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Abstract

Medical data sensors on patients in hospitals produce an increasingly large volume of increasingly diverse real-time
data. Because scheduling the transmission of this data through wireless hospital networks becomes a crucial problem,
we propose a Reinforcement Learning-based queue management and scheduling scheme. In this scheme, we use a
game-theoretical approach where patients compete for transmission resources by assigning different utility values to
data packets. These utility functions are largely based on data criticality and deadline, which together determine the
data’s scheduling priority. Simulation results demonstrate the high performance of this scheme in comparison to a
datatype-based scheme, with the drop rate of critical data as a performance measure. We also show how patients can
optimize their policies based on the utility functions of competing patients.

Introduction

Many hospitals rely on wireless communication to monitor patients and alert doctors about their status. As hospi-
tals grow in size and become more densely populated, the density of data transmitted through the hospital’s wireless
network grows proportionally. Furthermore, different types of data originating from patients with different medical
conditions present a range of criticality, and also permit a range of acceptable latency for medical attention. Conse-
quently, scheduling data transmission throughout the hospital network becomes a problem of great importance.

Hospitals increasingly rely on body area networks (BANs) of wireless sensors to monitor the status of patients1,2.
These cyber-physical sensor networks must schedule the transmission of sensory data to a BAN controller node that
aggregates and makes sense of the data gathered by the sensors. The BAN controller can then detect whether a
significant event, like a heart attack or stroke, has occurred in the patient. Once an event has been detected, the
hospital relies on a second layer of networking that allows the BAN controllers to alert a headquarters about the
potentially life-threatening status of the patient. In this paper, we focus on this problem and provide a prioritized
queue management and greedy scheduling scheme based on the criticality and deadline of patients’ sensory data.

We can also analyze our system from a game theoretical perspective. In terms of game theory, each BAN controller
acts as a player, acting on behalf of the corresponding patient. Each player is competing for networking resources, and
attempts to maximize the throughput of raw data transmitted to the headquarters on the patient’s behalf. Each player
also attempts to minimize the amount of data dropped that is critical to the patient. Each player has a set of prioritized
queues, and a policy consists of a strategy to place incoming data onto these queues. In this work, we propose a
Reinforcement Learning (RL) protocol involving utility functions considering both data criticality and deadline to be
employed by each player. Our proposed global scheduling policy, which defines the “rules” of the game, is also based
in RL.

Related Work

Medical applications with wireless technologies are increasingly popular areas for development. Wireless networks
provide many potential benefits in terms of net cost, user mobility, information accessibility, and network scalability.
Consequently, many research and development teams are pursuing projects using wireless networking for medical
applications including mobile healthcare, vital sign monitoring systems, and ambulatory data transmission3,4.

Many powerful wireless medical technologies have been developed that would benefit from the type of throughput
optimization protocols we present. For example, our protocols could help wireless sensor networks like Harvard’s
CodeBlue5. CodeBlue provides wireless sensors and accompanying software to track vital signs, and attempts to
provide a wireless infrastructure for emergency and disaster medical care. Other systems involving patient monitoring



and tracking could similarly benefit. For example, Johns Hopkins University’s Advanced Health Disaster Aid Network
(AID-N)6 is an infrastructure-independent network that transmits patients’ sensory data through an ad-hoc sensor net-
work and EVDO wireless network. The European Commission has also developed a mobile healthcare project called
MobiHealth7 that uses BAN-based sensor networks and GPRS/UMTS wireless network technologies to measure and
transmit bio signals, and thus facilitates full mobility of health monitoring systems. For e-health, Chen et al.8 devel-
oped a vital sign monitoring system based on mobile telephony and internet infrastructure. Takizawa et al.9 presented
a different wireless monitoring system using IEEE 802.15.4a standard based on ultra wideband (UWB) communica-
tion. These and other ongoing research projects aim to improve the effectiveness and convenience of monitoring and
treating patients by using wireless mobile and BAN sensor technologies.

As these healthcare-related services emerge, wireless medical networks must provide the capacity to support them.
To do this, they must accommodate vast amounts of diverse real-time medical data. The major issues in transmitting
medical data through wireless networks are managing large volumes of real-time sensory data and satisfying the
diversity of quality of service (QoS) requirements for medical data10. To solve these problems, Zubairi11 presented
a data aggregation and reduction scheme to transmit large amounts of medical data efficiently through bandwidth-
limited cellular networks such as 2G GSM or 3G UMTS. In addition, Moghaddam et al.12 provided a QoS-aware
congestion control scheme by considering the different QoS weights of different bio signals.

While these existing systems attempt to manage medical data, their scheduling policies largely ignore important prop-
erties of medical data like criticality and deadline. Maximizing throughput is important, but it is often more important
in medical systems to maximize throughput of crucial data. The protocol we present in this work addresses this goal
by considering both data criticality and deadline in its transmission scheme.

System Model and Problem Formulation

We model the network within the hospital as a two-tiered hierarchy. Figure 1 displays an overview of the hospital
network.

The first level of networking consists of BANs, each of which is associated with a particular patient. We consider a
BAN architecture where each BAN consists of a number of BAN devices and a patient data controller (PDC). There
are two types of BAN devices: implant devices and wearable devices, which will communicate with the PDC directly
or via multi-hop. The PDC processes the data it receives and identifies the occurrence of meaningful medical events.
It also relays raw data back to a headquarters.

Implant devices mainly refer to Implantable Medical Devices (IMDs) such as pacemakers, implantable cardiac defib-
rillators (ICDs), drug delivery systems, and neurostimulators. These IMDs are “smart” biosensors/actuators placed
inside the body that communicate wirelessly with external control devices to automatically monitor and treat physio-
logical conditions to manage a broad range of ailments. For example, the glucose level in the blood can be sensed by
implanted glucose sensors. Based on these readings, an insulin controller can then dispense the appropriate amount of
insulin into the blood for diabetes patients.

Wearable devices far exceed implanted ones in both quantity and heterogeneity. Wearable devices include sensors
monitoring the cardiovascular system, for example electrodes on the chest for capturing ECG, Peizo sensors on the
wrist to measure blood pressure, optical sensors on the toe and earlobe to measure pulse rate, and microphones on
the chest to measure heart sounds. Motion sensors placed about the body, small cameras or video cameras attached
to sunglasses, and radars attached to clothes to assist visually-disabled persons provide examples of other types of
external data-gathering devices.

The second level of networking is the network that runs throughout the hospital, and it consists of the PDCs associated
with the patients in communication with a headquarters. This centralized headquarters might represent a doctor’s
pager or some centralized command station in the hospital. Organizing and scheduling data transmission between the
PDCs and the centralized headquarters so that the patients receive the necessary care is a focus of this work.

Our problem is to minimize critical data dropped during the transmission of sensory data from PDCs to the headquar-
ters.
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Figure 1: Hospital Network Architecture

Given:

• a graph G(V,E) representing the connections between PDCs and the headquarters

• incoming data packets, each packet p with a criticality index cp and maximal latency dp

• a set of prioritized data queues Q for each PDC, such that higher priority queues must be emptied before data
from lower priority queues are transmitted

Define: a strategy for each PDC to sort data into its queues and a global scheduling scheme to minimize the amount
of critical data dropped.

Proposed Protocol

The main focus of this work is the transmission of raw data from PDCs to the headquarters. Our approach consists of
two main steps: 1) the placement of BAN sensory data packets into queues at the PDCs, and 2) the scheduling of data
transmission from the PDCs to the headquarters. Intuitively, transmission of critical data should be prioritized over less
critical data. Similarly, highly time-sensitive data should be prioritized over less urgent data. To allow for appropriate
prioritization, we sort data packages into prioritized queues according to an RL protocol. An integral component of
this protocol is a utility function used to quantify the urgency of data based on the data’s criticality and transmission
deadline. Our centralized scheduler then selects the data package with the largest weight across all PDCs to transmit
next.

We note that criticality and time-sensitivity are not the same. As an example of critical data that is not time-sensitive,
consider a patient with a lethal reaction to a medication that would take weeks to actually kill him. As an example of
time-sensitive data that is not critical, consider a mild reaction to a medication that causes immediate discomfort but



not danger. Of course, doctors also frequently face data that is both critical and time-sensitive, or not critical and not
time-sensitive.

1) Queue Placement: To place incoming data onto queues at the PDCs, we rely on RL, a branch of Machine Learning.
An RL-based approach is appropriate here because it allows for long-term optimization in a dynamic environment.
An RL system is typically characterized by a set of states, a set of actions, an expected immediate cost (or reward) for
taking each action, and a value function for each state reflecting the expected long-term cost (or reward). At each time
step, the system observes the state that it is in, and selects an action to take based on the immediate cost and expected
long-term cost. It finds itself in a new state, observes the impact that the action has made, and updates its expected
long-term costs. In our system, we define each of these components as follows:

• Set of states S: the set of possible preferences for an incoming packet. We say that a PDC node is in a particular
state if it is in the state of preferring a particular queue for incoming data. This model is practical because
incoming data is often similar to the other data generated around the same time.

• Set of actions A: the set of possible incoming packet placements. Each PDC has K possible actions, where K
is the number of queues it supports. An action consists of placing an incoming packet in one of these queues.

• Cost function r(s, a): the immediate cost of placing an incoming packet according to action a from state s.
Each action is associated with a particular cost. For example, placing a highly critical piece of data at the end
of a long queue can be seen as quite costly, since transmitting all preceding data will cost quite a bit of time and
system resources.

• Value function V (s): the expected long-term reward for state s. This value reflects the payoff that one can
expect to incur throughout the running of the algorithm, given that we have entered state s. This value function
is continuously updated as the algorithm runs and gathers more information about the system.

At each iteration of the algorithm, a packet is placed in a queue, a new state is entered, and the value function V for
the previous state is updated based on the reward incurred. We refer to the state at iteration n as sn, so that taking an
action transitions the node to state sn+1, and the next iteration begins.

Utility Functions: Each time a packet arrives at a PDC, it must be placed onto a queue in such a way as to optimize the
system performance. Intuitively, “good” performance allows for packets with higher urgency to be transmitted before
those with lower urgency. Our use of multiple prioritized queues allows for greater flexibility, and potentially increased
performance. To represent the urgency of the transmission of a data package from a PDC to the headquarters, we use
utility functions, similar to Time-Utility Functions (TUFs)13. Each data package is assigned a utility value determined
by the appropriate utility function.

Let p be the arriving packet, with criticality cp and maximal latency dp. Let t0 be its time of generation, and t be the
current time. Then p is assigned a utility value according to the following function:

U(p) = cβp (
t− t0
dp

)ζ (1)

In Equation 1, β and ζ are constants. A larger value of β will place a greater emphasis on the criticality of incoming
packets, and a larger value of ζ will place an increased value on the time that has passed in relation to the time until
the packet expires and is dropped from the queue. Each PDC sets its values of β and ζ, and in this way chooses the
policy it employs in competition for system recourses. The utility values of packets in the queues are periodically
recomputed as time passes.

Immediate Cost: Based largely on the utility value assigned to the packet, we compute the immediate cost associated
with the action of assigning an incoming packet to a particular queue. More specifically, we define the immediate cost
of choosing action a when in state s to be



r(s, a) =

∑
p
U(p)R(p)

Q(n)
(2)

R(p) is the absolute ranking of packet p at the node, considering that all packets in higher prioritized queues have
higher rankings, in addition to higher ranking packets in the same queue. Multiplying U(p) by R(p) weights each
packet by both its utility, or urgency, and its placement in the queues, so that packets with large utility values contribute
more, as do packets located towards the bottom of the series of queues. Q(n) is the number of packets in queues at
node n, and dividing by this value allows the cost function to represent a weighted average over all packets. The design
of this reward function is based on the work of Zhou et al14.

Policy Selection: Once the immediate cost of all possible actions has been established, the system must choose which
action to take, or equivalently it must select the queue into which the incoming packet will be placed. In RL, the rules
by which a system determines which action to take, given the system state, is called a policy. In our system, the policy
π that the system follows is dynamically updated as the system learns from the actions it takes. The queue qπ that the
system selects at iteration n of the algorithm according to policy π is:

qπ = argmin
a∈A

E{r(sn, a) + γV (sn+1)} (3)

In this formula, sn represents the current state at iteration n. All possible actions a are examined, and sn+1 represents
the state into which that action would bring the system. In RL, 0 ≤ γ ≤ 1 is called the “discount rate,” and is a
parameter that reflects the importance of the value of the long-term expected reward in comparison to the immediate
reward15. According to this formula, the system selects the action, or queue, that minimizes the combined immediate
and long-term expected costs.

Updating the Value Function: Once the system takes an action determined by policy π described in Equation 3, the
system transitions from state sn to state sn+1 and incurs some cost. The value function must be updated accordingly.
To do this, we employ a Temporal Difference (TD) technique. Specifically, we use TD(0), which is a one-lookahead
protocol15. It only considers the expected reward of the next immediate state, in addition to the cost incurred from the
transition to this state, according to the following formula:

V (sn) = V (sn) + αn[rn + γV (sn+1)− V (sn)] (4)

Intuitively, this equation updates the cost expected to be incurred from a state sn by considering the return expected
from the subsequent state sn+1. We cannot simply update V (sn) = V (sn+1) since at other times sn might transition
to other states through other actions, so TD provides a weighted update according to weight αn. Thus, 0 ≤ αn ≤ 1
is the “step-size parameter,” and allows for the value function to be a weighted average of the expected returns of
subsequent states.

2) Scheduling: Finally, the headquarters invokes a centralized scheduler to decide which data package is transmitted
at every time unit. The rules of the scheduler define the game theoretical space in which the PDCs compete for
transmission resources. We define this centralized algorithm to act by examining the following weight function for
each PDC node:

w(n, t) = V (s)Q(n)C(i, t)
∑
p∈T

cp (5)

In Equation 5, t is the current time, n is the node under examination, s is the current state of the node, and T is the
set of packets that can be transmitted in the next scheduling period by node n. C(i, t) is the channel rate of channel
i at time t. The centralized protocol selects the data package at the node with the highest weight, indicating that it is
the highest priority, and transmits that piece of data. Our system consists of a tree of depth one, with the leaf nodes



(the PDCs) transmitting to the root node (the hospital headquarters), and can only transmit data from a single node at
a time. In a network with c > 1 communication channels, it would theoretically select the c data packages at the head
of queues with the highest utility values to transmit at any given time.

Analysis

We run simulations with 10 patients, each with a corresponding PDC. The topology of our network is still a tree of
depth one, as shown in Figure 1, where each leaf node is a PDC, and the root is the hospital headquarters. Each leaf
node streams data to the root node. To highlight the performance of our scheduling protocol, our system uses a single
channel for data transmission.

An average of 8900 bps can be expected to be generated by sensors on a patient monitoring vital signs16. These
vital data types include EKG, blood pressure, pulse, respiration (tidal volume), and SpO2 (blood oxygenation). In
our simulations, an average of 8900 + δ bits of data are generated per second by each patient. We accommodate δ
additional bits per second to account for other data that the doctors might want, including large data types like pictures
and videos.

Our simulation settings were chosen in accordance with this model of data generation. In our simulations, packets
are of uniform size. Queue assignment takes place immediately for every incoming packet, but data transmission is
scheduled every 5 time slots. Our simulations run for 10,000 time slots, and each simulation result is the average of
10 runs. Packets are of uniform size; the distribution of data criticality is Normal N(3, 1); and the distribution of the
data deadlines is uniform [25, 75]. If data channel rate is 1-2 Mbps, as in 802.11b WiFi, then our simulation settings
correspond to a data generation rate of up to 100 Kbps for each patient. The discount factor γ is 0.8, and αn = 1

n .

We evaluate our system in terms of the sum of the criticality indexes of all packets dropped, divided by the sum of the
criticality indexes of all packets. We call this the Criticality-Weighted Drop Rate (CWDR). Consequently, a system
that drops a given number of packets with higher criticality indexes is evaluated to perform worse than another system
that drops the same number of packets with lower criticality indexes, given identical patient data. Similarly, a system
that drops few packets with high criticality might perform worse than another system that drops more packets with
lower criticality indexes.

More specifically, let D be the set of dropped packets, and P be the set of all packets dropped or transmitted. Then
the CWDR of a network N is expressed as follows:

CWDR(N) =

∑
d∈D

cd∑
p∈P

cp
(6)

Comparison to Naive Protocol: To exemplify the strength of our solution, we compare our RL-based protocol to
a naive solution. In the naive solution, there are several classes of data, such as pictures, video, or numerical data,
each with different QoS requirements from the network but with identical distributions of criticality and deadline.
Data is sorted into queues according to its class. Data is scheduled for transmission according to these classes as
well. Data from the first class of queues is always transmitted before data from the second class of queues, and so
on. The improvement that our RL-based protocol has over this naive protocol is demonstrated in Figure 2, which was
generated by simulations run with inter-arrival time (IAT) of 1.0, corresponding to a relatively high data generation
rate for the network. The improvement in performance is particularly notable for a high number of queues, which
is to be expected because a larger number of queues allows the RL-based assignment of packets to queues to have
an increased effect. The RL-based weight function used for packet scheduling also contributes to the performance
by considering criticality in scheduling, rather than relying solely upon QoS requirements for the packet’s data type.
Because our RL-based assignment considers both packet criticality and deadline, it shows up to 25% improvement
over the naive solution, as shown in Figure 2.

Varied IAT and Queue Number: We also ran a set of simulations to demonstrate the effect of the number of queues
and IAT on the drop rate. We define the IAT to be the average expected time between data packet arrivals at a single



Figure 2: Impact of IAT and Queue Number on CWDR

PDC. The inter-arrival time for a patient can easily be computed based on the patient’s data generation rate. A smaller
IAT corresponds to a larger data generation rate, and a larger IAT indicates a smaller data generation rate. The results
are displayed in Figure 3. As IAT increases, our protocol performs better. This performance improvement stems
directly from the fact that an increased IAT corresponds to a lower average data generation rate. Our protocol must
handle fewer data packets, and so a lower CWDR can be expected.

Similarly, when the queue number is increased, performance improves. Again, this increased performance stems from
the RL-based queue placement protocol that considers both data criticality and deadline. We also note that as the
number of queues approaches infinity, the improvement in system performance decreases. This makes sense since
each additional queue introduces a smaller fraction of increased resources for our protocol to use. In other words, the
increase in queue resources between 1 queue and 2 queues is 100%, while the increase between 100 queues and 101
is 1%, leading to diminishing returns in performance improvement.

Figure 3: Impact of IAT and Queue Number on CWDR

Competing Strategies: Our next set of simulations explores different combinations of strategies, defined by the BAN
controller choices of ζ and β of its utility function U(p). To explore the effect of different combinations of competing
strategies on the service to individual patients, we divide the group of patients into two sets of equal size, and assign a
strategy to each set separately. This type of approach might be appropriate in a medical scenario where there are two
distinct types of patients whose data allows for different drop rates, or CWDRs.

In our simulations, we divide the group of 10 patients into two sets of 5, and assign a strategy to each set separately.
This yields a total of 24 = 16 combinations of strategies. The average CWDR for each group and scenario are



presented in a payoff matrix in Table 1. We also present the average CWDR over all patients in Table 2.

From Table 1, we see that there is a Nash equilibrium when both sets of patients set ζ = 2 and β = 2, meaning that
neither set can achieve improved performance by choosing another strategy, given that the other set has set ζ = 2 and
β = 2. This table also shows that the best CWDR for an individual set is achieved when one uses ζ = 2 and β = 2
while the other uses ζ = 2 and β = 1. Such a setting might be useful if one set of patients is producing data that
cannot afford to be dropped, while another produces data that can be dropped with less risk to the patients.

Table 2 presents the average CWDR over both groups. It shows that the system as a whole achieves the best perfor-
mance when all patient data collectors assign ζ = 1 and β = 2, ζ = 2 and β = 1, or ζ = 2 and β = 2. Similarly, it
achieves the worst performance when one set of patients assigns ζ = 1 and β = 1 while the other assigns ζ = 2 and
β = 1.

Strategy: (ζ, β) (1,1) (1,2) (2,1) (2,2)
(1,1) 0.42, 0.42 0.49, 0.37 0.37, 0.44 0.40, 0.35
(1,2) 0.37, 0.49 0.36, 0.36 0.47, 0.36 0.39, 0.45
(2,1) 0.44, 0.37 0.36, 0.47 0.36, 0.36 0.43, 0.31
(2,2) 0.35, 0.40 0.45, 0.39 0.31, 0.43 0.36, 0.36

Table 1: Payoff matrix showing CWDR for competing patient groups

Strategy: (ζ, β) (1,1) (1,2) (2,1) (2,2)
(1,1) 0.42 0.43 0.40 0.38
(1,2) 0.43 0.36 0.41 0.42
(2,1) 0.40 0.41 0.36 0.37
(2,2) 0.38 0.42 0.37 0.36

Table 2: Average CWDR over all competing patients

Conclusion

In this paper, we consider the problem of medical sensor data transmission in wireless hospital networks, and present
a novel consideration of criticality and deadline in utility functions representing scheduling preference. By learning
from experience, our system has the ability to adapt to changes in dynamic environments. We also introduce a novel
perspective for this problem of medical data transmission management by analyzing our system in terms of game
theory, where patients compete for resources.

Through our work, we provide a solid theoretical infrastructure and simulated results. Our results demonstrate sig-
nificant improvement over a traditional naive protocol, and allow for individualized patient service. In the future, we
would like to analyze system performance on raw medical data, and tune the system parameters accordingly. Our work
is also easily extendable to incorporate event detection through the use of sensory signatures. Each medical event can
be identified by the presence of a particular set of sensory data. Once the event has been identified, the criticality of
the data can be adjusted accordingly. The development and use of this type of intelligent medical data transmission
protocol would enhance existing medical networks, and greatly improve patient care.
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