
of the 1000ohm resistor goes to that row, and the other
goes to the same row that the wire connected to A0 is in.

 The last wiring step is to setup the SD card modules.
These will be mostly the same on both Arduinos. The SD
card module can be put into the breadboard so that each
pin is on its own unique row. The first pin on the module
is the GND pin. This pin just needs a wire that goes from
another point in that row to a GND pin on the Arduino.
The VCC pin on the Module needs a wire that goes from
the 5V on the Arduino to an empty spot on the
breadboard that is in the same row as the VCC pin on the
SD card. On the receiver, the SD card needs the 5V pin
which is also used for the LDR. All this means is that an
additional wire needs to go from the same row that the
wire that is connected to the 5V pin on the Arduino to the
VCC pin on the receiver Arduino. Another wire goes
from the MISO pin on the module to digital pin 12 on the
Arduino. One more wire goes from the MOSI pin on the
module to pin digital pin 11 on the Arduino. Another
wire goes from the SCK pin on the module to digital pin
13 on the Arduino. One last wire goes from the CS pin on
the module to digital pin 10 on the Arduino. The CS pin
is the only pin that the user can choose, and must be
defined in code. We used pin 10, but any digital pin that
isn’t being used by the other parts of the SD card module
or the LED can be used.

 The implementation of sending a file is done by
reading bytes from a file, and then sending those bytes by
turning them into its 0s and 1s and turning the LED on if
we want to send a 1 and turning the LED off if we want
to send a 0. Getting values from the light dependent
resistor is done using an analog read. The analog read
returns values from 0 if it detects high light, to 1023 if it
is in complete darkness. Before a file can be sent, the
receiver need to calibrate based on the ambient light
wherever it is. It calibrates by doing an analog read 100
times and calculating the average. We then subtract of a

Fig. 1. LiGET System Architecture

portion of this average, and that becomes the threshold
for a 0 or a 1. If the analog read returns a value that is
lower than the threshold, it is a 1. If the analog read
returns a value that is greater than or equal to the
threshold it returns a 0.

 The receiver then uses a software, universal
asynchronous receiver-transmitter (UART), to receive
values from the transmitter as shown in Figure 2. There
needs to be a predefined bit time in both the receiver and
transmitter before any transmission can be sent. We call
this predefined bit time INTERVAL, because it
determines the delay between analog reads to get values
for each byte. We defined our bit time to be 30,000
microseconds. We found that any value lower than that
would occasionally cause errors in the transmission.
Once the receiver is started, initialized the SD card and
determined the light threshold, it enters a polling state
where it is constantly looking for the start bit. When it
receives the start bit, it waits for an interval equal to 1.5
times the bit time. This is enough of a delay to get to the
middle of the transmission of the first bit. It then does an
analog read to get the first bit of the byte. It then waits
one more bit time to get the second bit of the byte, and so

on until all 8 bits have been received. It then waits one
last time for the stop bit.

 This method can be used to send individual bytes. To
send a file, the receiver needs to know when to stop
receiving bytes to write to the file. To do this, the first
four bytes of the transmission are the file size. After that
the transmitter sends 1 byte for the size in bytes of the
name of the file. The receiver then uses that to receive
the name of the file, create the file, and then uses the size
of the file in bytes that it read in earlier to know when to
stop receiving bytes and write to the file. Once the
receiver has finished receiving bytes, it closes the file on
the SD card.

A. Fining the bit time
We wanted to know at what bit time the receiver

would be able to keep up with the transmitter and avoid
errors. The receiver has much more overhead than the
transmitter, so if the bit time is too low, the receiver may
fall behind. If the receiver detects a start bit too late, it
might wait too long and miss the next transmitted bit.
We tested by sending a small file of size 43 bytes 10
times for each listed bit time. If it failed at all, we
increased the error rate by 10%.

Fig. 2. Method for Receiving Bytes

TABLE 1. BIT TIME ERROR PERCENTAGE

Bit Time (microseconds) Error
50000 0%
40000 0%
30000 0%
29000 20%
28000 60%
27000 90%
26000 100%

There is a dramatic increase in error as the bit time
decreases as shown in Table 1. As a result, the
recommended bit time for this setup is 30000
microseconds. That is the bit time we used in our final
implementation and it has worked consistently without
any errors.

IV. CONCLUSION
Our project was primarily meant to bring the

emerging technology of Li-Fi down to a level that
undergraduate students could work with in a classroom
setting. If students do not need to go through the work of
figuring out how each method and the software UART
needs to work themselves, this project can be completed
within a few hours’ maximum. It could exist as a hands-
on lab exercise for wireless based college courses.

The project is expandable. At the moment we have
only implemented single directional communication. If
we were to have bidirectional communication, we could
add error detection and handling. We could also start
using infrared LEDs so that the project does not use the

visible light spectrum. To improve the speed, we could
switch to doing a binary read instead of an analog read,
however that would require additional circuitry that we
were not prepared to setup at the time of the project. If
we were to move away from Arduino to something else
that may increase the speed as well. The Arduino is great
for small projects like this, however when timing needs
to be done down to the microsecond the Arduino is not
fast enough. A device with a faster processor may work
better in the future. What may also improve speed is
solving the UART problem with hardware instead of
software. Typically, UART is a hardware problem, and if
we could have device that reads in infrared values and
returns bytes to our code it could drastically improve the
speed of this implementation of Li-Fi.

REFERENCES

[1] H. Haas, L. Yin, Y. Wang and C. Chen, "What is
LiFi?," in Journal of Lightwave Technology, vol. 34,
no. 6, pp. 1533-1544, 15 March15, 2016

[2] M. Leba, S. Riurean and A. Lonica, "LiFi — The
path to a new way of communication," 2017 12th
Iberian Conference on Information Systems and
Technologies (CISTI), Lisbon, 2017, pp. 1-6.

[3] R. Mahendran, "Integrated LiFi(Light Fidelity) for
smart communication through illumination," 2016
International Conference on Advanced
Communication Control and Computing
Technologies (ICACCCT), Ramanathapuram, 2016,
pp. 53-56.

[4] S. Kulkarni, A. Darekar and P. Joshi, "A survey on
Li-Fi technology," 2016 International Conference
on Wireless Communications, Signal Processing and
Networking (WiSPNET), Chennai, 2016, pp. 1624-
1625.

