

PiShield: Low-Cost Shield for Public Wi-Fi

Michelle Vasconcelos1, Michael Vasconcelos1, Magdy Ellabidy1, David C.S. Albanese2 and Mira Yun3

1School of Computing and Data Science, Wentworth Institute of Technology, Boston, USA

2Department of History, Bentley University, Waltham, USA

3Department of Computer Science, Boston College, Chestnut Hill, USA

{vasconcelosm2, vasconcelosm1, ellabidym}@wit.edu, dalbanese@bentley.edu, mira.yun@bc.edu

Abstract

Most people know the danger of a public wireless network, but we cannot ignore the convenience of free

Wi-Fi. As all computing and mobile devices are becoming very important in our daily lives, completely

avoiding public wireless access cannot be the best option. However, failing to understand how easy it is to

hack a public network can be very risky. In this paper, we demonstrate how easy it is for attackers to get

user credentials from a public Wi-Fi access point. We then propose a low-cost solution, PiShield, which

provides VPN-enabled Wi-Fi hotspot service. Learners of any level can use this method to securely connect

to public Wi-Fi networks.

Keywords – Public Wi-Fi Security, Evil Twin Attack, VPN, Raspberry Pi.

I. INTRODUCTION

 Public Wi-Fi is a huge convenience during travel. Nearly all airports and hotels have free Wi-Fi

connections that the public can use. However, this convenience comes with high risks. Since anyone can

connect to these networks, they are far from secure. Most people know the danger of a public wireless

network, but they fail to understand how easy it is to hack such a network and to compromise all devices

connected directly to it. Connecting through a virtual private network (VPN) has been a reliable way to

protect mobile computing devices on public Wi-Fi. A VPN creates a secure tunnel between the user device

and the public network. However, VPN services are not free for everyone. Many VPN services require a

user to have an account and to pay for the service. As the scope and power of the Internet of Things (IoT)

expand, users and organizations who require multiple accounts face high costs to keep their computing

devices safe with VPN services.

In this paper, we present how to create a low-cost VPN hotspot solution, PiShield. To create PiShield, we

started by setting up a Raspberry Pi device with OpenWRT [1], which allowed us to turn our Raspberry Pi

into a Wi-Fi access point. For our virtual private network, we decided to use NordVPN as it is well known

for its safety and is used by many organizations [2]. All of our configurations are described in Section III.

We also present an evil twin attack in Section II to show the danger of a public wireless network. Our evil

twin router is another Raspberry Pi that serves as a bridge between the public Wi-Fi and victim devices.

Using an evil twin router, we were able to gain full control over the public network. Before we attempted

our hack into our low-cost VPN system in Section III, we demonstrated how easy it is for attackers to control

which websites the victim goes to and how they can view all victims’ browsing information. This can include

their usernames and passwords.

mailto:yunm%7d@wit.edu

II. EVIL TWIN ATTACK

The Man-In-The-Middle (MITM) attack is one of the most well-known and powerful attack types to steal

information [3]. MITM targets the actual data that flows between victims by placing the attacker between

them. The attacker, the eponymous “man in the middle,” is intercepting and reading the victim’s transmitted

data. The attacker can then deploy additional tools between the victims and access all important information

such as log-in credentials, banking information, and other personal information [4]. We present in this section

an evil twin attack, a type of MITM, which we used as a test. In an evil twin attack, an attacker sets up a fake

Wi-Fi network that looks like a legitimate access point, in order to steal victims’ sensitive details [5-7].

We created an access point that mimics the public Wi-Fi network to lure targets into connecting to our

network. Once the target was connected to our evil twin, we begin to perform package sniffing attacks by

using bettercap [8]. After we showed how to get login and password information from package sniffing, we

proceeded with a domain name system (DNS) spoofing attack, which allowed us to control which websites

the target could access.

2.1 Evil Twin Setup

We decided to use a Raspberry Pi for the evil twin access point since it is relatively easy to configure

with a single-board computer into an access point. We started by setting up our Raspberry Pi 3 B+ using

Kali, which is an open-source, Debian-based Linux distribution [9]. Kali provides various tools for

information security such as penetration testing, security research, computer forensics, and reverse

engineering. Kali comes with several useful wireless hacking tools that allowed us to accomplish our attacks

on the open wireless network. We created a Wi-Fi host using hostapd - host access point daemon. Hostapd

is a user-space daemon software that enables a network interface card to act as an access point and

authentication server. Udhcpd is used to set up a static internet protocol (IP) address, netmask, domain name

system (DNS), and gateway address to the Raspberry Pi.

 After the device setup, our Raspberry Pi evil twin now acted like a Wi-Fi access point and a bridge that

connected to the internet and routed traffic to target devices. For this, we used a network belonging to a

Dunkin Donuts coffee shop, with the authorization of the franchise owner. This is representative of the sort

of public network many people might use in their everyday lives. We started by connecting our evil twin

device to the Dunkin’ public network, then turned the Wi-Fi on the evil twin. Users who searched for free

Wi-Fi would detect two Wi-Fi service set identifiers (SSIDs) with similar names. The original Dunkin

Donuts public network had the name “Dunkin” while the evil twin had the name “Dunkin Guest”. Since the

evil twin simply works as a bridge, there is no way for the target device to recognize an unsecured Wi-Fi

access point. The connection looks identical to the original Dunkin Wi-Fi network.

Fig. 1. Package Sniffing Example

2.2 Package Sniffing

A victim device, such as a laptop, connected to the “Dunkin Guest” evil twin network. Since the victim

device was connected to our evil twin, we could collect all the network traffic between the victim and the

original Dunkin Donuts public network. This was done using a tool called bettercap [8], which is a powerful,

easily extensible, and portable framework that can be used to perform reconnaissance and to attack Wi-Fi

networks. As shown in Fig. 1, we performed package sniffing attacks which captured network traffic at the

Ethernet frame level. After sniffing, the collected data could be analyzed, and sensitive information could

be retrieved. Fig. 2 shows retrieved network traffic information including username and password

information.

2.3 DNS Spoofing

DNS spoofing, also known as DNS cache poisoning, is an attack in which altered DNS records are used

to redirect online traffic to a fraudulent website that resembles its intended destination. This can be highly

effective, and it is the most often used evil twin attack. A successful DNS attack can control which websites

Fig. 2. Retrieved Login Credentials

Fig. 3. Instagram Clone

the victim device can access. Bettercap allowed us to easily alter the DNS records for popular websites. In

our setup, we redirected a victim trying to access their Instagram to our homemade website. For this, we

created an Instagram clone that looked similar to the Instagram login page as shown in Fig. 3.

Once we turned our DNS spoof on using bettercap, we modified the Instagram DNS record to point to

192.168.28.189 which is our local website. If the victim tried to connect to Instagram, the traffic would

automatically redirect to our fake website (192.168.28.189). If the victim entered any information such as

login and password, the attacker could capture all this information as shown in Fig. 4.

III. PISHIELD : PREVENTION OF ATTACKS

A VPN is an enterprise network based on a shared public network infrastructure that provides the same

security, management, and throughput policies as applied in a private network. A VPN is one of the most

effective ways to protect user data when it comes to open access wireless networks. Since a VPN can encrypt

all traffic before it leaves the mobile device, it can ensure that no one can sniff the traffic and analyze

browsing behaviors [5]. However, existing VPN services are paid subscriptions created for single account

holders. This means only a single account has control over the VPN service, and only a limited number of

Fig. 4. DNS Spoofing Sample

Fig. 5. Network Configuration

devices can be associated with the account. As the scope and power of the Internet of Things (IoT) grow, a

larger group of computing devices need VPN services, and that can be very costly. In this section, we present

how to create a low-cost Wi-Fi access point which has a VPN installed with Raspberry PI.

3.1 OpenWRT & NordVPN

We started by setting up our Raspberry Pi with OpenWRT [1], an open-source Linux router for embedded

devices. OpenWRT turned our Raspberry Pi into a Wi-Fi access point. It also gave us full control over our

file systems package manager and wireless configurations in our Raspberry Pi.

By default, OpenWRT has a static IP of 192.168.1.1 which allowed us to Secure Shell Protocol (SSH)

into our Raspberry Pi and configure it from a laptop. First, we set up a password for security, then proceeded

to configure our network and firewall settings. As shown in Fig. 5, we edited the Network file to have a

private IP of our choosing. We then proceeded with the configuration by adding a WWAN interface and

configuring the Dynamic Host Configuration Protocol (DHCP) to match the public network connection.

After the network file was completed, we created a DNS server. We also created the interface for the client

VPN as shown in Fig. 5. Once we saved the firewall and network file, we rebooted the Raspberry Pi and

logged back in with our chosen IP address ‘192.72.72.1’. Fig. 6 shows our Wireless configuration. We used

two wireless adapters to server as a bridge between the public network and the connected device.

In order to finalize OpenWRT setup, we had to enter the OpenWRT Graphical User Interface (GUI) in a

browser by entering our router IP address. Similar to any other router, this provided us with an admin GUI

for the router connections. From the admin webpage, users could connect to the public Wi-Fi. Our built-in

wireless adapter in the Raspberry Pi connected to the public network, while the second wireless adapter

connected via Wi-Fi USB dongle accessed to any target device.

Fig. 6. Wireless Configuration

After setting up the Wi-Fi access point, we set up our VPN host with NordVPN. Once we setup an account

with NordVPN we could access the OpenVPN configuration file that we used on our Raspberry Pi router.

Fig. 7 shows our OpenWRT GUI. It shows that our Raspberry Pi router connected to the evil twin Wi-Fi

hotspot “Dunkin Guest” while accessing “WirelessFinal” VPN-enabled network.

3.2 Testing with Evil Twin

We tested our PiShield by re-trying the network attacks using the evil twin. As shown in Fig 7, our VPN

router connected to the evil twin “Dunkin Guest.” We attempted to perform the same attacks as done before

using Bettercap. Instantly we noticed a significant change in the package sniffing attempts. We could no

longer pinpoint a package to a device. We also noticed that when the target was connected to a HTTP website

the evil twin could no longer read any of the package information such as login and password, since the VPN

access point encrypted this data. Lastly, we attempted the DNS spoofing attack in the attempt of redirecting

the target from accessing Instagram and redirecting into our fake website. While the DNS records on our

evil twin were modified to redirect Instagram into 192.183.28.1, it did not redirect the target device into our

fake website. The target device connected to the authentic Instagram website.

IV. CONCLUSION

In this paper, we created a secure access point, PiShield, that would protect our public Wi-Fi access from

various network attacks. We accomplished this by creating a VPN-enabled Wi-Fi access point using a

Raspberry Pi. Our solution serves as a secure bridge between the public wireless network and the personal

mobile devices. We tested our solution by connecting to an evil twin router which launched a series of

network attacks such as packet sniffing and DNS spoofing. Since we presented how to create a secure VPN

solution using a Raspberry Pi step by step, learners of all levels can build their own low-cost solution to have

access to a secure network on a public Wi-Fi.

Fig. 7. OpenWRT Wireless Page

REFERENCES

[1] OpenWrt, https://openwrt.org/

[2] NordVPN, https://nordvpn.com/

[3] M. Conti, N. Dragoni and V. Lesyk, "A Survey of Man In The Middle Attacks," in IEEE

Communications Surveys & Tutorials, vol. 18, no. 3, pp. 2027-2051, thirdquarter 2016.

[4] F. Callegati, W. Cerroni and M. Ramilli, "Man-in-the-Middle Attack to the HTTPS Protocol," in IEEE

Security & Privacy, vol. 7, no. 1, pp. 78-81, Jan.-Feb. 2009.

[5] Y. Song, C. Yang and G. Gu, "Who is peeping at your passwords at Starbucks? — To catch an evil

twin access point," 2010 IEEE/IFIP International Conference on Dependable Systems & Networks

(DSN), 2010, pp. 323-332.

[6] P. Shrivastava, M. S. Jamal and K. Kataoka, "EvilScout: Detection and Mitigation of Evil Twin Attack

in SDN Enabled WiFi," in IEEE Transactions on Network and Service Management, vol. 17, no. 1, pp.

89-102, March 2020.

[7] H. Mustafa and W. Xu, "CETAD: Detecting evil twin access point attacks in wireless hotspots," 2014

IEEE Conference on Communications and Network Security, 2014, pp. 238-246.

[8] Bettercap, https://www.bettercap.org/

[9] Kali, https://www.kali.org/

