
Cost-efficient Hands-on Learning Design for
Computer Organization Course

Suk Jin Lee
TSYS School of Computer Science

Columbus State University
Columbus, GA, USA

lee_suk@columbusState.edu

Jinsook Park
Dept. of Mathematics
University of Hartford

West Hartford, CT, USA
jpark@hartford.edu

Andrew Jung
Dept. of Computing Sciences

University of Hartford
West Hartford, CT, USA

jung@hartford.edu

Mira Yun
Dept. of Computer Science & Networking

Wentworth Institute of Technology
Boston, MA, USA

yunm@wit.edu

Abstract— This paper has probed an innovative hands-on
activity for Computer Organization course with a cost-effective
laboratory setting. A Computer Organization is one of the most
important subjects for computer science (CS) students, because
the subject focuses on fundamental relationship between
hardware and software components in computer systems. Due
to its importance, effective and appropriate pedagogies are
required in this area. Simulation tools were widely used to
visualize the processing of instructions and help understanding
the concept of computer systems rather than teaching the
concept with traditional lecture method. Teaching method
combined with simulators has been issued on the table and
raised an inquiry whether it really relates to meaningful student
involvement or not. The use of hands-on activities has been
shown to improve students’ interest in and ability to understand
course material. We designed a cost-effective laboratory setup
and a set of hands-on activities for the course using low-cost
single board computers, i.e. Raspberry Pi. This article
introduces how to combine hardware components (e.g. wires,
LEDs, resisters, breadboard, ICs) and Python programs to
develop hands-on activities for the Computer Organization
course. The survey results including fall 2018, spring 2019 and
fall 2019 show that almost 90% of students prefer to learn
through hands-on activities and the activities during the class
helped improve their learning.

Keywords—Computer Organization, Instructional Approach,
Raspberry Pi and Python, Hands-on Activities

I. INTRODUCTION

Computer Organization and Architecture is one of the
most important subjects for computer science (CS) students,
because the subject focuses on fundamental relationship
between hardware and software components in computer
systems [1][2]. It is very important for CS students to
understand internal working, implementation, and
architecture of a computer systems in order to design and
develop new services and applications. Since most of the
undergraduate institutes require Computer Organization or
Computer Architecture for CS degree, there is a strong need
for effective and appropriate pedagogies.

Simulation tools were widely used to visualize the
processing of instructions and help understanding the concept
of computer systems rather than teaching the concept with
traditional lecture method [3][4]. As the computer hardware
systems become more complicated, the instructors take more
simulation tools for pedagogical variation. However, using
simulators for hardware interactions has been issued on the

table and raised an inquiry on student engagement in the
classroom.

The use of hands-on activities has been shown to improve
students’ engagement and ability to understand course
material [5]. In addition, the students can acquire a clear
picture of what to expect after having hands-on activities.
However, it is very challenging to set up equipment or devices
in the classroom without a great amount of financial support.
The purpose of this study is to design a cost-effective
laboratory setup using low-cost single board computers, i.e.
Raspberry Pi, and provide students with a set of hands-on
exercises for Computer Organization. One of the most
powerful features of the Raspberry Pi is the row of general-
purpose input/output (GPIO) pins along the top edge of the
board. These pins allow students to connect Raspberry Pi to a
range of devices, from LEDs, Integrated Circuits (ICs) and a
variety of sensors. This GPIOs can be used as the interface to
control tangible tools with Python programming language.
This paper presents how to combine hardware components
(e.g. wires, LEDs, resisters, breadboard, ICs) and Python
programs for undergraduate Computer Organization course.
After students perceive the theoretical knowledge of each
topic, they can engage in practical exercises. Among the topics
covered in the activities are the following: 1) Blinking LEDs,
2) AND Logic Gate, 3) Decoder, 4) Full Adder, 5) SR Latch,
6) Latch and Output Buffer, 7) Clock and Counter, 8) Counter
and Decoder, 9) Arithmetic Unit, Latch and Output Buffer,
and 10) ARM assembly program. We used various tangible
tools for undergraduate students to be more engaged in
learning and to make sense of the concepts.

The rest of this paper organized as follows. Section II
present the motivation and related works. Section III provides
the details about the course contents including the course
design, 10 different hands-on activities, and example student
works. In Section IV, we share our survey results. Finally, we
conclude our work in Section V.

II. MOTIVATION AND RELATED WORKS

Students are keen to learn by doing with real tools rather
than perceiving theoretical concepts with pen and paper.
Computer Architecture and Organization courses provide
students with the knowledge of basic architecture and
functions of computer system including data representation,
Boolean algebra and logic gates, combinational and sequential
circuits, computer arithmetic, instruction set architecture,
memory hierarchy and interaction of machine and computer
languages. The paper-based methodology appears to be

978-1-7281-7267-5/20/$31.00 ©2020 IEEE

The 15th International Conference on
Computer Science & Education (ICCSE 2020)
August 18-20, 2020. Online

 150

WeA2.2

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on November 19,2020 at 21:21:02 UTC from IEEE Xplore. Restrictions apply.

monotonous and no longer fashionable to undergraduates [6].
The lack of practical work and hands-on activities disturbs
students from understanding the theoretical aspect of internal
structure of computer systems [7].

CS students benefit from the hardware experience that can
establish a clear picture of relevant relationship among a great
number of hardware components [8]. The hands-on activities
can provide practical experience of hardware with CS students
[9][10]. Through hands-on activities the students can quickly
grasp the concepts of computer operations, examine the CPU
structure while executing program, and acquire the ability to
adjust expert skill in their careers [10]. The practical activity
can also make them enjoy learning [11].

For Computer Architecture and Organization, simulators
can easily visualize the processing of instructions. Grunbacher
[12] developed several pipeline simulators and a cache
simulator based on Hennessy & Patterson’s architecture and
MIPS processor book. Atanasovski et al. [13] also elaborated
EDUCache simulator as a supporting tool for students’
understanding the concepts of computer architecture and
organization. They developed a platform independent
simulator using Java. Their simulator focus on designing
modern multi-layer, multi-cache and multi-processors. They
further extended the simulator by visualizing the cache
behavior dependent on various cache parameters [14].
Recently Lopez-Rosenfeld [6] demonstrated that simulators
combined with hands-on course model help students
understand how the arithmetic logics operate.

As computer system and hardware gets more complex, the
computer architecture instructors adopt more tools for
pedagogical and/or research purposes. Many free simulators
are available on the Internet contributing as helpful and
practical resources for instructors as well as students since late
nineties [15][16]. However, these researches only focused on
introducing available simulators and their features to promote
students’ understanding. Chen et al. [17] designed different
teaching methods to improve teaching effect and promote
students’ learning experience. The whole course includes
theory teaching, the training of practice methods and hands-
on labs. The students are able to learn how to prepare and
perform the hardware component and the computer systems
through FPGA (Field-Programmable Gate Array) and Verilog
language. Gao et al. [18] designed an analogous teaching
method by combining simulators with FPGA platforms. Lo et
al. [4] proposed to use a low-cost portable microcontroller,
MSP 430 manufactured by Texas Instrument Inc. This simple
portable device makes it possible to execute simple projects
for fundamental computer systems, but their learning module
is limited to MSP430 assembly programming and simulator.

“Learn-by-doing” teaching paradigm provides students
with a motive to engage in their learning. Although the
simulators have been widely used as affordable and easy
access resources for Computer Organization, we believe that
various tangible tools can improve the engagement and
learning experience of undergraduates. We designed a cost-
effective laboratory setup and a set of hands-on activities for
the course using low-cost single board computers, i.e.
Raspberry Pi. By combining various hardware components
(e.g. wires, LEDs, resisters, breadboard, ICs) and Python
programs, we provide students strong visualizations and
hands-on experience on the interactions between hardware
and software components of computing systems.

III. HANDS-ON ACTIVITIES FOR COMPUTER ORGANIZATION

A. Course Information

The Computer Organization course introduces the
foundation of computer design, implementation, and
operations. This course provides basic concepts in digital logic
circuits, computer arithmetic, computer microarchitecture,
and memory hierarchy. At the completion of this course, the
student should be able to demonstrate a competence of basic
skills in digital logic analysis and design, computer arithmetic,
computer instruction set architectures optimization, assembly
language programming, computer microarchitecture, and
memory hierarchy.

Table 1 shows the weekly schedule for lecture topics and
hands-on activities. For the first three weeks of the course, the
students are engaged in understanding the basic computing
hardware, logic gates, and Boolean expression. In the third
week, the basic concept of Raspberry Pi is introduced. This
hands-on lab (00_Intro-to-RPi) is quite important to students
because it delivers Raspberry Pi hardware specifications,
useful tools for Raspberry Pi, GPIO pin settings, and some
handy Linux commands. In Week 4, the students start to
analyze combinational circuits, including a binary encoder &
decoder, multiplexers, 1-bit adders, and a priority circuit. The
01_Blinking-LED hands-on activity instructs students to
design a simple circuit with resistor, wire, and breadboard to
turn LED on/off using Python programming. In Week 5,
students learn how to represent both integer and fraction
numbers into binary numbers in fixed-point/floating-point
number formats. Since the course schedule introduces the
basic logic gates in Week 2, the students can exercise how to
use basic logic gates (AND gate) in 02_Logic-Gate activity.
In Weeks 6, 7 and 9, lecture topics are extended to computer
arithmetic, combinational circuit and sequential circuit
designs with decoder, full adder, and SR latch hands-on
activities. Week 10 gives students a bird's eye view of CPU.
06_Latch-n-Output_Buffer activity emulates designing shared
bus with Latches and 3-state Bus Buffers. Week 11-
Instruction Set Architecture covers different instruction
formats and their interpretation to machine language with
program counter (PC) activity. After the students are aware of
logic and conditional operations of assembly languages
through Week 12 – 14 activities, students can write and test
ARM assembly program to execute arithmetic operations.

TABLE I. WEEKLY SCHEDULE

Week Lecture Topics Hands-on Activities

1
Class Administration

Overview on Computing
Hardware

-

2 Basic Hardware Building Blocks -
3 Boolean Expressions 00_Intro-to-Rpi
4 Combinational Circuit Analysis 01_Blinking-LED
5 Binary Number Formats 02_Logic-Gate
6 Computer Arithmetic 03_Decoder
7 Combinational Circuit Design I 04_Full-Adder
8 Midterm Exams -
9 Combinational Circuit Design II 05_SR-Latch

10 Basic CPU Organization 06_Latch-n-Output_Buffer
11 Instruction Set Architecture 07_Clock-n-Counter
12 Assembly Languages 08_Counter-n-Decoder

13 Instruction Pipelining
09_Arithmetic Unit, Latch

and Output Buffer
14 Memory Hierarchy 10_Assembly program
15 Memory Addressing -
16 Final Exam -

 151

WeA2.2

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on November 19,2020 at 21:21:02 UTC from IEEE Xplore. Restrictions apply.

B. Hands-on Activities

1) Raspberry Pi and Python

00_Intro-to-Rpi activity introduces the basic concept of
the Raspberry Pi and helps the students install the pigpio
library, where the activity requires an Internet connection to
install the library. The students also test the GPIO pins and
practice some handy Linux commands that run at Raspbian
cmd prompt commands.

The students start to use pigpio to control devices (LEDs)
in 01_Blinking-LED activity. They are instructed to design a
simple circuit with an LED and a resistor, and then write and
run a Python program to switch LED on/off on Raspberry Pi.
The students should get the detailed instruction to design the
circuit in the step, e.g. how to use a breadboard and the
positive and negative sides of LED. As shown in Fig. 1, a
sample Python program is given to test the setup, so that the
students can learn how to control the device with Python
program.

import RPi.GPIO as GPIO # Import the RPi.GPIO library
import time # Import the Time library
GPIO.setmode(GPIO.BCM) # BCM: Broadcom SOC channel, cf.
BOARD
GPIO.setwarnings(False) # Do not print GPIO warning messages
LED = 4 # Use BCM pin number 4
GPIO.setup(LED,GPIO.OUT)
print "Switching LED on" # Print some info to the terminal
GPIO.output(LED,GPIO.HIGH) # GPIO.HIGH = 1
time.sleep(2) # Pause the Python program for 2 sec
print "Switching LED off" # Print some info to the terminal
GPIO.output(LED,GPIO.LOW) # GPIO.LOW = 0
GPIO.cleanup()

Fig. 1. Python program to test blinking LED

After their practical experience of switching LED on/off,
they are requested to extend their knowledge to solve a real-
world problem. The challenge is to develop a Python program
to simulate traffic lights with an instruction. In order to
complete the challenge, the students should connect a red LED
to GPIO pin 12, a yellow LED to GPIO pin 16, and a green
LED to GPIO pin 21. This activity helps students become
aware of real-world problems and can be solved by writing
computer programs

2) Designing Logic Circuits

In 02_Logic-Gate activity, students design a logic circuit
with AND gate (SN74LS08N) and develop a Python program
to test the operation of the logic gate, as shown in Fig. 2. This
hands-on lab helps students’ understanding of controlling
logic AND gate and LEDs. After designing the logic circuits
with an AND logic gate, the students are instructed to develop
a Python program to simulate the operation of AND logic gate.

For the understanding of combinational circuits, students
design a logic circuit with 4-line BCD to 10-line decimal
decoder (SN74LS42N) in 03_Decoder activity, as shown in
Fig. 3. Using a Python program, students can convert the
decimal number into the binary inputs which will be fed into

Fig. 2. Circuit design with a AND logical gate

Fig. 3. Circuit design with 4-Line BCD to 10-Line Decimal Decoder.

the binary inputs of SN74LS42N and test the operation of 4-
line BCD to 10-line decimal decoder. The binary inputs are
visualized with four LEDs, where each one has a different
weight. This hands-on Lab evaluates students’ practical
knowledge of converting decimal to binary and controlling 4-
to-10 decimal decoder.

A full adder is one of arithmetic devices in CPU. Students
design a logic circuit with 4-bit binary full adder
(SN74LS283N) to understand arithmetic operations in
04_Full-Adder activity, as shown in Fig. 4. Students are
instructed to develop a Python program to convert the decimal
number into the binary inputs and execute adder operations
using the designed circuit.

Fig. 4. Circuit design with 4-Bit Binary Full Adder

In 05_SR-Latch activity, students design a sequential logic
circuit with NOR gate (SN74LS02N), as shown in Fig. 5, and
then learn how to store one-bit state (0 or 1) by developing a
Python program to simulate the operation of the circuit. LEDs
attached to IC pins also visualized the outputs, i.e. Set, Reset,
and Q values in the circuits.

Fig. 5. Sequential circuit design with NOR gate.

3) Designing ALU and processor

One of the learning objectives in this course is to
understand the basic concepts of sequential circuits and
storage elements in Arithmetic Logic Unit (ALU). This can
relate to generate binary inputs using the Python program,
store the binary inputs into clock-controlled latches and
forward the stored values using 3-state bus buffers. In the
hands-on Activity 06_Latch-n-Output_Buffer, students design
clock-controlled latches with 4-Bit Bistable Latches

 152

WeA2.2

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on November 19,2020 at 21:21:02 UTC from IEEE Xplore. Restrictions apply.

(SN74LS75N) and 3-state Bus Buffers (SN74LS126N), as
shown in Fig. 6. This activity helps students understand how
the stored binary inputs in the latches are forwarded to the
shared bus with the 3-state Bus Buffers. The students should
develop a Python program to create clock-controlled latches
with an instruction of sequences to test the circuit operation.
This hands-on Lab evaluates students’ practical knowledge of
converting decimal to binary, storing the binary values with
clock-controlled latches and controlling 3-state Bus Buffers.

Fig. 6. Circuit design with 4-bit Bistable Latches and 3-state bus buffers.

A program counter (PC) is a register in a computer
processor that contains the address (location) of the instruction
being executed at the current time. The activity 07_Clock-n-
Counter helps students design a binary counter circuit to
emulate PC with binary counters (SN74LS90N), as shown in
Fig. 7. Students generate clock signals for the binary counter,
a periodic signal to repeat logic High and Low with a Python
program. The generated clock signals can be visualized with a
LED connected to GPIO pin 12 in Fig. 7.

Fig. 7. Circuit design with a binary counter.

Fig. 8. Circuit design with a binary counter and 4-to-10 Decoder.

The activity 08_Counter-n-Decoder extends the activity
07_Clock-n-Counter by adding 4-to-10 Decoder and Inverter,
as shown in Fig. 8. With this activity, students develop a
Python program to generate clock signals, count the binary
signal with a binary counter (SN74LS90N) and represent 4
bits binary number into decimal number using 4-to-10
Decoder (SN74LS42N). Due to the limited pin numbers of
Inverter (SN74LS04N), the decimal number only counts one
through six in the given circuit.

The activity 09_Arithmetic_Unit_Latch_Output_Buffer
helps students understand how a CPU executes the whole
process with control signals (enable/disable); perform an
(arithmetic) addition using binary full adders (SN74LS283N),
store the binary results into Latches (SN74LS75N) and

forward the stored values using 3-state Bus Buffers
(SN74LS126N), as shown in Fig. 9. Due to the complex
circuit configuration, the detailed instructions should be
provided to help students complete their task successfully.

Fig. 9. Circuit design with with a full adder, Latches and 3-state Buffers.

In the activity 10_Assembly_program, students write and
test ARM assembly program language to execute arithmetic
operations. For example, the high-level language program is
given to calculate the power operation. Students should write
an ARM assembly programming language that is equivalent
to the high-level language program.

C. Student Work
1) Raspberry Pi and Python

The hands-on activity 01_Blinking-LED provides students
with the first challenge to design a simple circuit with real
hardware and to solve a real-world problem. Fig. 10 is one of
the most students’ solution of 01_Blinking-LED activity.

import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM) #setting up the program and LED's
GPIO.setwarnings(False)
R_LED = 12
Y_LED = 16
G_LED = 21
GPIO.setup(R_LED,GPIO.OUT)
GPIO.setup(Y_LED,GPIO.OUT)
GPIO.setup(G_LED,GPIO.OUT)
while(True):
 GPIO.output(R_LED,GPIO.HIGH)
 time.sleep(1)
 GPIO.output(R_LED,GPIO.LOW) #Turn on the red and yellow LED's
 GPIO.output(R_LED,GPIO.HIGH)
 GPIO.output(Y_LED,GPIO.HIGH)
 time.sleep(1)
 GPIO.output(G_LED,GPIO.HIGH) #Turn on the green LED
 time.sleep(4)
 GPIO.output(G_LED,GPIO.HIGH) #Turn on the green and yellow LED
 GPIO.output(Y_LED,GPIO.HIGH)
 time.sleep(3)
 GPIO.output(R_LED,GPIO.HIGH) #Turn on the red LED
 time.sleep(1)
 GPIO.output(R_LED,GPIO.LOW) #Turn all of the LED's off
 GPIO.output(Y_LED,GPIO.LOW)
 GPIO.output(G_LED,GPIO.LOW)
GPIO.cleanup

Fig. 10. Example 1 of students’ work for 01 Blinking LED.

2) Designing Logic Circuits

The hands-on activity 04_Full-Adder provides students
with a deep understanding of arithmetic operations with 4-bit
binary full adder (SN74LS283N). The challenge of the lab is
to design a subtractor, by connecting IC pin 7 (cin) from GND
to +5V for the hardware side and flipping all the bits of Input
B with ‘not’ logic operator in the software side. We observed
that some students experienced difficulty in designing the
subtractor, as shown below with some comments:

“This activity taught me a lot on how to work a circuit
board. It was very difficult at the beginning in order to find
out how the subtractor worked. Having to do the adder was
very easy to understand but finding out how to do the
subtractor was very difficult. I learned a lot during the process
in order to find the subtractor. My part to do on this project

 153

WeA2.2

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on November 19,2020 at 21:21:02 UTC from IEEE Xplore. Restrictions apply.

was to check to see if there was anything wrong with the code
and make sure the bread board worked accordingly. This
project really taught me a lot.”

“throughout this activity I learned that circuit boards and
coding are a very difficult concept that takes a lot of patience
and knowledge on how to do it. Also, I learned that changing
to ground to +5v makes the circuit a 'subtractor' instead of the
'adder'. My role in this project was writing the code, and I also
tried to understand how the circuit board actually worked
which was difficult. The code completely runs the wiring had
a few problems that might have been caused by the
misplacement of wires that I could not find since most of the
program ran correctly in correlation with the circuit board.”

3) Designing ALU and processor

The hands-on activity 09_Arithmetic_Unit_Latch_Output
_Buffer provides students with deep understanding of
processor architectures. The challenge is not only to design the
complex circuit configuration but also to require deep
understanding of overall system architectures to execute
arithmetic operation and generate the enable signals for
latches and buffers. We observed that the students should be
able to complete the challenge by retrieving previous hands-
on activities, as follows below with some comments:

“For this go around we got to use our prior knowledge and
convert the decimal number into the binary inputs. We learned
how to perform addition using binary full adders. And then
with the addition, store the binary results into Latches and
forward the stored values using 3-state Bus Buffers. Student_1
did what he did best, and built our circuit. While Student_2
worked on making sure that the program would be ready to
run when the circuit was built. We have become really efficient
in making sure that everything gets done as quickly and as
accurately as possible. Of course, we always make sure that
the other one gets any kind of input they may need and we
make sure to help or give ideas to each other.”

IV. RESULTS

We took the surveys for three consecutive academic
semesters from 2018 Fall through 2019 Fall. The total
numbers of participants for the pre-survey were 27 students
for Fall 2018, and 26 students for both Spring 2019 and Fall
2019. The total numbers of participants for the post-survey
were 25 students for Fall 2018 semester, 24 students for
Spring 2019 semester, and 16 students for Fall 2019 semester.
Students participate in both surveys voluntarily and some
students withdraw the course in the middle of the semester.

The pre-survey was taken at the beginning of the semester,
and the post-survey was performed at the end of the semester.
Both pre and post survey questions use Linkert scales. The
result of the pre-survey showed that students during the three
consecutive semesters have been motivated to learn computer
hardware system at the beginning of the semester. Majority of
the students responded to their interests in computer hardware
system, as follows: 81.4% of students for Fall 2018, 76.90%
of students for Spring 2019, and 61.50% of students for Fall
2019. Fig. 11 shows the number of students answered for each
scale. Fig. 12 shows the results of the question “I think this
course will be useful for my future career.”. 88.88% of
students in Fall 2018, 92.30% of students in Spring 2019, and
61.60% of students in Fall 2019 answered “Agree” or
“Strongly Agree” for this question. Students recognized the
importance of the course for their future career.

Fig. 11. Students’ Interest in Computer Hardware System.

Fig. 12. Usefulness of the course for the career preparation.

Fig. 13 represents the results of hardware computing
problem solving ability of Fall 2018, Spring 2019 and Fall
2019. 34.61% of students in Fall 2018, 46.1% of students in
Spring 2019, and 46.1% students in Fall 2019 answered that
they have hardware-computing program solving ability from
pre-survey. However, in post-survey, 60% of students in Fall
2018, 62.8% of students in Spring 2019, and 62.5% of
students in Fall 2019 answered either “Agree” or “Strongly
Agree”. We believe that this increase is caused by 10 hands-
on activities with tangible object (Raspberry Pi) combined
with Phyton programming challenges. As shown in Fig. 14,
52% of students in Fall 2018, 75% of students in Spring 2019,
and 81.30% of students in Fall 2019 revealed that they like to
do Raspberry Pi activities.

Fig. 13. Self-efficacy of Hardware Computing Problem Solving Capability

for Fall 2018, Spring 2019 and Fall 2019 semesters.

 154

WeA2.2

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on November 19,2020 at 21:21:02 UTC from IEEE Xplore. Restrictions apply.

The survey also indicated that the activities performed in
the class enhanced students’ learning experience. Fig. 15
showed that 76% of students in Fall 2018, 87.50% of students
in Spring 2019, and 81.10% of students in Fall 2019
responded with either “Agree” or “Strongly Agree” for the
usefulness of activities to enhance learning.

Fig. 14. Students’ preference of activities using Raspberry Pi.

Fig. 15. Advantage of class activities for students’ learning.

As shown in Fig. 16, above 76% (up to 96% in Spring
2019) students agree that this course helped students to
understand what hardware computing system looks like.

Fig. 16. Usefulness of the course for students’ learning about hardware
computing system.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a cost-effective laboratory
setup using Raspberry Pi and made it available a set of hands-
on exercises for Computer Organization. By sharing 10
different Raspberry Pi and Python programing activities, we
provide students strong visualizations and hands-on
experience on the interactions between hardware and software
components of computing systems. The survey results showed
that students are engaged in the course by using the hands-on
activities, but also showed that hardware computing problems
are likely difficult to CS students who directly dived into
computer hardware systems without any knowledge of
computer hardware. We are planning to extend the designed
laboratory setup to other curriculum models to show the
efficacy of hands-on activities.

REFERENCES

[1] Shine V.J. et al, / (IJCSIT) International Journal of Computer Science
and Information Technologies, Vol. 5 (2) , 2014, pp. 1411-1413.

[2] David A. Patterson and John L. Hennessy, Computer Organization and
Design: The Hardware/Software Interface, 5th ed., 2013.

[3] Wijaya Kurniawan and Mochammad Hannats Hanafi Ichsan,
“Teaching and learning support for computer architecture and
organization courses design on computer engineering and computer
science for undergraduate: A review,” 2017 4th International
Conference on Electrical Engineering, Computer Science and
Informatics (EECSI), Sept. 19-21, 2017.

[4] Dan Chia-Tien Lo, Kai Qian, Liang Hong, “The use of low cost
portable microcontrollers in teaching undergraduate Computer
Architecture and Organization,” IEEE 2nd Integrated STEM Education
Conference, 2012.

[5] Medaris, K., “Study: Hands-on projects may be best way to teach
engineering and technology concepts,” 28 January 2009. [Online].
Available:
https://news.uns.purdue.edu/x/2009a/090128DarkStudy.html
[Accessed 13 May 2020].

[6] Matias Lopez-Rosenfeld, “"Tell Me and I Forget, Teach Me and I May
Remember, Involve Me and I Learn": Changing the Approach of
Teaching Computer Organization,” 2017 IEEE/ACM 1st International
Workshop on Software Engineering Curricula for Millennials (SECM),
2017.

[7] Osama Ahmed Siddiqui, Raza Hasan, Salman Mahmood, Asim
Rasheed Khan, “Simulators as a Teaching Aid for Computer
Architecture and Organization,” 2012 4th International Conference on
Intelligent Human-Machine Systems and Cybernetics, 2012.

[8] Bo Hatfield, and Lan Jin, "Improving Learning Effectiveness with
Hands-On Design Labs and Course Projects for the Operating Model
of a Pipelined Processor," 2010 IEEE Frontiers in Education
Conference (FIE), 2010.

[9] N.L.V. Calazans, F.G. Moraes, and C.A.M. Marcon, "Teaching
computer organization and architecture with hands-on experience,"
32nd Annual Frontiers in Education, 2002.

[10] Ian McLoughlin and Koji Nakano, "A Perspective on the Experiential
Learning of Computer Architecture," 2010 IEEE/ACM Int'l
Conference on Green Computing and Communications & Int'l
Conference on Cyber, Physical and Social Computing, 2010.

[11] Jihane Kojmane and Ahmed Aboutajeddine, "Enjoyeering Junior: A
hands-on activity to enhance technological learning in an engineering
dynamics course," 2016 International Conference on Information
Technology for Organizations Development (IT4OD), 2016.

[12] Herbert Grunbacher, “Teaching computer architecture/organisation
using simulators,” FIE '98. 28th Annual Frontiers in Education
Conference. Moving from 'Teacher-Centered' to 'Learner-Centered'
Education. Conference Proceedings (Cat. No.98CH36214)," vol 3,
1998.

[13] Blagoj Atanasovski, Sasko Ristov, Marjan Gusev, Nenad Anchev,
“EDUCache simulator for teaching computer architecture and
organization,” 2013 IEEE Global Engineering Education Conference
(EDUCON), 2013.

[14] Marjan Gusev, Sasko Ristov, Dimitrij Mijoski, “Enhancing the
EDUCache simulator with visualization of cache performance,” 2016
IEEE Global Engineering Education Conference (EDUCON), 2016.

[15] Wolffe, G. S., Allendale, M. I., Yurcik, W., Normal, I. L., Osborne, H.,
UK, W. Y., ... & CuIIowhee, N. C. (2002). Teaching Computer
Organization/Architecture With Limited Resources Using Simulators.

[16] Prasad, P. W. C., Alsadoon, A., Beg, A., & Chan, A. (2016). Using
simulators for teaching computer organization and architecture.
Computer Applications in Engineering Education, 24(2), 215-224.

[17] Tianzhou Chen, Guanjun Jiang, Wei Hu, Xueqing Lou, “The
Innovation and Reformation of Teaching Method for Computer
Organization and Design Course,” 2009 International Conference on
Information Engineering and Computer Science, 2009.

[18] Zhigang Gao, Huijuan Lu, Hongyi Guo, Yanjun Luo, Yunfeng Xie,
Qiming Fang, “An Analogous Teaching Method for Computer
Organization Course Design,” 2016 8th International Conference on
Information Technology in Medicine and Education (ITME), 2016.

 155

WeA2.2

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on November 19,2020 at 21:21:02 UTC from IEEE Xplore. Restrictions apply.

