
Creative Internet of Things (IoT)
for Undergraduates

Suk Jin Lee
TSYS School of Computer Science

Columbus State University
Columbus, GA

lee_suk@columbusstate.edu

Andrew Jung
Department of Computing Sciences

University of Hartford
West Hartford, CT
jung@hartford.edu

Mira Yun
Department of Computing Science &

Networking
Wentworth Institute of Technology

Boston, MA
yunm@wit.edu

Abstract— This article presents results of our pilot study for a

new Internet of Things (IoT) course for CS undergraduates. Most
of the current IoT courses proposed focused on designing and
developing new classroom activities and projects. However, we
strongly believe that open-ended student project can enhance
students’ creative thinking. After providing fundamental theories
and related hands-on activities, we allowed students to choose
their own final project topic. Since our course covers hardware
platforms, programming, networking protocols, and data storage
of IoT systems and applications in the classroom, students can be
ready for exploring new real-world problems at the end. By
choosing their own project topic, students have a chance to apply
their classroom leanings to solve new problems creatively and
learn new skills by themselves. Course evaluation based on student
feedback shows high level of enthusiasm and engagement for the
course especially for hands-on activities and final open-ended
project.

Keywords—Internet of Things for undergraduate, Hands-on
activities, Open-ended project, Creative Learning

I. INTRODUCTION
Internet of Things (IoT) is the fast growing network

paradigm that interconnects physical computing devices and
everyday objects, and collects and shares information over the
Internet. It has wide range of application such as smart home,
wearables, smart city, and digital health care, and all
applications have been developed to improve our everyday
quality of life. According to this rapid growth of IoT
applications and services, the demand for experienced
professionals in the area has been increased. Universities and
institutes all over the world have developed various courses and
programs to offer IoT concepts and practices [1].

A current educational paradigm in STEM (Science,
Technology, Engineering, and Mathematics) education is
“Lean-by-Doing” [2][3], where students learn through hands-on
activities within a practical environment. Our classroom
experience clearly showed that hands-on activities in a
collaborative team environment is very important to prepare our
computer science students for careers in the future. In addition,
it is important that computer science students understand how
their programming code works with hardware [4]. Since IoT is
rapidly growing as the next generation technology and integrates
hardware and software, computer programming, wireless and
mobile networking, cloud computing, and big data, IoT is a good
but not easy topic to deliver in the classroom that gives students

a motivating environment to learn the technology by doing
hands-on activities in a team oriented environment.

Most of the current IoT courses proposed focused on
designing classroom activities and projects by using off-the-
shelf products such as Raspberry Pi (RPi) and Arduino.
However, we strongly believe that open-ended student project
can enhance students’ creative thinking. The course we designed
and presented in this paper gives students an opportunity to learn
necessary skillset to develop the product through the creative
learning process that includes projects, peers, passion, and play
[5].

We designed the IoT course such that students can learn and
practice their skills to enhance technical competency to keep up
with trends in the growing technology-driven world. The course
is 3000 level course that is for junior and/or senior students who
are majoring computer science. The course contents introduce
the fundamentals of IoT, its related concepts, such as open IoT
architecture, fog computing and cloud computing. This course
also provides platforms and solutions supporting development
and deployment of IoT application with commercially available
off-the-shelf products. It also covers how to measure a large
volume of data from sensors, how to communicate end devices
with gateway, and how to apply the data generated from IoT end
devices to backend services. Based on lecture, we also designed
10 hands-on labs that can practice what they learn immediately.
The course also gives students a project that can implement and
develop their own application in the given platform.

Course evaluation based on student feedback shows high
level of enthusiasm and engagement for the course especially for
the labs and a project. The rest of the paper organized as follows:
in Section II, we present the motivation and background of IoT
education. In Section III we describe the details about course
contents and findings. Finally, Section IV concludes our work
and outlines ideas for future development.

II. MOTIVATION AND BACKGROUND
We designed the course contents for the students who are

majoring in Computer Science. The IoT course requires students
to have a number of pre-requisite courses, including
programming, computer architecture, and computer networks.
There have been many efforts to implement IoT concepts and
skills into the classroom, and we found several researches that
implement IoT courses in their curriculum [6][7][8][9][10].

978-1-7281-1846-8/19/$31.00 ©2019 IEEE

The 14th International Conference on
Computer Science & Education (ICCSE 2019)
August 19-21, 2019. Toronto, Canada

 567

WedP1.8

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on November 19,2020 at 21:39:44 UTC from IEEE Xplore. Restrictions apply.

Jing He, et al [6], developed courses for undergraduate
students. Their courses are based on modules that can be
integrated into various courses in STEM area. They implement
eleven modules that are IoT based frameworks to embedded
system. They used RPi for their experiments, and gotten good
feedback from students. They surveyed with Linkert-scale
questions. Their results showed that using RPi helped students
to prepare for complex topics that were discussed later in the
course (6.17 out of 7); using RPi made them easy to design, write
and test software (5.67 out of 7); RPi prepared students for
connecting sensors to the tool (6.0 out of 7.0); and also
responded that C/C++ language is more appropriate than python
in embedded system course (5.5 out of 7.0).

Koji Akiyama, et al [7], proposed and implemented IoT
prototype system for students who are not in STEM area. They
mentioned that their system lead students to create ideas for IoT
system. They used Arduino and RPi for hardware; LED, a
buzzer, and motor as actuator; ZigBee as sensor network;
windowPC or RPi as a gateway. Using their system, students
follow their stepwise framework to create IoT system without
serious programming involvement. They applied their system to
humanity courses. They mentioned that students were able to
create their ideas as an IoT system design in that course.

Stan Kurkovsky, et al [8], presented the IoT-centric course
for Computer Science curriculum using RPi, Arduino, and
sensors. This course was designed for students who have
programming background with data structures. They divided the
IoT project into three incremental phases for students. They
mentioned that RPi is a good device that allows students to
experience the four layers of IoT functionalities. They got very
positive feedback from students using RPi to study IoT.

Simon, et al [9], designed and proposed the IoT course for
graduate level students. In addition to general classroom
activities such as lecture and test, they gave students
programming projects for building user interfaces, industrial
design projects for large-scale project with several companies
around Silicon Valley in California, and survey paper for having
the research opportunity. They mentioned that students were
interested in doing the programming and industrial projects, and
some students’ survey papers were published.

Most IoT courses proposed used RPi and Arduino for
hardware to get information from sensors, and analyzed it not
only in the classroom activities but also for student projects. Our
course also used RPi and Arduino as a hardware platform, and
gave students a chance to experience it. However, we give
students an independent open-ended project with given sensors
and hardware platforms that enhances students’ creative
thinking, not the ordinary project that based on lecture only. The
course we designed gives students an opportunity to learn
necessary skillset to develop the product through the creative
learning process [5].

III. IOT FOR UNDERGRADUATES
The IoT needs several technologies, such as hardware,

networking and communication, computer programming, and
cloud computing, to accomplish the quality of services. Hence,
it is an important topic to bring into the classroom environment

for students, not only to learn the IoT foundation but also to
experiment and practice techniques they had learned previously.
Our IoT course has the following four modules:

1. Hardware Platforms: there are several hardware platforms
available nowadays. We identified the following features as
requirements to select the hardware platforms for applied IoT:
electronic interface, programmability, wired or wireless Internet
stack, low cost and commercially available, and future proof
[11]. The most popular prototyping platforms are Arduino and
RPi. Arduino is getting popular among educators because their
software libraries make allow students at all levels to easily write
code and help them expand challenging projects without
knowledge of electronics. We made use of Arduino to
implement applications that require multiple sensors and/or
actuators. The RPi is one of low-cost single-board computers. It
has distinctive mark of four USB ports, an Ethernet port, an
HDMI port, and GPIO ports. The RPi is a useful platform if
Ethernet connection is required to support real-time
applications. One of the roles of RPi in the course is a network
gateway for end devices to access Internet. All those hardware
are off-the-shelf low cost products. In addition to the basic
hardware platforms, the students used many different types of
sensors for their specific applications.

2. Programming: the Arduino integrated development
environment (IDE) is a cross-platform application and supports
the languages C and C++. This environment allows students to
write and upload programs to the Arduino board through
Microsoft Windows OS. The SoftwareSerial library allows
serial communication on other digital pins of the Arduino so that
application developers can access ESP8266 Wi-Fi module on
top of breadboard, by wiring different types of sensors. The
Python and/or C languages are available for programming on
Raspbian, which is a debian-based computer operating system
for RPi. For the application development, the course used
Node.js to support web standards and protocols, because Node.js
is an open-source, cross-platform JavaScript run-time
environment and processed by all browsers asynchronously,
which allows us to execute JavaScript code outside of a browser.

3. Networking Protocols (Wireless Technology): the
hypertext transfer protocol (HTTP) is one of the most widely
used application protocols for communicating over the Internet.
We establish communication between RPi and the server by
using HTTP. Meanwhile, message queue telemetry transport
(MQTT) is an extremely lightweight messaging protocol based
on the publish/subscribe model over TCP. We also set up
Mosquitto broker/client, which is an open source message
broker to implement the MQTT protocol on Raspbian OS. For
wireless technology, we used Wi-Fi add-on module with
Arduino and set up an RPi as an access point in a standalone
network.

4. Data Storage (Cloud computing): the data collected from
end devices are forwarded to backend cloud storage. For our
laboratory activities, we used ThingSpeak, which is an open-
source IoT application and API to store and retrieve data from
things using the HTTP protocol over the Internet.

 568

WedP1.8

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on November 19,2020 at 21:39:44 UTC from IEEE Xplore. Restrictions apply.

TABLE I. COURSE SCHEDULE

Week Day Topic Assignment

1

Day 1
Lecture: Class Administration
Lab: Overview on IoT, intro to
Raspberry Pi

Quiz
Hands-on
activity

Day 2 Lecture: OPEN IoT Architecture
Lab: Programming on Raspbian

Quiz
Hands-on
activity

Day 3
Lecture: Device-Cloud
Collaboration Framework
Lab: HTTP Server and Client

Quiz
Hands-on
activity

Day 4 Lecture:Fog Computing
Lab: Control GPIO with web server

Quiz
Hands-on
activity

Day 5
Lecture: Programming Frameworks
for IoT
Lab: Message Queuing Telemetry
Transport

Quiz
Hands-on
activity

2

Day 6
Test 1
Lab: Wi-Fi Hotspot with Raspberry
Pi

Quiz
Hands-on
activity

Day 7 Lecture: Stream Processing in IoT
Lab: Programming on Arduino

Quiz
Hands-on
activity

Day 8 Lecture: Security in IoT
Lab: DHT11 sensor

Quiz
Hands-on
activity

Day 9
Lecture: Obfuscation and
Diversification
Lab: Raspberry Pi security

Quiz
Hands-on
activity

Day
10

Lecture: Applied IoT
Lab: ESP8266 with Arduino Uno

Quiz
Hands-on
activity

3

Day
11

Lecture: Internet of Vehicles and
Applications
Lab: Temperature Data Upload on
Cloud

Quiz
Hands-on
activity

Day
12

Test 2
Final Project

Final
Project

Day
13 Final Project

Day
14 Final Project

Day
15 Final Project

A. Course Schedule and Contents
The course is a 3-credit course for computer science

majoring junior/senior students. We designed the student’s
learning experience with hands-on activities (labs) and a project
that extends their learning to develop their own applications.
Thus, we give a short lecture relatively meaning that 30 minutes
lecture, and 2 hours labs meaning hands-on activity. We
designed this course for regular semester course originally, but
it had been adapted to winter session that is 3 weeks program.
Each week had 5 days classes, each class had two and half hours
length. Thus, the class was the same time amount as the regular
semester class. Table I presents details of the course topics for
each day.

The course contents of the first week introduce IoT
architecture and frameworks with initial RPi settings. Day 1
lecture introduces overview of the course and IoT. For the lab,
students practice how to set up RPi and execute remote desktop
access from Windows OS to RPi. Because Raspbian is an RPi
Linux OS, students are able to practice many basic Linux
commands. Day 2 lecture covers open standards for IoT
Services toward interoperability. For the lab, students use C
and/or Python programming languages and start to practice how
to use and control the hardware, such as blinking LEDs by
wiring to the breadboard. Day 3 lecture introduces a big picture
of collaboration framework between end devices and cloud
computing. In order to accommodate the collaborative
framework, students learn how to communicate with each entity
and transmit the data over the Internet. The course module
introduces the TCP/IP network protocols and a dynamic
language, JavaScript, as a bridge to extend an application layer
protocol HTTP. The students conduct practical hands-on
activities; setting up HTTP server/client, installing Node.js on
Raspbian and/or Windows OS and sending HTTP requests to
their HTTP server using methods such as GET and POST [12].
Day 4 lecture covers principles, architectures, and applications
of fog computing [13]. Students are aware of a distributed
computing paradigm, extending the cloud services to the edge
of the network. For the lab, students practically control RPi
GPIOs via web interface using RPi Node.js server. Day 5 lecture
introduces a software architectural style, Representational State
Transfer (REST), and message passing protocols to
communicate between heterogeneous devices, such as MQTT
and Constrained Application Protocol (CoAP). For the lab,
students install Mosquitto broker/client on Raspbian OS and/or
Windows OS, publishing a sample message to a topic and
subscribing to the topic with multiple clients.

Fig. 1. Wi-Fi Hotspot with Raspberry.

 569

WedP1.8

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on November 19,2020 at 21:39:44 UTC from IEEE Xplore. Restrictions apply.

The second week covers wireless and security components
with RPi hotspot and Arduino sensors. Day 6 in Lab teaches how
the RPi can be used as a wireless access point, running a
standalone network. We configure the DHCP server and the
access point host in RPi, running Wi-Fi hotspot, as shown in Fig.
1. The Ethernet port is connected to Internet through the local
network.

#include <SoftwareSerial.h>

#define RX 10

#define TX 11

String AP = "RPiNetwork"; // CHANGE ME

String PASS = "CPSC1234567890"; // CHANGE ME

String API = "WKUNV7AMNYROMXB6"; // CHANGE ME

String HOST = "api.thingspeak.com";

String PORT = "80";

String field = "field1";

int countTrueCommand;

int countTimeCommand;

boolean found = false;

int valSensor = 1;

SoftwareSerial esp8266(RX,TX);

Fig. 2. Use of SoftwareSerial library

Day 7 lecture goes over the data processing paradigms and the
characteristics of stream data. For the lab, students start to write
and upload programs to Arduino board. This activity continues
to the next day using a physical sensor, e.g. temperature and
humidity sensor, so that the students are familiar with Arduino
IDE. Day 8 lecture introduces the security issues of IoT and
continues to the next day with general approaches for securing
IoT. In Day 9 Lab, students practice how to make a secure
connection to the server in Raspbian. Day 10 lecture goes over
key components of IoT architecture including sensors and
actuators, gateway and backend services, and requirements of
gateway hardware/ software. Day 10 Lab teaches students how
to use ESP8266 Wi-Fi module as an add-on and write code in
the Arduino to talk to it. After testing ESP8266 Wi-Fi module
directly, we teach students how to set up the virtual serial for the
Arduino module, include the library, and define the variables, as
shown in Fig 2.

void setup() {

 Serial.begin(9600);

 esp8266.begin(115200);

 sendCommand("AT",5,"OK");

 sendCommand("AT+CWMODE=1",5,"OK");

 sendCommand("AT+CWJAP=\""+ AP +"\",\""+ PASS
 +"\"",20,"OK");

}

Fig. 3. Setup code for Arduino Uno

We used SoftwareSerial library to connect ESP8266 Wi-Fi
module through pins 10 and 11. From here, we will talk to
Arduino through “ESP8266” and talk to the IDE through
“Serial”. We set the serial connection to a 9600 baud rate and
ESP8266 connection to a 115200 baud rate, as shown in Fig. 3.

The setup code establishes the connection between Wi-Fi
module and Wi-Fi hotspot implemented in Day 6 Lab.

After successfully initializing the setup stage, as shown in
Fig. 4, the Loop code executes all the instructions repeatedly
unless the power supply of Arduino stopped working. For a
simple operation test, we generated a random number and
uploaded the value to one of cloud service providers. The
students can replace this value with other measurement, e.g.
temperature, humanity, etc., for their own projects later.

void loop() {

 valSensor = getSensorData();

 String getData = "GET /update?api_key="+ API +"&"+ field
+"="+String(valSensor);

 sendCommand("AT+CIPMUX=1",5,"OK"); // CIPMUX=0: single
connection, 1: multiple connection

 sendCommand("AT+CIPSTART=0,\"TCP\",\""+ HOST +"\","+
PORT,15,"OK"); // CIPSTART = 0, id of connection

 sendCommand("AT+CIPSEND=0,"
+String(getData.length()+4),4,">"); // ID no. of
transmit connection

esp8266.println(getData);delay(1500);countTrueCommand++;

 sendCommand("AT+CIPCLOSE=0",5,"OK");

}

int getSensorData(){

 return random(1000); // Replace with real data

}

Fig. 4. Loop code for Arduino Uno

void sendCommand(String command, int maxTime, char
readReplay[]) {

 Serial.print(countTrueCommand);

 Serial.print(". at command => ");

 Serial.print(command);

 Serial.print(" ");

 while(countTimeCommand < (maxTime*1))

 {

 esp8266.println(command);//at+cipsend

 if(esp8266.find(readReplay))//ok

 {

 found = true;

 break;

 }

 countTimeCommand++;

 }

 if(found == true)

 {

 Serial.println("OYI");

 countTrueCommand++;

 countTimeCommand = 0;

 }

 if(found == false)

 {

 Serial.println("Fail");

 countTrueCommand = 0;

 countTimeCommand = 0;

 }

 found = false;

 }

Fig. 5. sendCommand function code for Arduino Uno

 570

WedP1.8

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on November 19,2020 at 21:39:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. A student works on uploading a random number to a cloud service

provider, Thingspeak, using Wi-Fi add-on module with Arduino.

The sendCommand function codes create a package to
exchange messages between ESP8266 Wi-Fi module and RPi
Wi-Fi hotspot. It has three arguments; 1) string variable
command; 2) integer variable maxTime; and 3) character
variable readReplay. The string variable sends the operational
command to ESP8266 Wi-Fi module. This command repeats
maxTime times. If the expected response arrived within
maxTime times, the operational command is successful;
otherwise, the function alerts the user to recognize the failure of
sending a message.

Students are also requested to create an endpoint they can
send some data to for the test. For the simplicity, we employ
Thingspeak, which is an open-source IoT application and API to
store and retrieve data from things using the HTTP protocol over
the Internet [14]. Fig. 6 shows that a student uploads a random
number to a cloud service provider, Thingspeak, using Wi-Fi
add-on module with Arduino through Wi-Fi hotspot. We use
Wi-Fi hotspot implemented in Day 6 Lab, where Wi-Fi hotspot
allocate a local network IP address for Wi-Fi add-on module.

#include <DHT.h>

#define DHTPIN 7 // where the dht11 is connected

DHT dht(DHTPIN, DHT11);

...

void setup() {

 Serial.begin(9600);

 esp8266.begin(115200);

 dht.begin();

 ...

 }

void loop() {

 // valSensor = getSensorData();

 float c = dht.readTemperature(); // celsius

 float f = c*9/5 + 32; // fahrenheit

 String getData = "GET /update?api_key="+ API +"&"+
field +"="+String(f);

...

}

/*

 int getSensorData(){

 return random(1000); // Replace with real data

}*/

Fig. 7. Include DHT library in the code to measure temperature data.

The last week of this course focuses on the design and
development of IoT applications. Day 11 lecture shows that the
dawn of a new era of IoT will drive the evolution of conventional
vehicular ad-hoc networks (VANETs) into the Internet of
Vehicles (IoV). For the lab, students use ThingSpeak as a cloud
service provider and temperature-humidity sensor (DHT11) as
an end device to measure temperature data. Students are
instructed to include DHT library for humidity sensor to define
the variable in the code, and define setup and loop functions to
get temperature data, depicted in Fig. 7. Students upload
temperature data to a cloud service provider, Thingspeak, using
Wi-Fi add-on module with Arduino through RPi Wi-Fi hotspot.
A portable battery powers the end devices including Arduino,
Wi-Fi add-on module and temperature-humidity sensor
(DHT11), as shown in Fig. 8, which makes the hands-on activity
one of real-world applications with real-time data.

Fig. 8. A portable battery powers the end devices including Arduino, Wi-Fi
add-on module and temperature-humidity sensor (DHT11).

TABLE II. SUMMARY OF STUDENTS’ WORKS

Number Project Topics Sensors Used

1 Fire Alarm Flame sensor, buzzer,
LED light, ESP8266

2 Outside Light Triggered on By
Sensitive Sounds

Big sound sensor,
ESP8266

3 Obstacle Alarm Avoidance sensor,
buzzer, ESP8266

4
Laser Focused: A Tap Module

and Laser Equipped Cloud
Deterrent Device

Tap sensor, laser
emitter, ESP8266

5 Motion Detection System using
Tilt Sensor

Tilt Sensor, LED,
buzzer, ESP8266

6 Shock Detection Shock sensor, buzzer
sensor, LED, ESP8266

7 TEMP TO LIGHT COLOR!
RGB light, LCD LED

module, DHT 11
sensor, ESP8266

 571

WedP1.8

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on November 19,2020 at 21:39:44 UTC from IEEE Xplore. Restrictions apply.

B. Open-ended Project
In the last week, students are allowed to choose their own

final project topic in the given platforms. The course implicates
the final projects with many different types of sensors,
exemplified by temperature-humidity sensor, buzzer, tilt sensor,
flame sensor, tap sensor, laser emitter, avoidance sensor, sound
sensor, LCD LED module, etc., as shown in Table II.

We found that the skillsets used in the student projects were
tightly related to the lessons learned throughout the semester.
We also recognize that each team choose a unique project topic
to create their own IoT system such as Fire Alarm, Obstacle
Alarm, Laser Focused, Software-Based Emergency Button, etc.
Students designed and built their own specific projects based on
their creative ideas. For example, one of student projects uses
flame sensor and buzzer, which was never covered in the regular
lecture hours. If the fire activity is detected, the system activates
a buzzer and the notification message is sent to a cloud service
provider. Another project uses avoidance sensor and buzzer. If
an obstacle is approached, the buzzer immediately starts buzzing
until the obstacle is out of range. The system also sends the
signals “0” or “1” to a cloud service provider. Table II
summarizes students’ work produced throughout the course.

IV. CONCLUSION AND FUTURE WORK
In this paper, we present a newly designed IoT course that is

for computer science junior and senior students. We designed
our course contents with four different modules: hardware
platforms, programming, networking protocols and data storage.
The design of this course may motivate students to enhance their
creative thinking through the process of their project adapting
the central concepts of IoT.

Based on our experiences, students actively participate in the
labs. Our hands-on lab activities serve as a motivating
environment to engage classroom learning. When students
complete their hands-on activities, they were willing to help out
other students in the classroom. Students remarked that they
wanted to complete their lab activities successfully regardless of
their grades, which was unusual, based on our experiences in
other courses.

We designed this course so that students choose any topic
related to IoT for their final project, meaning that the final
project is an open-ended project. After selecting a topic, the
students start to work on their topic. We recognized that open-
ended projects give students a chance to think creatively and
motivates them to learn new skills by themselves. For example,
throughout the project, students studied by themselves third
party libraries that are not discussed in the classroom to
communicate between hardware platform and sensors such as
Serial Peripheral Interface (SPI) Library [15], Wire Library [16]
and Adafruit_SSD1306 Library [17]. Throughout learning new
skills by themselves, they were developing and creating new IoT
systems. We believe that creative thinking is an important part

of higher education because we want to guide students to build
strong problem solving skills.

This is our pilot study for the newly proposed IoT course.
We plan to extend this course into the regular semester and
explore the student self-efficacy through self-reporting survey
and interviews including students’ program analysis. We also
plan to implement the designed course at more institutions as a
part of their curriculum.

REFERENCES
[1] K. K. Rout, S. Mishra and A. Routray, "Development of an Internet of

Things (IoT) Based Introductory Laboratory for Undergraduate
Engineering Students," 2017 International Conference on Information
Technology (ICIT), Bhubaneswar, 2017, pp. 113-118.

[2] M. M. Kombardi, “Authentic learning for the 21st century: An overview,”
Educause learning initiative, Report No. 1, pp. 1-12, 2007.

[3] G. Frache, H. E. Nistazakis, and G. S. Tombras, “Reengineering
engineering education: Developing an constructively aligned learning-by-
doing pedagogical model for 21st century education,” IEEE Global
Engineering Education Conference, pp. 1119-1124, 2017.

[4] S. Ristov, N. Ackovska, V. Kirandziska, and M. Gusev, “ Is the computer
science curriculum ready to teach students towards hadwarizing?,” IEEE
Global Engineering Education Conference, pp. 397-402, 2016.

[5] M. Resnick, “Give P’s a chance: Projects, Peers, Passion, Play,”
Constructionism and Creativity Conference, pp. 13-20, 2014.

[6] J. He, D. Lo, Y. Xie, and J. Lartigue, “Integrating Internet of Things (IoT)
into STEM undergraduate education: Case study of a modern technology
infused courseware for embeded system course,” IEEE Frontiers in
Education Conference, pp. 1-9, 2016.

[7] K, Akiyama, M. Ishihara, N. Ohe, and M. Inoue, “An education
curriculum of IoT prototype construction system,” IEEE 6th Global
Conference on Consumer Electronics, pp. 1-5, 2017.

[8] S. Kurkovsky, and C. Williams, “Raspberry Pi as a platform for the
Internet of Thinigs projects: Experiences and Lessons,” ACM
Conferences on Innovation and Technology in Computer Science
Education, pp. 64-69, 2017.

[9] G. Simon, and M. Koo, “An integrated curriculum for Internet of Things:
Experience and Evaluation,” IEEE Frontiers in Education Conference,
pp. 1-4, 2015.

[10] H. Maenpaa, S. Carjonen, A. Hellas, S. Tarkoma, and T. Mannisto,
“Assessing IoT projects in university education – A framework for
problem-based learning,” IEEE/ACM 39th Intermational Conference on
Software Engineering: Softwre Engineering Education and Training
Track, pp. 37-46, 2017.

[11] S.J. Johnston, M. Apetroaie-Cristea, M. Scott, S.J. Cox, Internet of
Things: Principles and Paradigms, Ch. 15 - Applied Internet of Things,
pp. 277-298, 2016, Morgan Kaufmann.

[12] Paul Golding, "HTTP, WAP, AJAX, P2P and IM Protocols," in Next
Generation Wireless Applications: Creating Mobile Applications in a
Web 2.0 and Mobile 2.0 World , , Wiley, 2008

[13] H. Hong, "From Cloud Computing to Fog Computing: Unleash the Power
of Edge and End Devices," 2017 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), Hong Kong,
2017, pp. 331-334.

[14] https://en.wikipedia.org/wiki/ThingSpeak
[15] https://www.arduino.cc/en/Reference/SPI
[16] https://www.arduino.cc/en/reference/wire
[17] https://github.com/adafruit/Adafruit_SSD1306

 572

WedP1.8

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on November 19,2020 at 21:39:44 UTC from IEEE Xplore. Restrictions apply.

