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Abstract. As new mobile base stations (mBSs) have been constantly
developed with various capacities, mobile coverage, and mobility mod-
els, the level of heterogeneity in public safety networks (PSNs) has
been increasing. Since disasters and emergencies require the ad hoc PSN
deployments, dynamic mBS placement and movement algorithm is one
of the most important decisions to provide the critical communication
channels for first responders (FRs). In this paper, we propose a heteroge-
neous mBS placement algorithm in an ad hoc public safety network. We
define different classes of mobile base stations that have varying perfor-
mance characteristics and consider three different FRs mobility models.
Our proposed algorithm applies the modern clustering technique to deal
with the characteristics of different kinds of mBSs.

Keywords: Mobile base station placement ·
Adhoc public safety networks · 5G · LTE

1 Introduction

As Public Safety Networks (PSNs) continue to get more and more coverage,
many different classes of mobile base station (mBS) and deployment models
are emerging [1–3]. Each of the hardware and deployment models has its own
advantages disadvantages. The challenge has quickly shifted from merely meeting
the network demand to being able to do that in a cost effective way.

Connectivity and coverage among user equipments (UEs) of some or all first
responders (FRs) are the most basic requirements in many PSNs. When the FRs
arrive at a disaster site, such as scene of a fire, volcanic eruption, terrorist attack,
etc., a PSN must be dynamically deployed to meet the needs of different FRs.
Many different deployment mechanisms exist for deploying the base stations.
These include, but are not limited to, drones, truck bases, hot air balloons, and
being manually established at a location in order to handle the transportation
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and installation of the mBSs. It is likely that these mechanisms will continue to
evolve over time. For example, in a recent study from AT&T, the concept of the
‘Flying Cow’ or ‘Cell on Wings’ used in the extreme hazardous scenario serving
the FRs is presented. Therefore, we study the mBSs placement problem from
a deployment mechanism independent perspective and generalize these different
mechanisms as various classes of transportation models that have their associated
movement costs.

The rest of this paper is organized as follows. Section 2 discusses the related
work and our contributions. Section 3 outlines the system model and problem
statement, e.g. the mBS classes introduction, the UE mobility models, the chan-
nel model and the performance metrics. Section 4 describes the proposed method
for continuous optimal mobile base station placement solution. Section 5 presents
the empirical results regarding the performance of the proposed algorithm, and
the comparison to the baseline model. Finally, Sect. 6 summarizes the paper and
outlines ideas for future research.

2 Related Work

In this section, we review the recent mBS placement research relevant to cellular
networks and at last our contributions are summarized.

In our previous work [4], we proposed algorithms for single class of mBS
placement with limited UE mobility models. However, due to different service
requirements in PSN scenarios [1] and the advantages of heterogeneous network
architecture [5], multiple classes of mBSs have been developed, e.g., the Vehicle
Network System (VNS), Cell on Light Truck (CoLT), Cell on Wheels (COW)
and System on Wheels (SOW) [6]. The performance of the heterogeneous mBSs
of Aerial LTE Base Stations (AeNB) and Portable Land Mobile Unit (PLMU)
for PSN communication have been researched in [7]. In this work, our proposed
algorithm is designed for dynamic placement of multiple classes of mBSs.

Due to the flexibility and mobility of drones, a growing amount of research
has been focused on its applications in cellular network or PSN [8–10]. The
channel modeling between drones and UEs in urban setting has been addressed
in [11] where a realistic path loss and shadow fading model has been proposed.
We apply the same channel model in our work. In [12,13], the energy restricted
model for drones has been used. We use the Flying CoW model from AT&T [14]
which has unlimited power supply with a thin tether. The dynamic limitation of
drones has been considered and analyzed in [15]. But due to the fast development
of drones, we apply more flexible restrictions on its dynamic limitation.

UEs in PSN scenarios are often referred as FRs. The studies on mobility
models of FRs are very limited. A general study of network performance impact
of UE mobility model has been addressed in [16]. In our work, we consider three
UE mobility models, including Random Way Point Model (RWP) [15] and two
PSN application related models. Generally, the placement of mobile base stations
are NP-hard problem [12], where several approaches including greedy, numerical
and game theory based are studied in [12,15,17]. We solve this problem with
clustering technique.
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In this paper, we address the above-mentioned challenges. Our contributions
can be summarized as follows:

– We extend the work of mBS deployment with multiple classes of base stations
to meet the most critical requirements in PSN scenarios. Different classes
of mBSs are associated with corresponding coverage weights, recalculation
frequency and relocation threshold.

– Our proposed algorithm applies the modern clustering technique. It solves the
base station placement problem from the view of the central control instead
of non-cooperative method, which is more suitable in PSN scenarios since
most FRs and base stations are deployed with the central control.

– Besides the commonly used RWP model, we also develop two mobility models
for PSN scenarios to represent the special characteristics for FRs since they
are usually deployed in groups and often have specific working areas.

3 System Model and Problem Statement

In this section, we present the system model and discuss the different mobile base
station classes, mobility and channel models and also the quantitative perfor-
mance metrics that can be used to assess the performance of different solutions.

3.1 Mobile Base Station Classes

Various kinds of mBSs have been developed recently to meet the critical require-
ment of PSN scenarios. For example, the Emergency Drop Kit from AT&T shows
the ability for rapid connectivity during emergencies in rural areas, as well as
areas which may be temporarily out of communications [18]. It is designed for
a short-term solution until the dedicated deployment arrives. The aerial base
stations, especially drone-based ones get a lot of attention and development in
recent research. AT&T has proposed their all-weather drone base station (Flying
CoW) [14] in 2018 for coverage in extreme conditions. A thin tether is connected
between the drone and ground terminal for unlimited power supply and high
speed data connection. CoW and SoW have long been used as temporary com-
munication solutions with different capacities due to their flexible mobility and
fast deployment. In this paper, we model three kinds of mBSs as in Table 1. Our
proposed dynamic placement algorithm can be easily extended for more classes
of mBSs.

Table 1. Mobile base station classes

mBS Drone CoW SoW

Capacity Low Medium High

Recalculation frequency High Medium Low

Relocation threshold Low Medium High
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3.2 UE Mobility Model

The performance impacts of UE mobility models for ad hoc networks and cel-
lular networks have been analyzed in [16,19]. In this paper, we consider three
UE mobility models including the RWP model which has been widely used for
general UE mobility modeling. In RWP model, each UE independently selects a
random destination inside the Region of Interest (ROI) and moves in a straight
trajectory with a constant speed. After reaching the destination, UE pauses for
a while before the next move.

In the other two models, more public safety features have been considered.
Since most FRs are deployed as a group, in first model, UEs are firstly classified
as leaders and non-leaders of the groups. The initial grouping association hap-
pens based on UE’s role as a leader or following the closest leader. The leaders
follow the RWP model and their group members follow the leaders. Figure 1 illus-
trates this situation. In the second model, a number of Points of Interest(POI)
have been initialized in ROI and all the UEs move randomly approaching or
around the closest POI depending on the distance between UE and POI, which
are shown in Fig. 2. Similar event-driven and role-based (EDRB) mobility models
are studied in [20,21]. We acknowledge the more accurate FRs mobility model-
ing, the better algorithm being able to design and this will be one direction for
our future work.
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Fig. 1. UE mobility model with leaders in red star (Color figure online)
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Fig. 2. Screen-shot of UE mobility model with 5 points of interest

3.3 Channel Model

The channel model we adopted is well studied in [11]. The path loss consists of
two parts: Line of Sight (LoS) transmission and Non-line of Sight (NLoS). The
path loss of the LoS and NLoS links in dB is given respectively by

Lpath = 20log(
4πfcd

c
) + ηpath

where the string path can stand for LoS or NLoS, fc is the carrier frequency, d is
the distance between UE and base station, c is the speed of light, and ηpath is the
average additional losses. The probability of the occurrence of a LoS connection
is given by:

PLoS =
1

1 + αe−β(θ−α)

where θ is the elevation angle from base station to UE or arctan(h/d), h is the
height of base station, α and β are environment-dependent constants. Conse-
quently, the probability of a NLoS connection is PNLoS = 1−PLoS . Finally, the
probabilistic mean path loss is given by

L = LLoSPLoS + LNLoSPNLoS

To simplify the problem, we assume all the mobile base stations from the same
class have the same operational height and transmitting power. The interference
from neighboring mBSs under a specific threshold will be neglected.
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3.4 Performance Metrics

In this part, we discuss the performance metrics to evaluate our proposed algo-
rithm compared to a baseline static placement method where the same set of
mobile base stations are regularly placed in the ROI. The average SINR of all
UEs based on the channel and communication model of a specific mobile base
stations placement will be the main performance consideration. In order to eval-
uate the UE at the cell edge, the 5th percentile of SINR will be studied [10].
Since the main objective of base station (BS) placement is to reduce the dis-
tance between UE and BS, the UE-to-BS distance will also be addressed. For
most drone-based placement problem, the collision avoidance scheme should be
investigated, but our proposed clustering algorithm can automatically solve this
problem.

4 Heterogeneous Mobile Base Station Placement
Algorithm

In this paper, we propose a dynamic placement algorithm for heterogeneous
mBSs that employs a variant of K-means++ clustering technique to deal with
the characteristics of different kinds of mBSs. The dynamic placement algorithm
consists of two parts, static placement of mBS for a specific UE distribution, and
the periodical recalculation with mBSs moving threshold. The first part deals
with the static situation and the second part makes the process dynamic. In the
rest of this section, we describe them separately. To represent the mBS features
from Table 1 in the algorithm, for each mBS, we assign three parameters: Capac-
ity Weights Cw, Recalculation Period Rp in seconds and Relocation Threshold
Rt in meters.

4.1 Clustering for Static UEs

In our previous work [4], K-means and its variant algorithms have been used
for UE clustering by the single class of mBS. The K-means++ algorithm is
an improvement with better initialization [22]. We modify the K-means++ with
respects of different cluster size to represent the various capacities of mBS classes.
The K-means clustering process is a series of UE-mBS association and mBS
relocation to the centroid of its associated UEs iteratively. The mBS’s capacity
Cw will influence the UE association at each iteration by the weighted distance
between UE and mBS. Algorithm 1 shows this process.

We show an example of the clustering in Fig. 3. The black dots represent the
UEs in the ROI and in this case, total of 8 mBSs are deployed: one SoW (orange
truck), two CoW (green car) and five drones (azure drone). The clustering edges
are presented by the blue lines. With higher configured capacity weight of SoW,
the coverage of the SoW in this example is the biggest. On the other hand, drones
and CoW cover with small and medium capacities respectively. The location of
mBS is determined by the centroid of its associated UEs.
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Algorithm 1. Static UE Clustering with Different Mobile Base Station
Capacities

Initial mBSs placement;
iter = 1;
while iter < MAX ITER do

for i = 0; i < NB ; i = i + 1 do
num UE = 0;
X = 0;
Y = 0;
for j = 0; j < NU ; j = j + 1 do

if Uj ∈ Bi then
num UE = num UE + 1 ;
X = X + Uj .x ;
Y = Y + Uj .y ;

end

end
Bi.x = X ÷ num UE ;
Bi.y = Y ÷ num UE ;

end
Affiliate UE to mBS in the following loops;
for j = 0; j < NU ; j = j + 1 do

mindist = Inf ;
for i = 0; i < NB ; i = i + 1 do

dist =
√

(Uj .x − Bi.x)2 + (Uj .y − Bi.y)2;
distw = dist ÷ Bi.Cw;
if distw < mindist then

mindist = distw ;
Uj .Bid = i ;

end

end

end
iter = iter + 1 ;

end

4.2 Periodic Recalculation for Dynamic UEs

The UE clustering is for the static situation, and we make this re-cluster periodi-
cally to adapt to UEs’ mobility. The frequency of this recalculation and distance
to trigger mBSs’ movement depend on the characteristics of mBS classes. For
example, the cost of drone’s movement should be much less than CoW or SoW,
thus the recalculation frequency (1/Rp) of drones should be much higher and
the distance threshold (Rt) for movement should be much smaller than CoW
and SoW. This process is illustrated in Fig. 4.
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Fig. 3. Static placement of 3 mBS classes: one SoW (truck), two CoW (car) and five
drones (Color figure online)

Fig. 4. Flow chart of periodical recalculation of mBS
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5 Simulation and Discussion

We implement the dynamic placement algorithm for mBSs in MATLAB. The
simulation related parameters for different kinds of mBS are listed in Table 2.
We compare our algorithm with the baseline method which is the regular and
stationary placement of the same set of mBS. Four mobility models are consid-
ered. Random walk V1 selects a new random destination and then UE moves
in the straight line. Random walk V2 is direction oriented, which means a new
direction within a range from current direction is selected and then UE moves
in that direction. The simulation results converge with little variance after 600
simulation time intervals (STI) in our configuration. So for each case, we run the
simulation of 1000 STI and the result is averaged over 10 repetitions. We choose
four deployments to present different combinations of heterogeneous mBS which
is summarized in Table 3. The number of UE in all the simulation is set to 100
and the number of points of interest is set to 5.

Table 2. Simulation parameters for mBS

mBS classes Drone CoW SoW

Capacity weight 1 1.5 2

Recalculation period (10 s) 1 30 90

Relocation threshold (meters) 1 30 50

Height (meters) 30 10 10

Transmit power (watts) 20 30 40

Table 3. Four deployments

Deployment 1 Deployment 2 Deployment 3 Deployment 4

Drone 5 10 0 0

CoW 2 0 5 0

SoW 1 0 0 3

5.1 Comparison with Baseline Algorithm

We compare the performance of the proposed dynamic heterogeneous mBS
placement algorithm with the baseline algorithm in Random Walk V2 model
in Sect. 3.2 and deployment 1 in Table 3. The three CDF in Fig. 5 show the
SINR, 5th percentile SINR and UE to mBS distance of the two compared algo-
rithms. Generally speaking, the proposed algorithm outperform the baseline one
in all the three factors, especially in the 5th percentile SINR.
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Fig. 5. Performance CDF comparison with baseline algorithm in random walk V2
model with deployment 1

5.2 UE SINR

In Fig. 6, the UE average SINR is compared for different deployments and UE
mobility models. In the dimension of UE mobility models, two random walks
and the following leader are very similar with slightly better SINR in following
leader model. But in the POI model, the first two deployments are much worse
than the other two deployments. With the deployments with only CoW or SoW
POI provides better performance than the other two models. Because CoW
and SoW with much better capacities can be deployed near the POI before UE
placements, POI mobility model achieves high performance with Deployment
3 and 4. The second deployment with only drones performs worst in all four
mobility models because drones have relatively weak transmission capacity and
their moving flexibility is not advantageous when the interesting point location
is already defined.

5.3 5th Percentile UE SINR

In order to consider UEs at the cell edge or the worst case in SINR, the 5th
percentage SINR of different scenarios is shown in Fig. 7. Similar conclusion can
be drawn for the much worse SINR in the first two deployments with drones
from the former simulation results. Two observations can be found here: the 5th



122 C. Shen et al.

Deployment 1 Deployment 2 Deployment 3 Deployment 4
0

5

10

15

U
E

 a
ve

ra
ge

 S
IN

R
 in

 d
B

Random Walk V1
Random Walk V2
Follow Leader
POI

Fig. 6. UE average SINR in various deployments and mobility models
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Fig. 7. Average 5th percentile SINR in various deployments and mobility models

percentile SINR in random walk V1 is much lower than in random walk V2, and
the first deployment has the lowest value. The first observation is hard to explain
since the two random walk models intuitively should perform similarly. But the
actual simulation configurations can be the reason. The second observation can
draw the conclusion that the only drone deployments can achieve higher SINR
for UE at the serving edge due to the high mobility and flexibility of drones.
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Fig. 8. Average distance between UE and mBS in various deployments and mobility
models

5.4 Total mBS-to-UE Distance

Because the normal cell configuration for permanent base station optimization
is usually not applicable for mBS, especially the drone-based BSs, the distance
between UE and mBS is an important factor. The average UE-to-mBS distance
is illustrated in Fig. 8. In the dimension of UE mobility models, the Following
Leader and POI models outperform the two random walk models mainly due to
the relatively more clustered UE distribution in these models. Otherwise on the
dimension of deployments, the one with only drones has the least UE-to-mBS
distance and the only CoW and only SoW deployments increase the distance
gradually. The UE-to-mBS distance is impacted heavily by the flexibility of
mBS.

5.5 Further Discussions

We compare four different deployments in the simulation. In the reality, each
kind of mBS should be associated with corresponding cost in operation, which is
not considered in our current work. In that case, the optimal deployment should
depend on the ‘budget’ or the mBS’ availability in each kind, and the disaster’s
property.

We use 1000 STI for our simulation, but in reality the disaster scenario and
the communication requirements from FRs can vary hugely. For example, in the
POI model, the point of interest can move due to the disaster’s changing or other
factors. But this is out of our consideration in the current work. The simulation
result should provide a sight of basic understanding on various deployments and
disaster situation.
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6 Conclusions and Future Work

In this paper, we have studied the problem of dynamic mBS placement to meet
the critical communication requirements of FRs in an ad hoc PSN. By consider-
ing the class of FRs and the applications, we provide an efficient dynamic mBS
placement algorithm. The simulation results have been presented with different
UE mobility models and mBS deployments. Thorough analysis has been done
with consideration of UE’s average SINR, the 5th percentage SINR of the deploy-
ment and the distance between UE and mBS. The simulation result provides in
depth understanding of various deployments in different scenarios of FRs.

Future work in this field can address a simplification we made in this work.
Specifically, the interference from neighboring mobile base stations can be taken
into consideration when designing the network topology and assignment.
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