
Knockoff Drive: A Portable Data Storage System
Nicholas Clark, Thomas Evangelista, John Scarfo, Garrett Stonis, Chen-Hsiang Yu and Mira Yun 

Department of Computer Science and Networking 
Wentworth Institute of Technology 

Boston, MA 02115, USA 
{clarkn3, evangelistat1, scarfoj, stonisg, yuj6, yunm}@wit.edu  

 
 

Abstract – Network-based data storage is popular, 
but the privacy and portability involved in using such 
services raise a serious concern to the public 
nowadays. To remedy these issues, we propose to 
design and create a private and portable storage 
solution on a mobile device. Due to the fact that 
micro computers are more portable and affordable, 
we chose Raspberry Pi as an example to demonstrate 
the idea. Knockoff Drive is a system that provides 
private and portable data storage service for the 
users. The system consists of a HTTP server, FTP 
server and Web interface for data access. It is not 
only an affordable and alternative solution to file 
transferring on the go, but it also increases data 
security and privacy. 

Keywords – HTTP server; FTP server; Web interface; 
Raspberry Pi 

I. INTRODUCTION 

 In the U.S., the Internet penetration has reached 
84.2% and 39% of online adults use online cloud storage 
services [1, 2]. However, security concerns and risks of 
using this kind of services were raised, either enterprises 
or individual users [3, 4].  

 Instead of compromising the safety in data, we came 
up with an idea to bypass these third-party servers and 
create a user-oriented solution that might be easy-to-
carry for an individual, i.e. fit into the palm of the user’s 
hand. Because of the advance of Internet of Things (IoT) 
research and applications, the cost of computing devices 
has reached to an affordable price, we believe it is an 
opportunity to use this kind of computing device as a 
personalized replacement for existing internet services.  

 Based on above consideration, we propose to use a 
tiny, single-board computer to create a portable data 
storage server. The main research question we want to 
address is: how do we design a portable data storage 
server for an individual user? The design must be 
affordable for the public and customizable for different 
users. 

 In this paper, we present a primitive result of this 
experimental learning, named Knockoff Drive, which is a 
secure, portable data storage server built with a small, 
single-board computer, named Raspberry Pi. The system 
not only contains a Web server to provide web interface 
for data access, but it also has a FTP server to support 
upload and download service for the data. When a file is 
chosen to upload or download, the Web server will 
communicate with the FTP server to place the file in a 
special folder on a mobile device. To demonstrate the 
idea, we chose Raspberry Pi 3 model B as an 
experimental device. 

     In the following, we will refine the research question, 
present the current design and summarize our findings. 
At the end of the paper, we will conclude our work with 
some suggestions.   

II. PROBLEM AND PROPOSED IDEA 

 Security breaches and risks of using third-party 
services raise a concern in today’s computing world. In 
addition, there is a lack of a free, personalized, unlimited 
cloud storage system. The main research question is: 
What is the solution that not only addresses security 
concern, but it also provides a free, personized and 
unlimited cloud storage? 

 We propose to combine an FTP server with a Web 
server on a personal mobile device. Knockoff Drive is 
the system we propose to demonstrate the idea, which 
uses Raspberry Pi 3 model B as a personal mobile device 
to host an FTP and HTTP servers. The system can be 
used to download files from the Raspberry Pi to the 
computer requesting the file. The system can be 
expanded to hold multiple users on a single Raspberry Pi 
and have the files in a single folder. As for the storage, 
since MicroSD and external hard drives are becoming 
cheaper, Knockoff Drive can expand the internal or 
external storage easily depending on the amount of data 
they need. This capability removes the need to rely on a 
third-party storage system and allows a personalized 
alternative for customization and reliability.   



III. KNOCKOFF DRIVE 
 The system consists of two parts: Web Service, FTP 
Service, HTTP Server and a single-board computer. In 
this section, we would like to explain the detailed design 
and implementation of the system. 
 

 
Figure 1. The Web site for access on the mobile device 

A. Web Server and UI Interface 

 To begin with, we started from creating a web site in 
the mobile device to provide interaction for the users. 
The website is implemented by using HTML 5, CSS 3 
and JavaScript as shown in Figure 1. 

     HTML is integrated first and is used to provide the 
content of the webpage. Unlike traditional programming 
languages, HTML is a markup language and uses tags to 
add titles, headings, images, and links to websites. For 
instance, creating a paragraph requires the use of a “p 
tag” or the letter “p” enclosed in arrowed brackets, 
which looks like this <p> [1]. These elements are all 
enclosed further inside of a <body> tag, which is the 
actual content the user will see and interact with. In the 
title tags we link the CSS for the page. The HTML code 
used for the index page of Knockoff Drive can be seen 
below in Figure 2. 

 
Figure 2. HTML for the index page of Knockoff Drive 

     CSS is used to style the webpage. This is performed 
by selecting HTML tags and applying different colors 
and effects to them. For example, paragraphs can have 
their fonts, font color, backgrounds, or size changed. For 
Knockoff Drive, we attempted to ensure readability and 
simplicity. This was achieved by limiting the amount of 
content per page and using a simple background with 
white text. Basic syntax is as follows: Selector: 
{property: value} [2]. 

     Once the basic outline of the website was created, we 
use JavaScript to add functionality to the webpage. 
Luckily, Knockoff Drive did not require much JavaScript 
to be written so we could focus on the PHP needed to 
upload a file. Unlike HTML and CSS, JavaScript is a 
fully-fledged programming language capable of event-
driven programming with texts, arrays, and dates [3]. For 
Knockoff Drive, we created a basic function to allow 
users to login to the index of the website that have access 
to the right username and password.  

 
Figure 3. Upload data to the FTP server via a PHP script 

     Lastly, the PHP code was needed to post the selected 
file to the FTP server. PHP is a server scripting language 
that has its scripts executed on the server. For Knockoff 
Drive, we used PHP to set up a connection and login to 
the FTP server from the Web server. Then, after 
connecting the servers, we needed to make sure both 
connections were made through use of an error check. 
After the check has been completed, the upload process 
begins using the “ftp_put” function and it takes the 
source file and uses “FTP_BINARY” file encoding type 



to transfer the file to a destination folder [5] as shown in 
Figure 3. After one final error check is made to make 
sure the file has been uploaded, the connection to the 
server is closed. 

B. FTP Server 

     One key feature of Knockoff Drive is to upload files 
to the storage. To provide this feature, we set up an FTP 
server on the mobile device, i.e. Raspberry Pi, which 
runs Raspbian Linux on it. We used ProFTPD, which is 
a secure FTP server program that operates in the server 
side to host an FTP server on port 21 [6]. The software 
takes in its configuration settings from a file created in 
the /etc/proftpd directory, named proftpd.conf. [7].  

 

Figure 4. The Linux commands to create a new user 

     We started by creating a new user on the Raspberry 
Pi, named “temporary” with the password “Thia&Ugg” 
that expires on a certain time [8]. The process is 
illustrated as Figure 4. After the creation of a new user 
account for the Pi, the new account was added into the 
FTP’s proftpd.conf file to allow the user to access the 
server.  We allowed the new user “temporary” access to 
his own home directory (/home/temp) but nowhere else, 
maximizing the security of our FTP server [7]. 

 

Figure 5. The FTP server accessed through the CLI 

     Once the system was operational, we tested it by 
connecting to our FTP server via the Mac Command 
Line Interface (CLI) in the terminal program. As can be 
seen in Figure 5, the FTP server had full functionality, 
allowing all manner of FTP commands, though the main 
focus was on the get (to download files) and put (to 
upload files) commands. Once the FTP server’s 
functionality was verified through the CLI, we 
connected to the server through a Web browser. As 
expected, the browser had to first log in with the 
required credentials before being able to access the files 
stored on the server. The login authentication may be 
seen in Figure 6, while the browser’s user-interface for 
interacting with the file system may be seen in Figure 7. 

 

Figure 6. The FTP server login authentication  

 

Figure 7. User-interface of browser 

C. HTTP Server 

     With a web page ready for deployment as a user-
friendly interface to the functional FTP server, and PHP 
code on deck to handle uploads to the FTP through the 
browser itself, we created our own HTTP server from 
scratch in Java using socket programming. 

     The Original design behind the Java code was to 
create a library with as much ease for the user as 
possible, while maintaining most, if not all, of the 
functionality. The user of the library needs only to 
implement a main() method with the same, or similar, 
functionality as seen in Figure 8. 



 

Figure 8. An example of the created HTTP library 

     HTTP server provides different services via different 
methods. For example, the interpretMessage() method 
interprets the message read from the client and forms a 
reasonably correct response message to return back to 
the client. The HTTP class uses many other helper 
classes and enums, such as the Message class (contains 
and maintains an HTTP message), to more easily 
structure and organize the server into pieces that don’t 
often change. 

     Creating a fully-functioning HTTP server from 
scratch was not trivial. All HTTP interactions involve an 
HTTP message, including a start-line, optional header 
lines, and a data field (which could be empty). Much of 
the interaction between a Web browser and server occur 
through the optional header lines in each message, which 
allows the server and client to communicate how the 
other is operating as well as useful information about the 
data field [9]. 

     With the HTTP server code written, tested, and 
debugged, we deployed both the HTTP and the FTP 
server applications onto the Raspberry Pi to host the web 
page and the files respectively, and, with the aid of the 
PHP code, wove them together to create a seamless user 
experience.  

IV. CONCLUSION AND FUTURE WORK 
     Knock-Off Drive was an attempt as a solution to the 
issue of oversaturation in cloud-based data storage. 

Many companies tend to offer “secure, fast, and 
responsive” cloud servers, but news of big companies 
being hacked and data being compromised has only 
increased over the past few years. Knock-Off Drive 
provides a solution to this issue by allowing a user to 
create their own customized cloud server in the pocket. 

     Our research approach starts from investigating the 
issues in cloud storage, surveying affordable hardware 
and software and implementing an engineering solution. 
Although the current implementation is not necessarily 
as secure as known-companies at this moment, it 
demonstrates the idea of providing encrypted files and 
sending messages over HTTPS protocol. For the future 
work, we are working on modularizing the system to 
make it easier to build and setup such that more and 
more users can easily build private and customized 
personal data storage.  

REFERENCES 
[1] Internet World Stats – Internet Penetration Rates. 

https://www.internetworldstats.com/top25.htm 
[2] Statista: Cloud storage usage of online adults in the U.S. 

https://www.statista.com/statistics/710964/us-cloud-
computing-consumer-usage/  

[3] 6 security risks of enterprises using cloud storage and file 
sharing apps.   
https://digitalguardian.com/blog/6-security-risks-
enterprises-using-cloud-storage-and-file-sharing-apps  

[4] Safety Concerns with Cloud Storage & Their Possible 
Solutions. 
https://smidcloud.com/en/safety-concerns-with-cloud-
storage-their-possible-solutions/  

[5] HTML Element Reference, W3schools, February 2017. 
https://www.w3schools.com/tags/default.asp 

[6] CSS Reference, W3schools, February 2017. 
 https://www.w3schools.com/cssref/default.asp 

[7] JavaScript and HTML DOM Reference, W3schools, 
February 2017. 
 https://www.w3schools.com/jsref/default.asp 

[8] PHP 5 FTP Functions, W3schools, February 2017. 
https://www.w3schools.com/php/php_ref_ftp.asp 

[9] How To Host A Website With Raspberry Pi, ReadWrite, 
June 2017. 
https://readwrite.com/2014/06/27/raspberry-pi-web-
server-website-hosting/ 

 


