

BotsideP2P: A Peer-to-Peer Botnet Testbed

Adam Beauchaine1, Orion Collins1,and Mira Yun1
1School of Computing and Data Science, Wentworth Institute of Technology, Boston, MA

2Department of Computing and Data Science

Email: {beauchainea, collinso, yunm}@wit.edu

Abstract— The number of botnet attacks has been rapidly

increasing in recent years. The threat of botnets constitutes a

major security consideration for institutions and organizations

concerned with the prevention of cybercrime. Among the most
severe of these concerns are those regarding peer-to-peer (P2P)

botnet attacks. These botnets present difficulties in local detection,

as well as direct challenges to traditional network security

practices due to their decentralized nature. We propose a testbed,

named BotsideP2P, specialized in the deployment of a P2P botnet
with built-in network and endpoint monitoring, so that

researchers and industry professionals may gain a better

understanding of these botnets in a lab environment. The botnet

we have deployed implements a distributed hash table (DHT) to

provide bot-to-bot encryption using the Kademlia DHT, and the
Asyncio network framework is used for process handling.

Emphasis is placed on documenting both the structure of the

botnet deployed as well as the logging procedures implemented,

and flow data and logs are included in results.

Keywords—Botnet, P2P Botnet, Testbed, Distributed Hash

Table, Kademlia, Stateful Firewall

I. INTRODUCTION

Among many disparate forms of cyber-attacks being
perpetrated by attackers today, the botnet has proved particularly

complex in its design, and detrimental in its application. A
botnet, which can be described as a distributed system of nodes

controlled by an attacker for malicious means, has grown to
become one of the most concerning cyber threats for many

organizations.[1] For some time now, the increasing number of

botnet cyber-attacks has been cause for concern amongst
researchers. Botnet attacks such as Zeus and Mirai have infected

up to nearly half a million hosts at the peak of their use [2] and
similar attacks continue to be cause for concern. With an ever-

growing number of small computing devices such as Internet of
Thing (IoT), a subset of devices expected to reach as much as 30

billion by 2030 [3], botnet attacks have more potential hosts, and

thus more potential impact than ever. There is now a recognized
need to develop intelligent and effective methodologies for

botnet detection and prevention in modern distributed
computing systems and networks. With the aforementioned

increase in botnet effectiveness, the potential consequences of
botnet attacks continue to rise in severity. Due to this, common

botnet attack methods such as distributed-denial-of-service
(DDoS) could become increasingly dangerous to organizations.

This could lead to attacks similar in scope to the 2016 attack on

DYN (now Oracle) distributed name servers (DNS) via Mirai,
that succeeded in bringing down the entire service primarily

through the use of IoT, poorly secured, networked devices [2].

Given the massive cybersecurity threat botnet attacks pose,

BotsideP2P, a specialized botnet testbed, aims to address one of
the most severe threats in peer-to-peer (P2P) botnet attacks. P2P

Botnets are characterized by their decentralized nature and
comparative difficulty in detection opposed to a traditional

Command and Control (C&C) botnet model. BotsideP2P
utilizes a distributed hash table (DHT) enabled P2P botnet,

deployed on a secure, contained testbed for monitoring and
logging network and endpoint activity. To the best of our

knowledge, no similar project exists for P2P botnets. It is our

hope that this work can lead to a powerful educational resource
for students, in addition to some level of insight into the nature

of P2P botnet attacks.

The structure of this paper is as follows: Section II

introduces technical background and current methodologies of
botnet detection, as well as several similar research projects.

Section III provides an introduction and overview of

BotsideP2P and how our particular botnet is used for testing in
our environment. Section IV discusses networking and logging

configurations of our testbed. Sections V and VI are our
perceived results of this research, and conclusions we have

drawn, respectively.

II. P2P BOTNET BACKGROUND AND DESIGN

To best understand the severity of the threat posed by P2P
botnet attacks, one should first understand the traditional botnet

attack model of command and control (C&C). C&C botnet
attacks can be modeled using a single command and control

server infecting and commanding many compromised nodes for

nefarious acts such as DDoS. and keylogging attacks [2]. This
model accounts for the majority of botnet attacks today [1], and

while practical to execute, the model can have some intrinsic
problems for attackers that might inspire the use of a P2P botnet

attack. The most immediate of these problems is the capacity for
loss of node connection to a C&C server, in the event of a

firewall or intrusion prevention system (IPS) preventing such

outgoing connections. This would leave a C&C botnet non-
functioning due to being unable to receive commands from a

centralized server [1]. While nodes would still be infected, they
would remain largely harmless until dealt with later. In addition,

C&C server demands have the capacity to be computationally
expensive on C&C network communications, leading to

potential problems in botnet attack scaling [4].

Solutions to the issues of C&C blocking and computational

efficiency can exist in the P2P botnet model. In the P2P model,

the function of C&C server is instead designated to any
individual node, with processes for role election and delegation

0236

20
21

 IE
EE

 1
2t

h
A

nn
ua

l U
bi

qu
ito

us
 C

om
pu

tin
g,

 E
le

ct
ro

ni
cs

 &
 M

ob
ile

 C
om

m
un

ic
at

io
n

C
on

fe
re

nc
e

(U
EM

C
O

N
) |

 9
78

-1
-6

65
4-

06
90

-1
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
U

EM
C

O
N

53
75

7.
20

21
.9

66
66

41

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on March 22,2022 at 17:01:28 UTC from IEEE Xplore. Restrictions apply.

taking place during botnet initialization. This decentralized
framework allows for botnet attacks to scale much faster and

offers increased protection against potential system security
mechanisms [2]. When any node can fill the role of C&C server,

the old mechanisms of isolating and blocking traffic to the C&C
server no longer apply. Because work can potentially be

distributed amongst an entire infected node cluster, scaling may

take place in a much more efficient manner than a traditional

botnet model.

Regardless of variant, the capacity of both C&C and P2P
botnet models to cause damage is widely known [2]. For

example, the Mirai botnet was first introduced in 2016. The
botnet had infected 213,000 devices, shortly after its code was

released open source the number of devices grew to 493,000 [1].
The targets of the Mirai attack were often cyber physical systems

(CPS) and IoT devices, typically possessing limited security

resources. This aptly demonstrates the severity of botnet
infection and attack procedures, given the attacks managed such

success against major internet services. Another botnet, Zeus
P2P Crimeware Toolkit [5], was a closed source program which

infected vulnerable HTTP/HTTPS devices and monitored their
systems for financial data which would then be captured and

sent to its C&C server. It was relatively cheap to purchase and

had an interactive PHP webpage with a MySQL database which
pooled information stolen from zombie machines.[5] Given the

effectiveness and ease of acquisition of these botnet attacks by
malicious actors, security tools to aid in their detection and

prevention is of the highest priority.

The primary detection mechanism for botnets such as Mirai

and Zeus is network ana lysis. The scale of bots tends to generate

a lot of traffic with constant updates and queries to neighboring
nodes. Thus, some botnets do not even try to hide their presence.

Mirai for example, would have each device continuing to
exchange messages. Due to the sheer number of infected devices

the fingerprint was easily traceable. These would lead to system
administrators creating intrusion detection systems (IDS) or

anti-virus routines to stop the spawn of new bots on the network.
Zeus on the other hand used encrypted HTTP (Hypertext

Transfer Protocol) requests between bots to exchange

information. This made it avoid typical IDS or firewall rules

which allowed web traffic in and out.

Given the importance of network traffic in botnet detection,
the goal of our testbed, BotsideP2P, is to not only provide a

secure environment for the deployment of P2P botnet attacks,
but also to provide several sources of logging both endpoint and

network flow data. Several similar projects have preceded ours

and successfully expanded upon the technical knowledge of
botnet attacks through methods similar to those we aim to

employ. In [6], Hyslip et al. builds on existing network analysis
methodologies to create a botnet detection system built on the

NetFlow protocol. Whereas Ahmed et al. [7] build a similar
contained botnet testbed for a variant of Mirai. However, to the

best of our knowledge, no project so far has aimed to deploy a

P2P botnet in a controlled testbed and offer network analysis on
botnet initialization and operation. BotsideP2P provides both

educational and technical value in developing specified security

solutions to P2P botnet attacks.

III. BOTSIDEP2P

BotsideP2P deploys a refactored version botnet of the 2018

PythonP2P project [8]. This is a python-based botnet built on top
of the Kademlia DHT, and initially used Twisted for

asynchronous network event handling. We later upgraded the
asynchronous engine to Asyncio. A DHT can be visualized as a

hash table with key value pairs dispersed across multiple

network nodes being used for the communication of encrypted
data. DHTs first emerged in the early 2000s with the likes of

Chord [9] and Tapestry [10] being among the first to pioneer the
lookup algorithms employed by DHTs of today. Within the

DHT, nodes are specified by a combination of key and value
pairs which are uploaded to the distributed ledger. The ledger

tracks nodes on the network and will be passed to new nodes

that may join, which allows them to view and connect with their
peers. Due to their lookup speed and fault tolerance, DHT sees

widespread use in a variety of P2P networks and applications.
For example, the file-sharing protocol like BitTorrent, and

botnets such as Gnuman (Gnutella), both use DHTs to store

routing information [11].

The bot network itself is written with the Kademlia DHT

python implementation. In this model the secret key is a hashed
network ID which a node is given in initialization that allows it

to securely join the bot network. Once given this secret key, the
node will contact the bootstrap server, which is hard coded into

the program. At which point it will be given a unique node
identification (NodeID) key which appends to the existing DHT.

The bot will then populate its DHT entry with its command key,
which is a hash derived from the NodeID. Kademlia offers

several benefits over other P2P routing protocols. Firstly,

routing table entries populate because of key lookups which
decrease node discovery time. Secondly its asynchronous nature

allows it to avoid timeout delays that occur when a node tries to
contact a node that has dropped out of the network. Once a node

misses check-in its entry is removed from the DHT, preventing
duplicate entries for bots that lose connectivity. The XOR metric

of its lookup algorithm allows for nodes to find low-latency

paths in logarithmic time when trying to reach a destination [12].
Additionally, since NodeIDs are derived from hashes a notion

of closeness can be determined since the first nodes a bot

contacts will have similar hash values [11].

The nature of BotsideP2P setup means that nodes must be
quick to initialize and highly available, as such, the use of an

asynchronous network programming framework is necessary for

node communication. Asynchronous is a method of structuring
programs so that code can be scheduled as a task to either be

performed immediately or later. This can be further extended by
having tasks create separate threads that will accomplish an

operation and report when they have completed. A problem
encountered early on was that Kademlia DHT is no longer

compatible with Twisted framework, the original network

programming framework used in BotsideP2P. As such, we
opted to refactor the project to allow for Asyncio network

framework integration, the newer framework utilized by

Kademlia.

Several components of BotsideP2P are required for
functionality, nodes can be grouped as the bootstrapper node,

commander node, and worker nodes in botnet structure.

0237

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on March 22,2022 at 17:01:28 UTC from IEEE Xplore. Restrictions apply.

• Bootstrapper - Initialization node within the network
whose sole purpose is to register new nodes and append

them to the DHT.

• Commander - Commander nodes will send out

commands and monitor workers. Maintains its own list
of known workers to pass to the next commander when

they are elected.

• Worker - Worker nodes will start a listening server and

bootstrap the node onto the network if it has not already

joined. It will then go into idle state until it receives a

route, or payload request.

The bot programs all function within an event loop in which
the bot will listen on the specified network port for

communication from other nodes on the Kademlia network .
This is defined as the idle state. Typically, code executes in a

sequential manner on a single thread and will have trouble
dealing with multiple Input/Output requests. By leveraging an

asynchronous model, the bot program will continue running

while it waits for new data from the network. For example, when
the bot joins the network, it could be assigned task A and task B

from a commander node. Async behavior allows it to start task
A and schedule task B. At any point if task A needs to wait, task

B will run until task A can be resumed. In this time, it could
receive and schedule additional task C. Once all the tasks have

been completed the bot will submit the data to the network and

go into the idle state. This process can be visualized in Fig. 1,
which shows the bot joining the network, populating its DHT

entries, and receiving a command. Fig. 2 shows a view from the
commander node, when passing a command onto some number

of workers.

Fig. 1. Worker Node joining and checking for active commands

Fig. 2. Commander Node pushes command to worker

Payloads are included in the program directory or can be

downloaded remotely by a bot once the “fetch payload”

command ID is passed via the DHT. When a bot receives a
command, it will create a child thread to execute the payload and

schedule a task to check in with the commander node once the
process has stopped. From a network standpoint, botnet

initialization traffic is further detailed in Section V. Botnet
initialization is performed via UDP on port 8468, however any

port can be selected. The transfer of the hashed network key

generates several packets which were logged and displayed by

the packet capture in Fig.3.

Fig. 3. Example of botnet generated traffic via a bot network interface

Several problems were encountered during the botnet
refactoring process, not strictly limited to the botnet itself. The

network architecture presented several issues that will be further
discussed in Section IV. Core problems consisted of layer 3

configurations on the Cisco adaptive security appliance (ASA).
There were also problems ensuring botnet capability to initialize

over topological configuration other than the same local area

network segment. This could have been resolved, given more
time, by creating a UDP hole-punch function. A UDP hole-

punch allows machines to communicate through NAT, and
firewalls, by opening a listening server and sending a UDP

packet through it to a remote host. It creates a temporary firewall
rule which allows the machines to exchange information until

the rule expires. In addition, a certain aspect of BotsideP2P was

the use of a variety of different hardware. This introduced
certain challenges as not all components were compatible with

the software required. However, this successfully mimicked
more closely a standard enterprise environment where hardware

compatibility is not guaranteed.

Finally, the code refactoring process allowed the code to be

python 3.5+ compatible and use less dependencies, relying

solely on Kademlia, and the built-in libraries. This change
should ensure long-term stability as well as ease of use in the

0238

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on March 22,2022 at 17:01:28 UTC from IEEE Xplore. Restrictions apply.

future, as Asyncio proved to be substantially easier to work with

than Twisted framework for our purposes.

IV. BOTSIDEP2P HARDWARE AND CONFIGURATIONS

Our BotsideP2P testbed components consist of a single

Cisco ASA firewall, connected to up to 5 off -the-shelf
Raspberry Pi devices as detailed in Table 1 and Table 2,

respectively. Our goal was to construct this testbed using
primarily off-the-shelf devices for easy reconstruction in an

educational environment. We decided early on that a component
such as a firewall would be necessary not only for the obvious

routing component of our testbed, but for flow data logging and

network analysis of our testbed in use. The ASA platform was
chosen primarily due to team familiarity and ease of use, in

addition to features such as application layer inspection and
session logging, both of which are used in botnet initialization

and attack monitoring. The gateway router is a standard Linksys
WRT54GL wireless router running DD-WRT [13] custom

firmware. This router is also capable of session logging, a useful

feature specifically for capturing the bootstrapping process.

TABLE I. LAYER 3 DEVICE SPECS

Device Name Throughput Concurrent

Sessions

Interfaces Virtual

Interfaces

Cisco ASA
5510

Up to 150
MBPS

10,000 8 ports
fast
ethernet
switch

3 (No trunking
support)
20 (trunking
support)

Linksys

WRT54GL

54MBPS 128 4x100

MBPs

N.A.

TABLE II. ENDPOINT DEVICE SPECS

Device
Name

SoCt GPU Networking Storage

Raspberry

Pi 3 x 3

Broadcom

BCM2837

4x ARM

Cortex-A53
1.2GHz

1GB

LPDDR2
900MHz

Micro SD

Raspberry
Pi 2 x 2

Broadcom
BCM2837

900MHz
quadcore

ARM
Cortex CPU

1 GB
SDRAM

Micro SD

Our initial testbed design consists of 3 separate network

segments connected via the Cisco ASA 3310 firewall, with each
representing a separate part of our botnet system. As shown in

Fig. 4, the host segment (Network ID 192.168.1.0), consisting
of infected nodes used to launch an attack, the internet segment,

simulating a remote connection to a victim server (Network ID

192.168.2.0), and the victim segment, where the victim server is
running (Network ID 192.168.3.0). A single firewall interface is

reserved for this test victim web server that may be targeted for
DDoS attacks. The bot network is connected to the ASA via a

wireless router, simulating a typical home network design. Our

endpoint logging server also exists on this segment, running off

another raspberry pi.

All Raspberry Pi devices were reformatted with Raspberry
Pi OS (32 bit) and configured with XRDP [14] and SSH to allow

for remote management via Windows machines natively.
Firewall rules were updated to allow for remote connections to

be made over port 3389 in addition to 8468 (botnet port used for

node initialization). These firewall rules were consistent across
all endpoints as well as layer 3 devices to allow for remote

access and botnet initialization, respectively. These were the

only network security rules configured on the testbed.

The Cisco ASA was configured to not only serve as a
logging device for network flow data, but also as a layer 3 router

for the endpoint and victim segments. This configuration, albeit
atypical, allowed BotsideP2P to leverage the ASA’s logging

capabilities to their fullest, as free flowing traffic across the

firewall makes botnet initialization as well as logging a more

simplified process.

Fig. 4. First Testbed Topological Design

This configuration was accomplished by altering port

security values to allow for traffic flow from victim segment to
endpoint and adding ACL configuration to permit traffic down

the alternate route. The routing rules themselves were

configured as static, and the configuration allows for free traffic
flow across the firewall. Two rules are configured specifically

for logging as shown in Fig. 5 for port 8468, as well as Internet

Control Message Protocol (ICMP) in the event of a DDoS.

This logging configuration was considered after a change in
topological design after the first design was completed and

tested. Fig 6 details a second configuration incorporating a
botnet node where the old victim server was located. This

second topological design was developed to enable botnet

initialization logging in addition to node attack logging. By

0239

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on March 22,2022 at 17:01:28 UTC from IEEE Xplore. Restrictions apply.

leveraging the stateful logging capabilities of the ASA to scan
for botnet node initialization, early DHT session initializations

may be detected. Due to localized botnet initialization
requirements, this setup allowed us to produce additional flow

data that will be detailed in the following section.

Fig. 5. ASA Firewall Rules Configuration

Fig. 6. Second Testbed Topological Design

V. RESULTS

The use of testbed session logging was very much successful

in botnet analysis, in part due to the Kademlia node initialization

sequence. An example packet containing DHT key sharing info
can be seen in Fig.7, packet capturing was performed on both

endpoint devices and the gateway router. In addition, the flow
data we have gathered indicates that stateful traffic inspection is

a remarkably successful way of stopping DHT-enabled P2P
botnet attacks. These botnet initialization sessions could be

viewed successfully on both gateway router and firewall, as

shown in both Fig. 8 and Fig. 9, respectively. While the router
is only capable of session viewing, the firewall allows for

detailed connection information during node initialization.

Incorporating reports such as session monitoring and packet
captures into existing logging systems could prove instrumental

in identifying botnet activity. These network flow data reports
provided on both the ASA and gateway router could potentially

be used to identify botnets when communicating hashed values
across a network during node initialization. In total, both router

and firewall logging systems have the capability to be an

effective early identification system for DHT-enabled P2P

botnets.

Fig. 7. Packet Containing Network Key Data

The data shown in Fig. 8 and Fig. 9 is capturable due to layer 3

node initializations, which could effectively be replicated on an

IDS system on a local network. However, the capacity of

BotsideP2P to initialize and launch attacks over multiple

network segments also presents new opportunities for log

aggregation using syslog output of devices such as the ASA. On

a final note, regarding the application of the device, the use of

application layer inspection is not presently included in our

current configuration. However, this feature could be useful in

monitoring and logging botnets with dynamic port assignment

features in the future.

Fig. 8. Endpoint router logging configuration session over layer

Fig. 9. Firewall session logging on ASA

In terms of scalability, BotsideP2P had no issues within our
small testbed, however, given the node initialization process, as

0240

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on March 22,2022 at 17:01:28 UTC from IEEE Xplore. Restrictions apply.

well as regular update messages sent across the DHT. Scalability
could be difficult, however across a mesh style of network in

which routing vectors could become costly and time consuming.

When launching attacks, the botnet performed as expected,

and DDoS attacks were performed successfully on the victim
server as shown via a packet capture screencap in Fig. 10 with a

single node attacking. The possibility exists to add additional

attack types in the future such as keylogging, click fraud, and
cryptocurrency mining. We would like to explore all of these in

subsequent uses of the testbed. A running version of the tested

featuring two nodes and the ASA may be viewed in Fig. 11.

We identified several vulnerable factors of P2P botnets as
deployed in our testbed design, the most prominent one being

the bootstrap server. Because the bootstrap servers are often hard
coded, a potential point of failure is created for some P2P

botnets, in the same vein as a traditional C&C botnet. If a

bootstrap server were compromised, connectivity could be
disrupted, or, more catastrophically, fa ke nodes could be added

to the network and begin to sniff connections from peers. This
could be circumnavigated by adding functionality to handle the

loss of a bootstrap server, likely by reinstating a new device to

fulfill the role.

Fig. 10. Example of HTTP Traffic During a DDoS

VI. CONCLUSION

The focus on peer-to-peer botnets and the exigency of
continued research in the field is not misplaced. Their

decentralized nature and difficulty to detect and prevent prove
the severity of this emerging threat. Compounded with the

proliferation of internet connected devices in the form of IoT,
the severity of botnet attacks should not be understated. This is

compounded by a growing number of novel botnet attacks. In
this paper, we deployed a P2P botnet, BotsideP2P, in a

controlled testbed. By providing network analysis on botnet

initialization and operation, BotsideP2P represents an applicable
form of P2P botnet detection and prevention. BotsideP2P

configuration details provide both educational and technical
value in developing specified security solutions to P2P botnet

attacks.

Fig. 11. Botnet Running with Multiple Nodes

There are several improvements that could be made to the
testbed in its current form, with both log aggregation and

alternative inspection functions being the most immediately

obvious. In addition, botnet functionality should be expanded
upon to include attacks such as keylogging, click fraud, and

cryptocurrency mining. Application layer inspection should be
leveraged in the future to test dynamic port assignment features

on infected nodes. Finally, logging an increased number of
nodes presents an exciting test of endpoint and network logging

scalability with our current configuration.

REFERENCES

[1] W. Zhang, Y. -J. Wang and X. -L. Wang, "A Survey of Defense against

P2P Botnets," 2014 IEEE 12th International Conference on Dependable,
Autonomic and Secure Computing, 2014, pp. 97-102, doi:
10.1109/DASC.2014.26.

[2] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT:
Mirai and Other Botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[3] Abdur Razzaq, Mirza & Habib, Sajid & Ali, Muhammad & Ullah,
Saleem. (2017). Security Issues in the Internet of Things (IoT): A
Comprehensive Study. International Journal of Advanced Computer
Science and Applications. 8. 10.14569/IJACSA.2017.080650.

[4] P. Wang, B. Aslam, and C. C. Zou, “Peer-to-peer botnets,” Handbook of
Information and Communication Security, pp. 335–350, 2010

[5] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. Youssef, M.
Debbabi, and L. Wang, “On the analysis of the Zeus botnet crimeware
toolkit,” 2010 Eighth International Conference on Privacy, Security and
Trust, 2010.

[6] T. Hyslip and J. Pittman, “A Survey of Botnet Detection Techniques by
Command and Control Infrastructure,” Journal of Digital Forensics,
Security and Law, 2015.

[7] Z. Ahmed, S. M. Danish, H. K. Qureshi, and M. Lestas, “Protecting IoTs
from Mirai Botnet Attacks Using Blockchains,” 2019 IEEE 24th

0241

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on March 22,2022 at 17:01:28 UTC from IEEE Xplore. Restrictions apply.

International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD), 2019.

[8] https://github.com/jhoward321/PythonP2PBotnet

[9] Stoica, I., et al. “Chord: A Scalab le Peer-to-Peer Lookup Protocol for
Internet Applications.” IEEE/ACM Transactions on Networking, vol. 11,
no. 1, 2003, pp. 17–32., https://doi.org/10.1109/tnet.2002.808407.

[10] Zhao, B.Y., et al. “Tapestry: A Resilient Global-Scale Overlay for Service
Deployment.” IEEE Journal on Selected Areas in Communications, vol.
22, no. 1, 2004, pp. 41–53., https://doi.org/10.1109/jsac.2003.818784.

[11] I. Sharafaldin, A. Gharib, A. H. Lashkari, and A. A. Ghorbani, “BotViz:
A memory forensic-based botnet detection and visualization approach,”
2017 International Carnahan Conference on Security Technology
(ICCST), 2017

[12] P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-Peer
information system based on the XOR METRIC,” Peer-to-Peer Systems,
pp. 53–65, 2002.

[13] ddwrt.com

[14] xrdp.org

[15] Shetu, Syeda & Saifuzzaman, Mohd & Nessa, Nazmun & Salehin,

Md.musfaq-Us. (2019). A Survey of Botnet in Cyber Security. 174-177.

10.1109/ICCT46177.2019.8969048.

[16] M. Thangapandiyan and P. M. R. Anand, "An efficient botnet detection
system for P2P botnet," 2016 International Conference on Wireless
Communications, Signal Processing and Networking (WiSPNET), 2016,
pp. 1217-1221, doi: 10.1109/WiSPNET.2016.7566330.

0242

Authorized licensed use limited to: Wentworth Institute of Technology. Downloaded on March 22,2022 at 17:01:28 UTC from IEEE Xplore. Restrictions apply.

