2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON) | 978-1-6654-0690-1/21/$31.00 ©2021 IEEE | DOI: 10.1109/UEMCONS53757.2021.9666697

DenCity: A WiF1 Location Tracking Solution

Joseph Spanilo

David Edwards

Sunjae Park

School of Computing and Data Science School of Computing and Data Science School of Computing and Data Science

Wentworth Institute of Technology
Boston, MA, USA
spaniloj@wit.edu

Mira Yun
School of Computing and Data Science
Wentworth Institute of Technology
Boston, MA, USA
yunm@wit.edu

Abstract—Google Maps has made it easy for people to plan
their commute based on how busy a road is. This has also been
expanded to help users understand how busy a store may be
during the day. However this feature has not been applied to
buildings with much depth. DenCity aims to solve this problem
by showing a way that the number of users can be tracked
without having to implement new hardware to existing infras-
tructure and without the user having to participate. DenCity
uses the WiFi signals sent out by devices to track the number
of users near an access point. As a result it makes it possible
for users to know the number of people within a building or
given area.

Index Terms—wireless, mobile and wireless IP, location man-
agement,

I. INTRODUCTION

Google Maps [1] has made it easy for people to plan their
commute based on how busy a road is. This has also been
expanded to help users understand how busy a store may be
during the day. If you pull up a business or public space
on google you can clearly see how busy the space is by the
hour under the “Popular Times” section [2]. However, this
feature does not give you raw numbers as to how many people
are actually there. Instead, it only shows you a rough graph
showing the increase or decrease. You cannot tell if there are
typically 10 people or 100 people at any given time.

This feature has also not been applied to buildings with
much depth. Current systems and solutions are not providing
which section of a building, or otherwise small area, is more
busy than others. This can be especially relevant at amuse-
ment parks, museums, hospitals, super stores, and more.
Having this information can be convenient for consumers and
visitors to plan their shopping and trips [3]. It can also be life
saving for buildings to plan for emergencies [4], for hospitals
to optimize their layouts and prevent bottlenecks [5], or for
tracking disease spread during a pandemic [6].

DenCity aims to solve this problem by showing a way
that the number of users can be tracked without having

978-1-6654-0690-1/21/$31.00 ©2021 IEEE

Wentworth Institute of Technology
Boston, MA, USA
edwardsd1 @wit.edu

Wentworth Institute of Technology
Boston, MA, USA
parks6 @wit.edu

to implement new hardware to existing wireless local area
networks and without the user having to participate. Instead
of using dedicated wireless sensor networks [7], DenCity uses
signals sent out by existing access points to track the number
of users near an access point.

The WiFi client devices such as laptops, tablets, and
mobile phones at each access point are reconfigured to run in
promiscuous mode, which allows the WiFi devices to listen to
all nearby wireless traffic. DenCity process information using
the Kismet framework and identify how many devices are
connected to each router. This information is then displayed
on a website. Users can use this website to know the number
of people within a building or given area, and plan accord-
ingly. The rest of this paper is organized as follows. In Section
II, we present our design and implementation of DenCity in
detail. In Section III, we share our findings from our testing
results. Finally, Section IV presents our conclusions and final
thoughts.

II. DENCITY

DenCity aims to create a WiFi tracking solution that
requires minimal user interaction and setup. As a result we
decided that it must collect all raw data without any user
input and that it should be deployable on off-the-shelf access
points or low cost single board computers. Then our solution
can be cost effective and easy to implement for non-technical
consumers. In order to fulfill these requirements we decided
to deploy three Raspberry Pi’s as our testing access points.
This is because of their availability, cost effectiveness, small
size, and ease of use.

For our physical data collection we decided to use
Kismet [8]. Kismet is a wireless network and device detec-
tor, sniffer, wardriving tool, and wireless intrusion detection
system (WIDS) framework. We used Kismet to collect the
wireless signal strength of all devices that were connected
and to determine whether the device was an access point
or a user device. After collecting the data it is filtered and
converted into a text file and sent to an Amazon Web Services

0309

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on March 22,2022 at 16:59:27 UTC from IEEE Xplore. Restrictions apply.

(AWS) server. This is then read by a web application written
in React [9] and displayed to the user.

—

e ——

Fig. 1. Raspberry Pi 4 with WiFi Nation WN-H1 adapter

A. Configuration

For our data and signal collecting we utilized two Rasp-
berry Pi 4s and one Raspberry Pi 3B+ both running Kali
Linux OS. We chose Raspberry Pi’s because they are small
enough for easy deployments and they only require a func-
tioning power outlet to collect raw data once configured. An
example of our setup can be seen in Figure 1. Each Raspberry
Pi was connected with a WiFi Nation WN-H1 network adapter
that allowed for signal collection. This adapter was running
the RTL88AU chipset which is one of the few chipsets left for
Wi-Fi adapters that allows promiscuous mode configuration
and is compatible with the Kismet software [10]. Promiscuous
mode allows the WiFi devices to process all packets it
sees, instead of only packets that are destined for the WiFi
device [11].

B. Kismet

Kismet is one of the most popular wireless network and
device detector, sniffer, and WIDS framework [8]. In this
application we utilized the device detector portion of this
framework to gather each unique WiFi ping from devices in
an area. Kismet however collects a lot of bulk and extra data
we do not need into the SQLite database, including signal
strength and packet information. This caused our data outputs
to be extremely cluttered and large. To break down this data
we utilized a combination of SQL queries, grep and word
count (wc) utilities to get the information we needed.
sglite3 -csv Kismetw.kismet \\

"SELECT strongest_signal FROM devices

WHERE type != 'Wi-Fi AP’"™ \\
> Kismetfile.csv

Listing 1. SQL query used

The query used is shown in Listing 1. This query takes the
SQLite file, converts into a csv file named Kismetfile.csv. It
selects the strongest signal column from the devices table and
checks to see if the device type is "Wi-Fi AP’. If it is then
it will omit it from the output. If the device type does not it
will populate it in the output file.

The CSV file is then processed to remove all Os and count
the number of lines as shown in Listing 2.

grep —-i -v 0’ Kismetfile.csv | wc -1 >
Kismetfile.txt

Listing 2. Grep and WC command to refine data

The file first piped through grep to remove all lines
containing zero from the file. The reason for this is because
when kismet produces a strongest signal with zero it is either
a duplicate ping or it’s an error in the data collection for
that device. For that reason we decided the best course of
action was to remove the lines containing zero since it would
remove duplicates and possible dead unimportant data points.
It is then processed by the ‘wc‘ command to count the number
of lines left in the file after grep removes all the Os. This is
then saved into another file which is sent to the AWS web
server. This was done since each line represents a device so
by simply counting the lines we can get the number of devices
that were a part of the dataset.

The naming convention for our files was based on the
location. For example the Douglass D. Schuman Library was
named ‘KismetFileL.txt‘, Beatty Hall was ‘KismetFileB.txt
and Wentworth Hall ‘KismetFileW.txt‘, making it easy to
determine which file was associated with what location.

After organizing and getting our data into a usable format
we needed to send our information to our AWS web server.
This was done by using the Secure Copy Protocol (SCP);
this option was one of the cleanest and most efficient ways
available while also having the benefit of being secure. For
this application we did not need all the features that Secure
File Transfer Protocol (SFTP) can offer and just needed to
send files from host to host which SCP does perfectly.

This was then tied into a bash script which ran all of
these commands from starting Kismet all the way to sending
the data to the web server. This script was set to run every
5 minutes on each web server using a cron job. Cron is a time-
based job scheduler in Unix or Unix-like computer operating
systems. The body of the script can be found in Listing 3.

The Kismet line is ran using the -c flag and the collection
source which is wlanO (the RTL88AU chipset adapter). The
ID of the Kismet process is saved in the ‘PID‘ variable. After
30 seconds it kills the Kismet process. It then runs through
both the other code blocks in Listing 1 and Listing 2. After
that it sends the file to our AWS web server using SCP with
our AWS Privacy Enhanced Mail (PEM) key. After the file
is sent all the files auto-generated from the capture are then
deleted and cleared for the next one.

#!/bin/bash
kismet -c wlan0 &
PID=$!

Briefly sleep to wait for kismet
then stop it using the kill command
sleep 30s

kill -INT $PID

sleep 10s

0310

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on March 22,2022 at 16:59:27 UTC from IEEE Xplore. Restrictions apply.

Take db get strongest signal/rm WiFi APs and
convert to csv

sglite3 —-csv Kismetx.kismet \\

"SELECT strongest_signal FROM devices

WHERE type != 'Wi-Fi AP’" \\
> Kismetfile.csv
sleep 5s

Remove all 0Os and count number of lines

grep -1 -v "0’ Kismetfile.csv | wc -1 >
KismetFileL.txt

sleep 5s

Copy files to AWS Webserver

scp -1 7 /Desktop/AWS_Kismet_EC2_ED.pem
KismetFileL.txt \\
ubuntulRaws_webserver:”/Desktop/

sleep 5s

echo "done"

Remove generated Kismetfile
rm Kismet-—x*

Listing 3. Full automation script

C. Web Application Design and Implementation

In order to implement our solution we decided to create a
web application using JavaScript, HTML, and CSS. As shown
in Figure 2 , we chose to use React for the user interface (UI)
because of its ease of use when it comes to implementing a
web application that updates with the information given.

We utilized Node.js for our backend. The data is read from
the txt file that was gathered by the Raspberry Pi’s. The data
is displayed on the web application using React. This updates
in real time for the user as the user views the program.

Fig. 2. DenCity UI using React

D. AWS Deployment

For our web server deployment a AWS EC2 was used run-
ning Ubuntu with XAMPP which is a pre-packaged Apache
web server distribution. The EC2 instance was configured as
a t2.micro instance because it has the amount of processing
power needed to host our web application. Additionally, since
all of the data parsing and organizing through file is handled
by the Pi’s, the webserver does not have to handle any of
the processing further reducing the need for a more powerful
server.

In order to Secure Shell (SSH) into our webserver as well
as SCP our files to it, we needed to use the .pem file. This is
essentially an encrypted key that is generated and used by the
EC2 instance to authenticate SSH connections and requests.
Each EC2 instance has its own unique .pem file.

III. EVALUATION

When conducting tests for DenCity we recorded how many
users were in the area at a given time and then compared
that to how many connections we received from our output
of DenCity. Below is our data collected from Douglas D.
Schuman library at Wentworth Institute of Technology in 10
tests across 10 different days in Table I.

TABLE I

DATA COLLECTION RESULTS
Test | Actual | Application

1 20 19

2 15 16

3 21 21

4 25 24

5 13 14

6 24 22

7 16 15

8 18 12

9 17 17

10 23 23

From these tests we found that our data collection was
consistent and always being within 1 to 2 persons of what we
actually counted, except for one outlier on test 8. This meant
our application was collecting data accurately and from these
tests had 4.6875% of error rate.

IV. CONCLUSION AND FUTURE WORK

In DenCity we were able to show that it is possible to
reuse existing access points to collect users location. There
are however ways that we can refine and streamline DenCity.
First would be to implement a map system on the home page.
This would allow the users to view the locations that are
being tracked and see a visual representation of the number
of people in a given area. Second would be to implement
trilateration to our program. This would allow DenCity to
have more accurate tracking that is better suited for room by
room tracking. Furthermore improvements to the UI should
also be made to ensure a better user experience. Another
major feature would be the ability to view tracking records
within the web application easily. This would make DenCity
much more suited for analytics and significantly increase its
utility.

Overall this DenCity project has laid the foundation for
what could become a useful tool for location tracking.
DenCity is reasonably accurate and cheap for business and
institutions to implement. Potentially it could be implemented
with existing tools such as Google Maps to maximize its
utility and accessibility.

REFERENCES

[1] Google Maps. [Online]. Available: https://maps.google.com/. [Ac-
cessed: 02-Jun-2021].

[2] Google Maps will soon indicate how busy a place is directly on the
map. [Online]. Available: https://9to5google.com/2020/10/15/google-
maps-indicate-busy-directly-on-map/ [Accessed: 15-Oct-2021].

0311

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on March 22,2022 at 16:59:27 UTC from IEEE Xplore. Restrictions apply.

[3]

[4]

[5]

[6]

[8]

[9]
[10]

[11]

Didi Surian, Vitaliy Kim, Ranjeeta Menon, Adam G. Dunn, Vitali
Sintchenko, Enrico Coiera, “Tracking a moving user in indoor envi-
ronments using Bluetooth low energy beacons,” Journal of Biomedical
Informatics, https://doi.org/10.1016/j.jbi.2019.103288.

A. Desmet and E. Gelenbe, “Reactive and proactive congestion
management for emergency building evacuation,” 38th Annual IEEE
Conference on Local Computer Networks, 2013, pp. 727-730, doi:
10.1109/LCN.2013.6761321.

Tudor Morar, Luca Bertolini, “Planning for Pedestrians: A Way
Out of Traffic Congestion,” Procedia - Social and Behavioral Sci-
ences, Volume 81, 2013, Pages 600-608, ISSN 1877-0428, doit:
https://doi.org/10.1016/j.sbspro.2013.06.483.

Van Romero, William D. Stone, Julie Dyke Ford, ”COVID-19 indoor
exposure levels: An analysis of foot traffic scenarios within an academic
building,” Transportation Research Interdisciplinary Perspectives, Vol-
ume 7, 2020, doit: https://doi.org/10.1016/j.trip.2020.100185.

S. Faye and C. Chaudet, “Characterizing the Topology of an Urban
Wireless Sensor Network for Road Traffic Management,” in IEEE
Transactions on Vehicular Technology, vol. 65, no. 7, pp. 5720-5725,
July 2016, doi: 10.1109/TVT.2015.2465811.

Kismet. [Online]. Available: https://www.kismetwireless.net/. [Ac-
cessed: 02-Jun-2021].

React. [Online]. Available: https://reactjs.org/ [Accessed: 02-Jun-2021].
“Hardware,” Kismet. [Online]. Available:
https://www.kismetwireless.net/hardware/. [Accessed: 08-Jun-2021].
Ansari, Sabeel, S. G. Rajeev, and H. S. Chandrashekar. “Packet sniffing:
a brief introduction.” IEEE potentials 21.5 (2003): 17-19.,

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on March 22,2022 at 16:59:27 UTC from IEEE Xplore. Restrictions apply.

0312

