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Abstract— The number of botnet attacks has been rapidly 

increasing in recent years. The threat of botnets constitutes a 

major security consideration for institutions and organizations  

concerned with the prevention of cybercrime. Among the most 
severe of these concerns are those regarding peer-to-peer (P2P) 

botnet attacks. These botnets present difficulties in local detection, 

as well as direct challenges to traditional network security 

practices due to their decentralized nature. We propose a testbed, 

named BotsideP2P, specialized in the deployment of a P2P botnet 
with built-in network and endpoint monitoring, so that 

researchers and industry professionals may gain a better 

understanding of these botnets in a lab environment. The botnet 

we have deployed implements a distributed hash table (DHT) to 

provide bot-to-bot encryption using the Kademlia DHT, and the 
Asyncio network framework is used for process handling. 

Emphasis is placed on documenting both the structure of the 

botnet deployed as well as the logging procedures implemented, 

and flow data and logs are included in results.  

Keywords—Botnet, P2P Botnet, Testbed, Distributed Hash 

Table, Kademlia, Stateful Firewall 

I. INTRODUCTION 

Among many disparate forms of cyber-attacks being 
perpetrated by attackers today, the botnet has proved particularly 

complex in its design, and detrimental in its application. A 
botnet, which can be described as a distributed system of nodes 

controlled by an attacker for malicious means, has grown to 
become one of the most concerning cyber threats for many 

organizations.[1] For some time now, the increasing number of 

botnet cyber-attacks has been cause for concern amongst 
researchers. Botnet attacks such as Zeus and Mirai have infected 

up to nearly half a million hosts at the peak of their use [2] and 
similar attacks continue to be cause for concern. With an ever-

growing number of small computing devices such as Internet of 
Thing (IoT), a  subset of devices expected to reach as much as 30 

billion by 2030 [3], botnet attacks have more potential hosts, and 

thus more potential impact than ever. There is now a recognized 
need to develop intelligent and effective methodologies for 

botnet detection and prevention in modern distributed 
computing systems and networks. With the aforementioned 

increase in botnet effectiveness, the potential consequences of 
botnet attacks continue to rise in severity. Due to this, common 

botnet attack methods such as distributed-denial-of-service 
(DDoS) could become increasingly dangerous to organizations. 

This could lead to attacks similar in scope to the 2016 attack on 

DYN (now Oracle) distributed name servers (DNS) via Mirai, 
that succeeded in bringing down the entire service primarily 

through the use of IoT, poorly secured, networked devices [2].  

Given the massive cybersecurity threat botnet attacks pose, 

BotsideP2P, a  specialized botnet testbed, aims to address one of 
the most severe threats in peer-to-peer (P2P) botnet attacks. P2P 

Botnets are characterized by their decentralized nature and 
comparative difficulty in detection opposed to a traditional 

Command and Control (C&C) botnet model. BotsideP2P 
utilizes a distributed hash table (DHT) enabled P2P botnet, 

deployed on a secure, contained testbed for monitoring and 
logging network and endpoint activity. To the best of our 

knowledge, no similar project exists for P2P botnets. It is our 

hope that this work can lead to a  powerful educational resource 
for students, in addition to some level of insight into the nature 

of P2P botnet attacks.  

The structure of this paper is as follows: Section II 

introduces technical background and current methodologies of 
botnet detection, as well as several similar research projects. 

Section III provides an introduction and overview of 

BotsideP2P and how our particular botnet is used for testing in 
our environment. Section IV discusses networking and logging 

configurations of our testbed. Sections V and VI are our 
perceived results of this research, and conclusions we have 

drawn, respectively. 

II. P2P BOTNET BACKGROUND AND DESIGN 

To best understand the severity of the threat posed by P2P 
botnet attacks, one should first understand the traditional botnet 

attack model of command and control (C&C). C&C botnet 
attacks can be modeled using a single command and control 

server infecting and commanding many compromised nodes for 

nefarious acts such as DDoS. and keylogging attacks [2]. This 
model accounts for the majority of botnet attacks today [1], and 

while practical to execute, the model can have some intrinsic 
problems for attackers that might inspire the use of a P2P botnet 

attack. The most immediate of these problems is the capacity for 
loss of node connection to a C&C server, in the event of a 

firewall or intrusion prevention system (IPS) preventing such 

outgoing connections. This would leave a C&C botnet non-
functioning due to being unable to receive commands from a 

centralized server [1]. While nodes would still be infected, they 
would remain largely harmless until dealt with later. In addition, 

C&C server demands have the capacity to be computationally 
expensive on C&C network communications, leading to 

potential problems in botnet attack scaling [4]. 

Solutions to the issues of C&C blocking and computational 

efficiency can exist in the P2P botnet model. In the P2P model, 

the function of C&C server is instead designated to any 
individual node, with processes for role election and delegation 
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taking place during botnet initialization. This decentralized 
framework allows for botnet attacks to scale much faster and 

offers increased protection against potential system security 
mechanisms [2]. When any node can fill the role of C&C server, 

the old mechanisms of isolating and blocking traffic to the C&C 
server no longer apply. Because work can potentially be 

distributed amongst an entire infected node cluster, scaling may 

take place in a much more efficient manner than a traditional 

botnet model. 

Regardless of variant, the capacity of both C&C and P2P 
botnet models to cause damage is widely known [2]. For 

example, the Mirai botnet was first introduced in 2016. The 
botnet had infected 213,000 devices, shortly after its code was 

released open source the number of devices grew to 493,000 [1]. 
The targets of the Mirai attack were often cyber physical systems 

(CPS) and IoT devices, typically possessing limited security 

resources. This aptly demonstrates the severity of botnet 
infection and attack procedures, given the attacks managed such 

success against major internet services. Another botnet, Zeus 
P2P Crimeware Toolkit [5], was a closed source program which 

infected vulnerable HTTP/HTTPS devices and monitored their 
systems for financial data which would then be captured and 

sent to its C&C server. It was relatively cheap to purchase and 

had an interactive PHP webpage with a MySQL database which 
pooled information stolen from zombie machines.[5] Given the 

effectiveness and ease of acquisition of these botnet attacks by 
malicious actors, security tools to aid in their detection and 

prevention is of the highest priority. 

The primary detection mechanism for botnets such as Mirai 

and Zeus is network ana lysis. The scale of bots tends to generate 

a lot of traffic with constant updates and queries to neighboring 
nodes. Thus, some botnets do not even try to hide their presence. 

Mirai for example, would have each device continuing to 
exchange messages. Due to the sheer number of infected devices 

the fingerprint was easily traceable. These would lead to system 
administrators creating intrusion detection systems (IDS) or 

anti-virus routines to stop the spawn of new bots on the network. 
Zeus on the other hand used encrypted HTTP (Hypertext 

Transfer Protocol) requests between bots to exchange 

information. This made it avoid typical IDS or firewall rules 

which allowed web traffic in and out. 

Given the importance of network traffic in botnet detection, 
the goal of our testbed, BotsideP2P, is to not only provide a 

secure environment for the deployment of P2P botnet attacks, 
but also to provide several sources of logging both endpoint and 

network flow data. Several similar projects have preceded ours 

and successfully expanded upon the technical knowledge of 
botnet attacks through methods similar to those we aim to 

employ. In [6], Hyslip et al. builds on existing network analysis 
methodologies to create a botnet detection system built on the 

NetFlow protocol. Whereas Ahmed et al. [7] build a similar 
contained botnet testbed for a variant of Mirai. However, to the 

best of our knowledge, no project so far has aimed to deploy a 

P2P botnet in a controlled testbed and offer network analysis on 
botnet initialization and operation. BotsideP2P provides both 

educational and technical value in developing specified security 

solutions to P2P botnet attacks. 

 

III. BOTSIDEP2P 

BotsideP2P deploys a refactored version botnet of the 2018 

PythonP2P project [8]. This is a python-based botnet built on top 
of the Kademlia DHT, and initially used Twisted for 

asynchronous network event handling. We later upgraded the 
asynchronous engine to Asyncio. A DHT can be visualized as a 

hash table with key value pairs dispersed across multiple 

network nodes being used for the communication of encrypted 
data. DHTs first emerged in the early 2000s with the likes of 

Chord [9] and Tapestry [10] being among the first to pioneer the 
lookup algorithms employed by DHTs of today. Within the 

DHT, nodes are specified by a combination of key and value 
pairs which are uploaded to the distributed ledger. The ledger 

tracks nodes on the network and will be passed to new nodes 

that may join, which allows them to view and connect with their 
peers. Due to their lookup speed and fault tolerance, DHT sees 

widespread use in a variety of P2P networks and applications. 
For example, the file-sharing protocol like BitTorrent, and 

botnets such as Gnuman (Gnutella), both use DHTs to store 

routing information [11].  

The bot network itself is written with the Kademlia DHT 

python implementation. In this model the secret key is a hashed 
network ID which a node is given in initialization that allows it  

to securely join the bot network. Once given this secret key, the 
node will contact the bootstrap server, which is hard coded into 

the program. At which point it will be given a unique node 
identification (NodeID) key which appends to the existing DHT. 

The bot will then populate its DHT entry with its command key, 
which is a hash derived from the NodeID. Kademlia offers 

several benefits over other P2P routing protocols. Firstly, 

routing table entries populate because of key lookups which 
decrease node discovery time. Secondly its asynchronous nature 

allows it to avoid timeout delays that occur when a node tries to 
contact a node that has dropped out of the network. Once a node 

misses check-in its entry is removed from the DHT, preventing 
duplicate entries for bots that lose connectivity. The XOR metric 

of its lookup algorithm allows for nodes to find low-latency 

paths in logarithmic time when trying to reach a destination [12]. 
Additionally, since NodeIDs are derived from hashes a notion 

of closeness can be determined since the first nodes a bot 

contacts will have similar hash values [11]. 

The nature of BotsideP2P setup means that nodes must be 
quick to initialize and highly available, as such, the use of an 

asynchronous network programming framework is necessary for 

node communication. Asynchronous is a method of structuring 
programs so that code can be scheduled as a task to either be 

performed immediately or later. This can be further extended by 
having tasks create separate threads that will accomplish an 

operation and report when they have completed. A problem 
encountered early on was that Kademlia DHT is no longer 

compatible with Twisted framework, the original network 

programming framework used in BotsideP2P. As such, we 
opted to refactor the project to allow for Asyncio network 

framework integration, the newer framework utilized by 

Kademlia. 

Several components of BotsideP2P are required for 
functionality, nodes can be grouped as the bootstrapper node, 

commander node, and worker nodes in botnet structure. 
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• Bootstrapper - Initialization node within the network 
whose sole purpose is to register new nodes and append 

them to the DHT.  

• Commander - Commander nodes will send out 

commands and monitor workers. Maintains its own list 
of known workers to pass to the next commander when 

they are elected.  

• Worker - Worker nodes will start a  listening server and 

bootstrap the node onto the network if it has not already 

joined. It will then go into idle state until it receives a 

route, or payload request.  

The bot programs all function within an event loop in which 
the bot will listen on the specified network port for 

communication from other nodes on the Kademlia network . 
This is defined as the idle state. Typically, code executes in a 

sequential manner on a single thread and will have trouble 
dealing with multiple Input/Output requests. By leveraging an 

asynchronous model, the bot program will continue running 

while it waits for new data from the network. For example, when 
the bot joins the network, it could be assigned task A and task B 

from a commander node. Async behavior allows it to start task 
A and schedule task B. At any point if task A needs to wait, task 

B will run until task A can be resumed. In this time, it could 
receive and schedule additional task C. Once all the tasks have 

been completed the bot will submit the data to the network and 

go into the idle state. This process can be visualized in Fig. 1, 
which shows the bot joining the network, populating its DHT 

entries, and receiving a command. Fig. 2 shows a view from the 
commander node, when passing a command onto some number 

of workers.  

 

Fig. 1. Worker Node joining and checking for active commands 

 

Fig. 2. Commander Node pushes command to worker 

Payloads are included in the program directory or can be 

downloaded remotely by a bot once the “fetch payload” 

command ID is passed via the DHT. When a bot receives a 
command, it will create a child thread to execute the payload and 

schedule a task to check in with the commander node once the 
process has stopped. From a network standpoint, botnet 

initialization traffic is further detailed in Section V. Botnet 
initialization is performed via UDP on port 8468, however any 

port can be selected. The transfer of  the hashed network key 

generates several packets which were logged and displayed by 

the packet capture in Fig.3. 

 

Fig. 3. Example of botnet generated traffic via a bot network interface 

Several problems were encountered during the botnet 
refactoring process, not strictly limited to the botnet itself. The 

network architecture presented several issues that will be further 
discussed in Section IV. Core problems consisted of layer 3 

configurations on the Cisco adaptive security appliance (ASA). 
There were also problems ensuring botnet capability to initialize 

over topological configuration other than the same local area 

network segment. This could have been resolved, given more 
time, by creating a UDP hole-punch function. A UDP hole-

punch allows machines to communicate through NAT, and 
firewalls, by opening a listening server and sending a UDP 

packet through it to a remote host. It creates a temporary firewall 
rule which allows the machines to exchange information until 

the rule expires. In addition, a certain aspect of BotsideP2P was 

the use of a variety of different hardware. This introduced 
certain challenges as not all components were compatible with 

the software required. However, this successfully mimicked 
more closely a standard enterprise environment where hardware 

compatibility is not guaranteed.  

Finally, the code refactoring process allowed the code to be 

python 3.5+ compatible and use less dependencies, relying 

solely on Kademlia, and the built-in libraries. This change 
should ensure long-term stability as well as ease of use in the 
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future, as Asyncio proved to be substantially easier to work with 

than Twisted framework for our purposes. 

IV. BOTSIDEP2P HARDWARE AND CONFIGURATIONS 

Our BotsideP2P testbed components consist of a single 

Cisco ASA firewall, connected to up to 5 off -the-shelf 
Raspberry Pi devices as detailed in Table 1 and Table 2, 

respectively. Our goal was to construct this testbed using 
primarily off-the-shelf devices for easy reconstruction in an 

educational environment. We decided early on that a component 
such as a firewall would be necessary not only for the obvious 

routing component of our testbed, but for flow data logging and 

network analysis of our testbed in use. The ASA platform was 
chosen primarily due to team familiarity and ease of use, in 

addition to features such as application layer inspection and 
session logging, both of which are used in botnet initialization 

and attack monitoring. The gateway router is a  standard Linksys 
WRT54GL wireless router running DD-WRT [13] custom 

firmware. This router is also capable of session logging, a useful 

feature specifically for capturing the bootstrapping process. 

TABLE I.  LAYER 3 DEVICE SPECS 

Device Name Throughput Concurrent 

Sessions 

Interfaces Virtual 

Interfaces 

Cisco ASA 
5510 

Up to 150 
MBPS 

10,000 8 ports 
fast 
ethernet 
switch 

3 (No trunking 
support)  
20 (trunking 
support) 

Linksys 

WRT54GL 

54MBPS 128 4x100 

MBPs 

N.A. 

 

TABLE II.  ENDPOINT DEVICE SPECS 

Device 
Name 

SoCt GPU Networking Storage 

Raspberry 

Pi 3 x 3 

Broadcom 

BCM2837 

4x ARM 

Cortex-A53 
1.2GHz 

1GB 

LPDDR2 
900MHz 

Micro SD 

Raspberry 
Pi 2 x 2 

Broadcom 
BCM2837 

900MHz 
quadcore 

ARM 
Cortex CPU 

1 GB 
SDRAM 

Micro SD 

 

Our initial testbed design consists of 3 separate network 

segments connected via the Cisco ASA 3310 firewall, with each 
representing a separate part of our botnet system. As shown in 

Fig. 4, the host segment (Network ID 192.168.1.0), consisting 
of infected nodes used to launch an attack, the internet segment, 

simulating a remote connection to a victim server (Network ID 

192.168.2.0), and the victim segment, where the victim server is 
running (Network ID 192.168.3.0). A single firewall interface is 

reserved for this test victim web server that may be targeted for 
DDoS attacks. The bot network is connected to the ASA via a 

wireless router, simulating a typical home network design. Our 

endpoint logging server also exists on this segment, running off 

another raspberry pi.  

All Raspberry Pi devices were reformatted with Raspberry 
Pi OS (32 bit) and configured with XRDP [14] and SSH to allow 

for remote management via Windows machines natively. 
Firewall rules were updated to allow for remote connections to 

be made over port 3389 in addition to 8468 (botnet port used for 

node initialization). These firewall rules were consistent across 
all endpoints as well as layer 3 devices to allow for remote 

access and botnet initialization, respectively. These were the 

only network security rules configured on the testbed. 

The Cisco ASA was configured to not only serve as a 
logging device for network flow data, but also as a layer 3 router 

for the endpoint and victim segments. This configuration, albeit 
atypical, allowed BotsideP2P to leverage the ASA’s logging 

capabilities to their fullest, as free flowing traffic across the 

firewall makes botnet initialization as well as logging a more 

simplified process.  

 

Fig. 4. First Testbed Topological Design 

This configuration was accomplished by altering port 

security values to allow for traffic flow from victim segment to 
endpoint and adding ACL configuration to permit traffic down 

the alternate route. The routing rules themselves were 

configured as static, and the configuration allows for free traffic 
flow across the firewall. Two rules are configured specifically 

for logging as shown in Fig. 5 for port 8468, as well as Internet 

Control Message Protocol (ICMP) in the event of a DDoS. 

This logging configuration was considered after a change in 
topological design after the first design was completed and 

tested. Fig 6 details a second configuration incorporating a 
botnet node where the old victim server was located. This 

second topological design was developed to enable botnet 

initialization logging in addition to node attack logging. By 
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leveraging the stateful logging capabilities of the ASA to scan 
for botnet node initialization, early DHT session initializations 

may be detected. Due to localized botnet initialization 
requirements, this setup allowed us to produce additional flow 

data that will be detailed in the following section. 

 

Fig. 5. ASA Firewall Rules Configuration 

 

Fig. 6. Second Testbed Topological Design 

V. RESULTS 

The use of testbed session logging was very much successful 

in botnet analysis, in part due to the Kademlia node initialization 

sequence. An example packet containing DHT key sharing info 
can be seen in Fig.7, packet capturing was performed on both 

endpoint devices and the gateway router. In addition, the flow 
data we have gathered indicates that stateful traffic inspection is 

a remarkably successful way of stopping DHT-enabled P2P 
botnet attacks. These botnet initialization sessions could be 

viewed successfully on both gateway router and firewall, as 

shown in both Fig. 8 and Fig. 9, respectively. While the router 
is only capable of session viewing, the firewall allows for 

detailed connection information during node initialization. 

Incorporating reports such as session monitoring and packet 
captures into existing logging systems could prove instrumental 

in identifying botnet activity. These network flow data reports 
provided on both the ASA and gateway router could potentially 

be used to identify botnets when communicating hashed values 
across a network during node initialization. In total, both router 

and firewall logging systems have the capability to be an 

effective early identification system for DHT-enabled P2P 

botnets. 

 

Fig. 7. Packet Containing Network Key Data 

The data shown in Fig. 8 and Fig. 9 is capturable due to layer 3 

node initializations, which could effectively be replicated on an 

IDS system on a local network. However, the capacity of 

BotsideP2P to initialize and launch attacks over multiple 

network segments also presents new opportunities for log 

aggregation using syslog output of devices such as the ASA. On 

a final note, regarding the application of the device, the use of 

application layer inspection is not presently included in our 

current configuration. However, this feature could be useful in  

monitoring and logging botnets with dynamic port assignment 

features in the future. 

 

Fig. 8. Endpoint router logging configuration session over layer  

 

Fig. 9. Firewall session logging on ASA 

In terms of scalability, BotsideP2P had no issues within our 
small testbed, however, given the node initialization process, as 
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well as regular update messages sent across the DHT. Scalability 
could be difficult, however across a mesh style of network in  

which routing vectors could become costly and time consuming. 

When launching attacks, the botnet performed as expected, 

and DDoS attacks were performed successfully on the victim 
server as shown via a packet capture screencap in Fig. 10 with a 

single node attacking. The possibility exists to add additional 

attack types in the future such as keylogging, click fraud, and 
cryptocurrency mining. We would like to explore all of these in  

subsequent uses of the testbed. A running version of the tested 

featuring two nodes and the ASA may be viewed in Fig. 11. 

We identified several vulnerable factors of P2P botnets as 
deployed in our testbed design, the most prominent one being 

the bootstrap server. Because the bootstrap servers are often hard 
coded, a potential point of failure is created for some P2P 

botnets, in the same vein as a traditional C&C botnet. If a  

bootstrap server were compromised, connectivity could be 
disrupted, or, more catastrophically, fa ke nodes could be added 

to the network and begin to sniff connections from peers. This 
could be circumnavigated by adding functionality to handle the 

loss of a bootstrap server, likely by reinstating a new device to 

fulfill the role. 

 

 

 

Fig. 10. Example of HTTP Traffic During a DDoS 

VI. CONCLUSION 

The focus on peer-to-peer botnets and the exigency of 
continued research in the field is not misplaced. Their 

decentralized nature and difficulty to detect and prevent prove 
the severity of this emerging threat. Compounded with the 

proliferation of internet connected devices in the form of IoT, 
the severity of botnet attacks should not be understated. This is 

compounded by a growing number of novel botnet attacks. In 
this paper, we deployed a P2P botnet, BotsideP2P, in a 

controlled testbed. By providing network analysis on botnet 

initialization and operation, BotsideP2P represents an applicable 
form of P2P botnet detection and prevention. BotsideP2P 

configuration details provide both educational and technical 
value in developing specified security solutions to P2P botnet 

attacks.  

 

Fig. 11. Botnet Running with Multiple Nodes 

There are several improvements that could be made to the 
testbed in its current form, with both log aggregation and 

alternative inspection functions being the most immediately 

obvious. In addition, botnet functionality should be expanded 
upon to include attacks such as keylogging, click fraud, and 

cryptocurrency mining. Application layer inspection should be 
leveraged in the future to test dynamic port assignment features 

on infected nodes. Finally, logging an increased number of 
nodes presents an exciting test of endpoint and network logging 

scalability with our current configuration.  
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