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Abstract. We consider the problem of mobile base station placement
to meet the critical communication requirements of first responders in an
ad hoc public safety network. By considering the class of first responders
and UE applications, we provide an efficient base station placement algo-
rithm to maximize critical communication needs according to priority
levels. We present simulation results that compare two proposed algo-
rithms with each other and with a baseline algorithm. Our results show
that the algorithm of weighted priority and GBR significantly improves
connectivity and coverage parameters compared to others.
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1 Introduction

Public Safety Networks (PSNs) aim to provide the most critical communication
capabilities to the public safety community during both day-to-day operations
and large scale events and emergencies [1]. Since disasters and emergencies can
occur unexpectedly and exhibit various scales and classes of damage, PSNs may
need to deployed as an ad hoc mobile network. In order to support a wide
spectrum of new user equipment (UE) applications of first responders in a timely
manner, the PSN must be deployed promptly and efficiently [2,3].

Connectivity and coverage among UEs of some or all first responders are the
most basic requirements in many PSNs [4,5]. When the first responders arrive
at a disaster site, such as scene of a fire, volcanic eruption, terrorist attack,
etc., a PSN must be dynamically deployed to meet the needs of different first
responders. Many different deployment mechanisms exist for deploying the base
stations. These include, but are not limited to, drones, truck bases, hot air
balloons, and being manually established at a location in order to handle the
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transportation and installation of the mobile base stations (mBSs). It is likely
that these mechanisms will continue to evolve over time. For example, in a
recent study from AT&T [6], the concept of the ‘Flying Cow’ or ‘Cell on Wings’
used in the extreme hazardous scenario serving the first responders is presented.
Therefore, we study the mBSs placement problem from a deployment mechanism
independent perspective and generalize these different mechanisms as various
classes of transportation models that have their associated movement costs.

We design our performance metrics of priority based on the work in [1],
where the features of QoS, priority and preemption in PSN are studied. For the
mBS placement evaluation, we apply the model in [7] where the LTE structure
is used for first responders. We extend the wireless network coverage in [8] by
using the mBSs instead of flexible network configuration. We determine the
optimal location to place mBSs in order to achieve maximum coverage for the
various public safety scenarios where the priorities of first responders and the
communication applications are emphasized.

The rest of this paper is organized as follows. Section 2 outlines the system
model and problem statement. Section 3 describes the proposed method for
finding optimal solution. Section 4 presents the empirical results regarding the
performance of the algorithm and compares the different algorithms. Finally,
Sect. 5 summarizes the paper and outlines ideas for future research.

2 System Model and Problem Statement

2.1 System Model

We are given a set of n UEs {U1, . . . , Un} and their guaranteed demand bit rate
(GBR) DU (i) and priority PU (i) for that UE and its application. UEs can move
over time, and the location of the ith UE at tth time slot is given by LU (i).
Further, we are given λ mobile base stations (mBSs), {B1, . . . , Bλ}, which can
be moved and configured to meet the needs of UEs. Depending on the location
of the UEs and the mBSs, the UE will be affiliated to the mBS with the best
signal-to-interference-plus-noise ratio (SINR).

2.2 Objective Function

The communication in PSN usually classifies first responders and the communi-
cation applications by different priorities. To represent the priority numerically
in the simulation, we introduce the concept of a priority matrix where a prior-
ity value is selected for the first responder in a specific priority class and the
communication application [1]. An illustrative example of priority matrix used
in our simulation is shown in Table 1. The chief contribution of the construct
of priority matrix is that it allows for the operational policy to be determined
at runtime by the operator of the PSN. The algorithms proposed in this paper
simply accept the priority matrix as an input and maximize the coverage based
on the matrix provided.
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Table 1. Table of priorities

UE’s/application priority class Immediate Peril Responder emergency Out of service

Mission critical voice 100 50 20

Audio 50 25 10

Video streaming 20 10 5

Periodic sensor data 10 5 1

Next, we design a metrics of performance considering UE’s priority and its
GBR and denote it as UE’s satisfaction score (SS). With UE’s location and its
affiliated mBS’s configuration, the satisfaction score is set to UE’s priority is its
GBR requirement is met. The satisfaction score is set to 0 if the GBR is not
met. The goal is to maximize the total satisfaction score with specific weights
on UE’s priority and GBR in mBS placement. The process is illustrated as the
following.

Algorithm 1: Objective Function Evaluation
With the mBSs’ placement and UEs’ affiliation;
Maximize

∑n
i=1 SSi;

if GBR is met then
SSi = PU (i) ;

else
SSi = 0 ;

end

3 Algorithms for Mobile Base Station Placement

We compare three algorithms of mBS deployment for dynamic coverage. The
performance of the algorithm is measured by the total satisfaction score of all
UEs. We define a square region of interest (ROI) and UEs can move inside it.
Figure 1a illustrates a case of UE distribution where each dot represents a UE
and the larger ones have higher priority over smaller ones and circular dots have
higher priority over the stars.

3.1 Static Equal-Sized Blocks (SESB)

The first algorithm is a simple static algorithm that is used as a baseline for
comparison. In this algorithm, the mBSs are deployed statically with equal-
sized blocks. The mBSs serve the UEs that fall in their blocks, regardless of UEs’
priority or their GBR. Figure 1b gives an illustrative case of 7 mBSs serving 50
UEs. The mBSs are represented by blue triangles and UEs with the same color
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(a) UEs Placement with Different Priorities (b) SESB mBSs placement

Fig. 1. UEs placement and constant mBS placement

are affiliated with the same mBS. While SESB may appear to be a very simple
algorithm, as we observe in comparison results, SESB has the advantage of simple
deployment and low costs associated with moving mBSs. This is especially true,
since the UEs can move around in a manner that is not predictable and an
algorithm that tries to follow the UEs can suffer from low performance if and
when the UEs subsequently move away.

3.2 K-Means mBSs Clustering

This algorithm uses k-means clustering based on the UEs location. A random
initial deployment of mBSs can fit the convergence of k-means clustering. As
a practical matter though, we set our initial mBSs deployment as the above
SESB and then apply k-means iteration for faster clustering. With the initial
deployment of mBSs and UEs’ affiliation, during each iteration, the new location
of each mBS will be the geometric center or centroid of its current affiliated UEs.
Algorithm 2 illustrates this process. We set the iteration number (MAX ITER)
of 15 where the locations of mBSs usually converge with no further change.
Figure 2a shows the final clustering of 7 mBSs.

3.3 GBR and Priority Weighted K-means Clustering

In order to consider both UE’s location and priority, we introduce the GBR and
priority weighted k-means clustering algorithm. We calculate mBSs placement
to maximize critical communication needs according to UE’s priority and GBR.
The algorithm also uses an iterative process to approach the best result. Similarly
starting with the SESB initial placement of mBSs and UEs’ affiliation, during
each iteration, the location of each mBS will be updated with the combined
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Algorithm 2: k-means mBSs clustering
Initial SESB mBSs placement and UE’s affiliation;
iter = 1;
while iter < MAX ITER do

for i = 0; i < λ; i = i+ 1 do
num UE = 0;
X = 0;
Y = 0;
for j = 0; j < n; j = j + 1 do

if Uj ∈ Bi then
num UE = num UE + 1 ;
X = X + Uj .x ;
Y = Y + Uj .y ;

end

end
Bi.x = X ÷ num UE ;
Bi.y = Y ÷ num UE ;

end
affiliate UE to mBS ;
iter = iter + 1 ;

end

weights as DU (i)α ∗ PU (i)β for Ui. The new coordinate of Ui will be Cnew =∑
Ccurrent ∗ DU (i)α ∗ PU (i)β∑

DU (i)α ∗ PU (i)β
, which guarantees the convergence of iteration.

Algorithm 3 demonstrates this process and the input value of α and β can
be customized for different weights over priority and GBR. After 15 times of
iteration, Figure 2b shows the UEs clustering with weighted GBR and priority
on the mBSs’ placement.

3.4 Placement Evaluation

In this section, we describe the overall process of how an entire placement is eval-
uated to receive a unified objective score for the placement. The overall process
can be understood as follows. First, the UE is affiliated to the mBS with the best
SINR. Then the SINR in dB is converted into channel quality indicator (CQI)
value. CQI is an indicator carrying the information on current communication
channel quality. According to CQI value, the modulation and coding schemes
are selected and then the bit rate based on current radio condition can be calcu-
lated. Finally, if the UE’s GBR is met, the satisfaction score of UE is set to the
UE’s priority. Otherwise, the satisfaction score is set to zero. Figure 3 illustrates
this process. This process is repeated for all UEs to calculate an aggregate score.
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Algorithm 3: GBR and Priority weighted k-means clustering
Initial SESB mBSs placement and UE’s affiliation;
Initialize α and β ;
iter = 1 ;
while iter < MAX ITER do

for i = 0; i < λ; i = i+ 1 do
num W = 0;
X = 0;
Y = 0;
for j = 0; j < n; j = j + 1 do

if Uj ∈ Bi then
num W = num W +DU (i)

α ∗PU (i)
β ;

X = X + Uj .x ∗DU (i)
α ∗PU (i)

β ;

Y = Y + Uj .y ∗DU (i)
α ∗PU (i)

β ;

end

end
Bi.x = X ÷ num W ;
Bi.y = Y ÷ num W ;

end
affiliate UE to mBS ;
iter = iter + 1 ;

end

(a) K-means Clustering Placement (b) GBR and Priority Weighted K-means

Fig. 2. K-means and GBR, priority weighted K-means clustering
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Fig. 3. Placement evaluation processes

4 Empirical Results

In this section, we compare three proposed algorithms in Sect. 3 of the total
UEs’ satisfaction score for selected simulation scenarios. Before we explain the
specific scenarios, we also discuss the mobility model since that has a significant
impact on the performance.

4.1 Mobility Model and Movement Dynamics

Due to the obvious and deep reliance of First Responders on mobile Internet-
enabled devices, many mobility models for ad hoc networks and cellular networks
have been proposed and analyzed [9,10]. Since mobility models are application
and scenario dependent, different mobility patterns are able to provide different
impacts on overall network performance. Thus, researchers have repeatedly tried
to understand the nature of mobility with respect to various mobility param-
eters. In this work, we use the well accepted random waypoint (RWP) mobil-
ity model [11] due to its simplicity and popularity. Our simulation starts with
the UEs uniformly distributed in the rectangle as shown in Fig. 1a. Each UE
chooses a random destination and a speed that is uniformly distributed between
[0, 4] m/s. Once UE arrives at the destination, it pauses for a random time
uniformly distributed in [0, 60] s.

Regardless of the choice of the model for this paper, we agree that the RWP
model can not adequately represent all aspects and scenarios of a complete pub-
lic safety network. In order to capture the movement patterns in disaster sce-
narios, a few disaster relief mobility models have been proposed. Event-driven
and role-based (EDRB) mobility model [12] presented that environmental events
and roles, such as civilians, police, firefighters, and ambulances, directly affect a
node’s movement patterns. Different set of mobility patterns are embedded into
different object roles. In reference point group mobility (RPGM) model [13],
mobile nodes are organized by groups according to their logical relationships.
Each group acts seemingly independently of the other groups, and the random



Efficient Mobile Base Station Placement for First Responders . . . 641

motion of each user within the group are implemented via RWP model. Overlap
mobility model of RPGM allows that different groups carry out different tasks
over the same area. Since each group has a unique motion pattern, speed, and
scope, the rescue team, medical assistant team, psychologist team, etc. can be
modeled differently over the disaster recovery area. Thus, we acknowledge that
there are many other mobility models that can be used as directions for our
future work.

(a) GBR distribution (b) UEs’ Priorities Distribution

Fig. 4. UEs’ GBR and priorities distribution

4.2 Simulation Scenarios

We implement our simulation in MATLAB for 2000 seconds of first responders’
movement. The network consists of between 1 and 9 mBSs serving from 20 to
150 UEs in a grid size of 1 km2 . The maximum communication range of each UE
is 300m. All the results are computed as the average of 100 repetitions. We use
the free space radiation model where best SINR converts into the closest mBS.

Data rate between 200 and 4000 Kbps can be expected to support high defi-
nition (HD) video conferencing. 30 Kbps for voice communication and between 1
and 800 Kbps for sensory data including temperature, light, motion and chem-
ical can be expected [14]. In the simulation, the UE’s application data rate
requirement (GBR) is generated as four normal distributions which represents
four classes of application priorities where each follows the normal distribution.
Figure 4a shows an example of GBR distribution. The UE’s location in sim-
ulation is generated as uniform distribution in the ROI and the UE’s priority
class also follows the uniform distribution. Figure 4b shows an example of UEs’
combined priority distribution.

4.3 Empirical Results for Static Case

For the static case, without considering UEs’ mobility, the simulation has been
run for 15 different experimental configurations where the satisfaction score is
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Table 2. Empirical Results for Static Case

Satisfaction score averaged over 100 repetitions

Exp index Num of mBS Num of UE SESB k-means Weighted k-means

1 1 20 45.20 46.75 54.30

2 2 30 118.59 139.62 211.71

3 3 50 283.06 339.28 453.97

4 4 50 401.43 479.02 611.44

5 4 80 652.31 715.20 901.11

6 5 100 968.68 1169.7 1331.3

7 6 100 1189.8 1384.2 1562.8

8 7 100 1286.9 1511.7 1696.2

9 7 120 1597.5 1867.1 1999.6

10 7 150 1977.3 2274.4 2462.2

11 8 100 1452.4 1759.1 1917.1

12 8 120 1751.8 2074.9 2218.6

13 8 150 2161.4 2516.9 2632.0

14 9 120 2055.1 2277.3 2374.1

15 9 150 2549.1 2791.4 2912.3

averaged over 100 repetitions. The number of mBS is from 1 to 9 and the number
of UE is accordingly from 20 to 150. The simulation results of the satisfaction
scores show dominant benefit of Weighted k-means over the other two algorithms
in the static case. Table 2 shows the satisfaction scores of the three proposed
algorithms of different experimental configurations.

4.4 Empirical Results for Mobile Case

Our static simulation results clearly show that weighted priority and GBR signif-
icantly improves connectivity and coverage among different priority level require-
ments. We have four experiments with 7 or 9 mBSs serving 150 UEs. UEs apply
either RWP model which is depicted in Sect. 4.1 or following the nearest leaders
who have high priority. In our simulation, we define the leaders who have at
least 50 priority value which is explained in Sect. 2.2. Table 3 shows the sat-
isfaction scores of the three proposed algorithms in four different experimental
configurations.

Since the mBS placement algorithms presented in this work are static and
do not adequately take the mobility of UEs into consideration, the scores of
SESB shows little fluctuation and the scores of the other two algorithms degrade
gradually as the simulation time grows. In order to provide a dynamic mBSs
placement algorithm for real world PSN scenario, both the first responders’
mobility model and dynamic mBSs placement cost can be considered in future
work.



Efficient Mobile Base Station Placement for First Responders . . . 643

Table 3. Empirical results for mobile case

Satisfaction score of 150 UEs

Mobility model Num of mBS SESB k-means Weighted k-means

Random Waypoint 7 1455.9 1565.1 1728.7

Follow Leader 7 1599.0 1691.2 1570.1

Random Waypoint 9 1967.9 1874.0 1832.3

Follow Leader 9 1984.9 1887.9 1951.8

5 Conclusions

In this paper, we have studied the problem of mobile base station placement
to meet the critical communication requirements of first responders in an ad
hoc public safety network. By considering the class of first responders and the
applications, we provide an efficient base station placement algorithm to max-
imize critical communication needs according to priority and application bit
rate requirement. The simulation results have been presented with different net-
work configurations of mBSs and the UEs. In static model, our results clearly
show that the algorithm of weighted priority and GBR significantly improves
connectivity and coverage parameters compared to two others. In order to pro-
vide prompt reaction to the dynamic environmental changes, we consider UEs’
mobility models in mobile model simulation.

The future research can consist of studying different mBSs placement cost
parameters and thus design the joint algorithm for dynamic coverage that also
considers the cost of moving the different base stations. Also, as discussed in the
empirical results, significantly more work can be done to validate the presented
algorithm using a wider set of mobility models. Finally, as one narrow but specific
item, in the GBR and priority weighted k-means clustering algorithm, future
research can explore the suitable values of α and β.
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