
CS for ALL: Introducing Computational Thinking
with Hands-on Experience in College

Andrew Jung
Department of Computer Science

Framingham State University
Framingham, MA

cjung@framingham.edu

Jinsook Park
Department of STEM Education

& Teacher Development
University of Massachusetts

Dartmouth
Dartmouth, MA

jpark3@umassd.edu

Andrew Ahn
E-Service
IR LLC

Tempe, AZ
aahn@sonicwall.com

Mira Yun
Department of Computer Science

and Networking
Wentworth Institute of

Technology
Boston, MA

yunm@wit.edu

Abstract— “CS for ALL” is a new education initiative

launched in 2016 to empower a generation of American students
with the computer science skills they need to thrive in a digital
economy. In order to keep up with trends in the growing
technology-driven world, students should have the ability to
analyze and consider the consequences of computing problems
critically. However, introducing CS and computational thinking
skills to the first year students in college is a difficult task because
the nature of the subject tends to be dry and conceptual. Thus,
we introduce a computer science course that helps all
undergraduate students to prepare for digital life as well as
enhance their critical thinking skills through hands-on learning
experiences. The course contents introduce the general concept
of computer science such as computing system, basic networking,
algorithms and programming with Scratch and mBot robot
exercises. Our student feedback shows a high level of enthusiasm
and engagement among the students. The strong hands-on
learning nature of the course helped our students to have more
engaging and interactive classroom experiences.

Keywords—Computer Science Education, Computational
Thinking, Hands-on, Robot programming

I. INTRODUCTION
Higher education aims to promote the ability to solve the

problems in critical and creative ways instead of just delivering
knowledge to students. The undergraduate level education also
aims to help students to become critical thinkers and effective
problem solvers. In addition, the ability to analyze and consider
the consequences of computing problems critically is an
important skill set in our technology-driven world. Since we
are surrounded by lots of personal computing devices such as
laptop, smart phone, and other hand-held devices, those
computer science problem solving and computational thinking
skills will help both computing and non-computing diciplines
in almost every domain. In this paper, we introduce a computer
science course that helps all undergraduate students to prepare
for digital life as well as enhance their computational thinking
skills. Students in this course can experience both web
development and robot programing so that they can have a
comprehensive understanding of computing tools, networking,

programming, problem solving and computational thinking
skills.

The course is targeted to the freshman students who are not
in the computer science program. The course contents
introduce computing system that explains hardware and
software, basic networks and Internets, algorithms and
programming, and their application for giving students general
concept of computer science. This new course contents have
been adapted to “CSCI120 Introduction to Information
Technology” that is offered at Framingham State University
(FSU) in Spring 2017. The course provides students lots of
hands-on activities to enhance students’ learning performance.
Computational thinking is the process that involves a critical
way of thinking, methods, and techniques to solve the problem
in computer science [1-2]. In order to streamline the
development of computational thinking skills smoothly, we
introduce problem solving skills with computer-programming
language. Because students can implement their solutions by
using programming language, they can clearly understand the
problems and try many different algorithms, designs, and
methods to solve the problems in an efficient manner, that is
the core of computational thinking. We cover variables,
sequence, selection, and repetition structures of computer
programming, and give students chance to apply those
concepts to robot programming. We use Scratch [3], that
developed by Massachusetts Institute of Technology (MIT), as
programming language in this course because it provides a new
developmental environment; Scratch is designed to give more
focus on the programming logic or algorithm development, not
fixing syntax error that makes students difficult to approach
computer programming language as a beginner [4].

Course evaluation based on student feedback shows a high
level of enthusiasm and engagement among the students. The
strong hands-on learning nature of the course helped our non-
computing major students to have more engaging and
interactive classroom experience. The rest of this paper
organized as follows. Section II present the motivation and
related work that represents the necessity of digital literacy and
computational thinking. Section III provides the details about
the course contents. Finally, we conclude our work in Section
IV.

2017 International Conference on Computational Science and Computational Intelligence

978-1-5386-2652-8/17 $31.00 © 2017 IEEE

DOI 10.1109/CSCI.2017.187

1073

II. MOTIVATION AND RELATED WORK
Recently, United States education has invested in the “CS

for All” initiative [4]. One of important parts in the initiative is
to present computer science theories and practices to students
at an early age to have them the computational thinking skill
for preparing digital literacy world. However, computing
courses for K-12 students are still under development, and a
research reported that many high schools still teach Microsoft
Office skills such as word processing, excel, and power point
slide development as an computer science course [6]. For this
reason, majority of first-year students in college are not able to
keep up with trends in the growing technology-driven world.
Our experience shows that freshmen have limited knowledge
of computer related technology, and also they poorly
understand what the computer science is. Thus, we recognize
the need for a course that introduces computer science subjects
to students who are not in computer science major. Our goal of
this course is to make students understand computer science
concepts and to enhance their computing capability that is
necessary for computational thinking.

Computational thinking is a problem solving technique that
utilize computer science concept. It applies not only computer
science but also other fields such as mathematics, biology,
economics, engineering, chemistry, medicine, and other
sciences [7-8]. Computational thinking concept includes
abstraction, problem decomposition, algorithms design, data
collection and analysis, data representation, and simulation [9].
Research indicated the importance of computational thinking
into K-12 curriculum, and mentioned that it becomes the
necessary part of youth education [9]. In order to enhance
computational thinking skills, many research projects address
programming language teaching and show their close
relationship [10-13].

Scott et al.[12] proposed CS0 course that includes
computer programming and ethics in computing. They used
Scratch programming to improve problem solving techniques
of students. Their results presented that 85% of students
answered that programming is an interesting subjects, 76% of
students understand the basic programming concepts such as
variable, selection, and loops, 81% of students answered that
the programming tasks and projects were worthwhile
experience, and 82% of students answered that programming
was the most important for them. Their results also showed that
students who took CS0 represented 8% higher passing rate for
CS1 course. This research demonstrated that teaching
programming make students interesting for computer science
field, and learning programming concept with visual
programming such as Scratch can make students comfortable
to access other programming language in upper level class.

Rizvi et al.[14] proposed CS0 course for computer science
major students to improve CS retention rate. They used
Scratch programming. Their result demonstrated that the
overall passing rate of CS1 was 70% with students who took
CS0. However, 45% of overall CS1 passing rate was with
students who did not take CS0. There were very positive
feedback from students that they liked Scratch programming
and it was helpful for programming course. Their retention rate
was increased from 33% to 59%.

Another research shows that computational thinking
enhances overall students’ problem-solving capability, and
represented the better performance in national exam of high
school at Brazil especially for students who studied computer
programming [8]. They divided into two groups of students.
One group was the experimental group that learnt computer
programming, and the other group was the control group that
did not learn computer programming. Their results shows that
the result of Whimbey Analytical Skills Inventory (WASI)
exam that assesses problem solving skills for experimental
group has 21% higher average than control group. Their
statistical results represented that the experimental group has
better performance for mathematics and natural sciences.
However, they could not find any statistical significance for
subjects such as humanities, languages, and writing. This
research shows the evidence that teaching programming
improve students’ problem solving techniques.

TABLE I. COURSE SCHEDULE AND TOPICS

Week Topic

Week 1 Introduction to Computer (Hardware, Software)

Week 2 Understanding Number System

Week 3 Introduction to Operating System

Week 4 Introduction to Disk Operating System (DOS)

Week 5 Application Software

Week 6 Office Suit – word, excel

Week 7 Office Suit – ppt slide, access

Week 8 Networking Basic

Week 9 Website building - HTML I

Week 10 Website building - HTML II

Week 11 Programming Logic I – flowchart, variable, sequence
structure

Week 12 Programming Logic II – selection, loop structure, structured
logic

Week 13 Visual Programming – Scratch I

Week 14 Visual Programming – Scratch II

Week 15 Robot and programming

III. COURSE WORK
The purpose of a general education course is to give

students educational background that include not only
knowledge itself but also skill sets which is helpful for their
professional life after they graduate [15]. We designed “
CSCI120 Introduction to Information Technology” with
following two criteria:

1) A computer science general education course should
introduce both foundation and application that can contribute
student’s growth for their future.

1074

2) A computer science general education course should
enhance problem solving and critical thinking skills that are
needed in almost every domain.

The course is a one-credit course with 4 hours weekly

designed for non-computing first-year students in college. We
designed student’s learning experiences with hands-on
activities. Therefore, we minimized the lectures with maximum
20 minutes, and minimum 40 minutes with hands-on activity
for each 60 minutes meeting. Some classes have fully hands-on
activity instead of partial lecture. Our course contents are
divided into 15 weeks. Table I represents the detail of course

topics.

Fig. 1. Example of binary number conversion

The course covers general computer science topics and
their application. The course starts with introducing hardware
and software components of a desktop computer as well as
hand-held devices such as smartphones and tablets. We
explain how computer hardware understands commands
requested, which needs to understand number system in
computer. The course includes decimal, binary, and
hexadecimal number conversion. The binary number
conversion lecture example is shown at Fig. 1.

Fig. 2. Example of DOS: mkdir command

In Week 3 and 4, we introduce operating system. The role
of operating system and the interaction between hardware and
software are briefly described. We experiment the operating
system basic with window operating system. We show
students how graphical user interface (GUI) in window system
is different than command line interface (CLI). Students are
able to experiment disk operating system (DOS) command
with command prompt, and understand how it is applied to
window system. For example, students type the command to

create a directory and press enter, and then see the list of
directories with new directory name on the command prompt
as well as new directory icon through window GUI. Fig. 2
shows the example DOS commands students explore during
the class. Table II shows DOS commands we used in the
classroom.

TABLE II. DOS COMMANDS

Commands Meaning Example
cd Change directory cd ..
dir List directories and files dir
tree Displays directory structure in

graphical form.
tree

md Make a new directory md test\docs
rd Removes the directory specified

as the argument to the
directory.

rd docs

copy Copies one or more files from a
directory to another, or to the
same directory with a different
file name.

COPY
C:\WINDOWS\system*.dll
C:\WINDOWS\TEMP*.old

move Moves one or more files from a
directory to another, or to the
same directory with a different
file name.

MOVE
C:\WINDOWS\system*.dll
C:\WINDOWS\TEMP

del & erase Delete one or more files. DEL
C:\WINDOWS\TEMP*.old

ren &
rename

Rename one or more files. REN
C:\WINDOWS\TEMP*.old
*.dll

Fig. 3. Data Set for Pivot-Table

1075

Fig. 4. Pivot-Table Creation

Fig. 5. HTML example: ordered and unordered list with style

Fig. 6. Example webpage

During Week 5 to 7, we cover the application software. We
discuss the necessity of software for human, and explain what
software is currently available and popular. Students
experience Microsoft Office suit such as Word, Excel,
PowerPoint slide, and Access. Our experience shows that most
students already knew basic operation of Office suit such as
creating, saving, and modifying a document. Thus, we only
studied specific techniques of Office suit. For example, we
experienced the creating a pivot-table with data sheet in Excel,
applying sorting and filtering, and including it to Word or
PowerPoint slide. Fig. 3 and 4 are the example of a pivot-table
that students have experience to do filtering and sorting.

The networking basic such as client/server, point-to-point,
wide area network (WAN), metropolitan area network (MAN),
and local area network (LAN) are introduced in Week 8.

 Fig. 7. Scrach Example: produce random numbers

1076

Students are able to create simple website using hypertext
markup language (HTML) and experiment to access it through
local web server in Week 9 and 10. When we let students
develop a website, students were very excited that they can
develop a website by themselves, and exert more efforts to
make website better. Fig. 5 is an example HTML codes that
uses styles of unordered and ordered list. Fig. 6 is an example
webpage that is developed during class hour with students.

From Week 11, we introduce computer-programming
concept. We explain logic design with flowchart first and lead
students apply it to visual programming (Scratch). We explain
variable, sequence, selection, and loop structures that
correspond with most of introduction to programming course
(CS I). Our experience shows that students struggle to create
and understand logics especially for selection and loops when
they draw flowchart. However, once they applied their logic to
visual programming, they easily understood how their logics
are working. Fig. 7 is an example Scratch code to generate
random numbers that is used in the classroom.

Fig. 8. mBot robot control with computer programming

The last part of the semester is to apply computer-
programming concept they learned to robot programming. We
use mBot robot that uses Scratch programming language.
mBot is an educational Arduino [16] robot which can provide
hands-on experience of programming, electronics, and robotics.
It is easily assembled wheeled robot and programmed with
both Arduino and Scratch. It provides the graphical
programming environment that is called mBlock. mBlock is
actually the customized version of Scratch. Thus, students
who are familiar with Scratch can easily interact with
electronic modules in Arduino eco-system. This feature
provides great benefit because they use the same Scratch
language to command and control mBot in a way that they can
understand the interaction between hardware (mBot) and
software (Scratch program). Additionally, they can get the
results of their coding immediately from the mBot so that they
easily know whether their algorithm is correct or not. It makes
class session more fun and engaging. Fig. 8 shows mBot robot

control with computer programming. The mBot robot is
originally developed for K-12 students. However, when we
applied it to freshmen course, all students really like to work on
it because of user friendly programming environment of mBot.
They were interested in working with a robot and excited to
control with their code. Fig. 9 shows the mBot programming
environment.

Fig. 9. mBot programming environment

IV. DISCUSSION AND CONCLUSION
In this paper, we present a well-designed computer science

general education course to introduce computer science
foundations and applications in order to enhance problem
solving and critical thinking skills of all undergraduate
students. Throughout the course, the concept of each computer
science topic is introduced to students with hands-on activities.
Students are able to practice what they have learned throughout
hands-on activity assigned right after lecture. While students
are doing a hands-on activity, the role of instructor is to lead,
not give them a lecture. Instead of giving students the answer
right away, the instructor quickly reviews the corresponding
material together with students and helps them to explore the
answer by themselves. For example, students develop a
website that needs to insert an image into the webpage. In
many cases, students struggle to show an image on the web
browser because of a file path setup although they studied
about file path during lecture. We quickly review the concept
of relative and absolute path of the file again, and practice
together how to assign relative and absolute path of a file.
Then we ask students to solve their file path problem on the
browser.

Our overall implication includes that students are more
likely to engage in active discussion while they were working
on Scratch programming activities. For example, we give
students to develop a math game program that produce two
random numbers to add and subtract them using Scratch.
Unlike other traditional programming language courses, there
were very active discussion and trials among team members in
the classroom. They shared their algorithms and tried them
immediately to see the results of them. Students were very
interested in how their algorithm affects the behavior of the
sprite in Scratch. In traditional programming environment such
as C+ or Java, students type codes, compile, and execute it. It

1077

is not easy to write the answer codes of a problem with all team
members together. However, Scratch environment gives
students more chance to participate in discussion actively to
solve the problem as a team member because students see the
result of their algorithm through the sprite immediately. Once
the sprite has abnormal behavior or not working, then students
tend to discuss about their algorithm immediately through
adding, removing and/or modifying blocks. Thus, students can
spend more time on their algorithm designs and efficiency than
understanding syntax errors and typing codes.

Students in this course can experience both web
development and robot programing so that they can have a
comprehensive understanding of not only computing tools,
networking, and programming concepts, but also problem
solving and computational thinking skills. Students’ improved
skill sets will be beneficial for their academic success as well
as future career. Our student feedback shows a high level of
enthusiasm and engagement among the students. The strong
hands-on learning nature of the course helped our non-
computing major students to have more involed and interactive
classroom experience.

REFERENCES
[1] D. Weintrop, F. Beheshti, M. Horn, K. Orton, K. Jona, L. Trouille, & U.

Wilensky. Defining Computational Thinking for mathematics and
science classrooms. Journal of Science Education and Technology, vol.
25 no. 1, 2016, pp 127-147.

[2] J. M. Wing, Computational thinking. Commun ACM 2006, vol. 49 no.
3, pp 33-35.

[3] Scratch, https://scratch.mit.edu/
[4] Resnick, J. Maloney, A. R. Monroy-Hernández, N. E. Eastmond, K.

Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, & Y.

Kafai, Scratch: programming for all. Communications of the ACM,
2009, 52, pp 60–67.

[5] M. Smith, “Computer Science for All,” Obama White House blog, 2016;
obamawhitehouse.archives.gov /blog/2016/01/30/computer -science-all.

[6] W. R. Adrion, "How Computer Science Departments and Faculty Can
Contribute to the CS for All Initiative," in Computer, vol. 50, no. 5, pp.
103-105, May 2017

[7] Rivanilson S. Rodrigues, Wilkerson L. Andrade, Livia M. R. Sampaio
Campos, “Can Computational Thinking help me? A quantitative study
of its effects on education”, International Conference on Frontiers in
Education IEEE, pp. 1-8, 2016

[8] Jeannette M. Wing, “Computational Thinking”, Commun. ACM, Vol 49,
No. 3, pp. 33-35, 2016, http://doi.acm.org/10.1145/1118178.1118215

[9] Valerie Barr, Chris Stephenson, “Bringing computational thinking to K-
12: what is Involved and what is the role of the computer science
education community?”, ACM Inroads, Vol 2, No. 1, pp. 48-54, 2011

[10] Z. Yinnan, L. Chapsheng, “Training for computational thinking
capability on programming language teaching,” International
Conference on Computer Science & Education (ICCSE), 2012, pp 1804
– 1809

[11] Y. Li, “Teaching programming based on Computational Thinking,”
IEEE Frontiers in Education Conference, 2016, pp 1 -7

[12] A. Scott, S. Barlowe, “How software works: Computational thinking
and ethics before CS1,” IEEE Frontiers in Education Conference, 2016,
pp 1 – 9

[13] C. Zhang, X. Chen, J. Li, “Research of VB programming teahing mode
based on the core of computational thinking ability training,”
International Conference on Computer Science & Education (ICCSE),
2011, pp 1260 – 1263

[14] M. Rizvi, T. Humphries, “A Scratch-based CS) course for at-risk
computer science majors,” IEEE Frontiers in Education Conference,
2012, pp 1 – 5

[15] R. A. Revelo, C. D. Schmitz, D. T. Le and M. C. Loui, "Self-Efficacy as
a Long-Term Outcome of a General Education Course on Digital
Technologies," in IEEE Transactions on Education, vol. 60, no. 3, pp.
198-204, Aug. 2017.

[16] Arduino, https://www.arduino.cc/

1078

