
WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering and Applied Science

Department of Computer Science and Engineering

Thesis Examination Committee:
Robert Pless, Chair

Aaron Stump
Ronald Cytron
Jeremy Buhler
José Burmudez

Nik Weaver

HIGHER-ORDER ENCODINGS WITH CONSTRUCTORS

by

Edwin M. Westbrook, B.S.

A dissertation presented to the School of Engineering
of Washington University in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2008
Saint Louis, Missouri

ABSTRACT OF THE THESIS

Higher-Order Encodings with Constructors

by

Edwin M. Westbrook

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2008

Research Advisor: Aaron Stump and Robert Pless

As programming languages become more complex, there is a growing call in the

research community for machine-checked proofs about programming languages. A

key obstacle to this goal is in formalizing name binding, where a new name is created

in a limited scope. Name binding is used in almost every programming language to

refer to the formal arguments to a function. For example, the function f (x) = x ∗ 2,

which doubles its argument, binds the name x for its formal argument. Though this

concept is intuitively straightforward, it is complex to define precisely because of the

intended properties of name binding. For example, the above function is considered

“syntactically equivalent” to f (y) = y ∗ 2.

It is the goal of this dissertation to posit a new technique for encoding name binding,

called Higher-Order Encodings with Constructors or HOEC. HOEC encodes name

binding with a construct called the ν-abstraction, which binds new constructors in a

limited scope. These constructors can then be used to encode names. ν-abstractions

already have the required properties of name bindings, so name binding need only be

ii

formalized once, in the definition of the ν-abstraction. The user thus then gets name

binding “for free” and need not define it explicitly.

To demonstrate the usefulness of HOEC, this dissertation gives a language, CPTT,

with ν-abstractions. CPTT is a form of Intensional Constructive Type Theory, a

formalism which is both a programming language and a logical theory whose proofs

can be checked by machine. The key novelty that enables CPTT is the constructor

predicates, which limits the constructors that may appear in a term, allowing pattern-

matching to be defined. The consistency proof for CPTT also has independent

interest, as it demonstrates how a simpler form of name binding can be added to a

wide variety of theories.

iii

Acknowledgments

Finishing this degree and this dissertation was the most difficult challenge of my life,

and I have many people to thank for helping me along the way. My first thanks goes

to my advisor, Aaron Stump. Aaron always fostered my interest in learning, and

always made sure I had something new and interesting to learn that was useful in my

career. My knowledge of many of the subjects touched upon in this dissertation began

with the seminars Aaron directed at Wash. U. Aaron then had the magnanimity to

let me apply this knowledge as I saw fit, stopping me only when I started down a

wrong path, and always supported me with enthusiasm.

My second thanks goes to Joe Ullian. Joe taught me about logic and set theory,

two important fundamentals without which this dissertation would not be possible.

More than that, however, Joe taught me how to think about these topics. He always

claimed that many foundational theories such as set theory defy intuition, and consist

merely of formal symbol manipulation, and yet it is from him that I learned many

intuitions about these subjects. It is also from Joe that I learned to appreciate the

wonder and majesty involved in questions of the foundations of mathematics.

A special thanks goes to all the members of the Computational Logic Group, including

Joel Brandt, Li-Yang Tan, Ben Delaware, Morgan Deters, and Ian Wehrman, both

for their friendship and comraderie and for their discussions and feedback on many of

my ideas. An extra thanks goes to Ian, for reviewing every paper I have yet written,

for shaping much of my grammatical style, and for initiating my interests in the fields

of logical, computational, and linguistic pedantics.

I would also like to thank my committee. Each member of my committee has sup-

ported or inspired me in a meaningful way throughout my degree. The feedback

I received on my dissertation from them has also been invaluable. I am especially

grateful to Robert Pless, both for agreeing to serve as chair of my committee and

for his numerous pieces of sound, practical advice throughout my five years in Saint

Louis.

None of this would have been possible without the support of my family, who gave me

sound advice on everything from how to successfully navigate a Ph.D. program to how

iv

to handle girl problems to what I should cook with my pasta. I would additionally like

to thank all of my friends in Saint Louis, including many past and present students

and faculty, both for helping me learn to give good talks and for giving me something

to do to unwind.

Last, and most importantly, I would like to thank Nicci Cobb for all of her work that

went into this dissertation. Without her enormous amount of help, including cooking

meals, reviewing my slides, and packing up our apartment, I could not have finished

this document and the work it represents. Her tenderness, patience, encouragement,

and good humor helped me through the monumental task that I think comes with

any dissertation, and for all of these I am eternally grateful.

Edwin M. Westbrook

Washington University in Saint Louis

December 2008

v

To everyone who believed in me.

vi

Contents

Abstract . ii

Acknowledgments . iv

List of Figures . ix

1 Introduction . 1
1.1 Higher-Order Encodings with Constructors 6

1.1.1 Algebraic Datatypes . 6
1.1.2 Encoding Name Binding . 8
1.1.3 Operations on HOEC Data 10

2 Background and Technical Preliminaries 14
2.1 General Concepts . 14
2.2 Graphs . 15
2.3 Term Rewriting . 17

2.3.1 Term Rewrite Systems . 20
2.3.2 Associative-Commutative Rewrite Systems 21
2.3.3 Confluence Results . 22

3 A Brief Introduction to Intensional Constructive Type Theory . . 32
3.1 Constructivism and the Curry-Howard Isomorphism 33
3.2 Informal Calculus of Inductive Constructions 36

3.2.1 Example Datatypes . 36
3.2.2 Example Functions . 40
3.2.3 Type Universes and Impredicativity 47

4 Higher-Order Name-Binding Rewriting 49
4.1 The λν-Calculus . 51

4.1.1 Types and Terms . 51
4.1.2 Typing . 54
4.1.3 Equality in the λν-Calculus 55

4.2 HNRSs Defined . 58
4.3 Orthogonality . 60
4.4 Modularity of Convergence on a Restricted Set 65

5 The Calculus of Nominal Inductive Constructions 68

vii

5.1 Examples . 69
5.2 CNIC Formalized . 72
5.3 Metatheory of CNIC . 78

6 Consistency of CNIC . 82
6.1 A Category of Worlds . 90

6.1.1 Path Disjoint Graphs . 93
6.1.2 The Category T . 99
6.1.3 Tree Mappings in Type Theory 109

6.2 Translating CNIC to CIC + T . 111
6.2.1 Translation Contexts . 112
6.2.2 The Translation . 115

7 Constructor Predicate Type Theory 147
7.1 Informal Introduction and Examples 148
7.2 CPTT Formalized . 151

7.2.1 Operational Semantics . 152
7.2.2 Static Semantics . 154

8 Conclusion . 157
8.1 Related Work . 158
8.2 Future Work . 160

References . 162

Vita . 169

viii

List of Figures

3.1 Example Constructor Declarations in CIC 37

5.1 Syntax of CNIC . 73
5.2 Operational Semantics of CNIC . 74
5.3 Subtyping for CNIC . 74
5.4 Typing for CNIC . 75

6.1 Translation of CNIC to CIC + T: Terms 118
6.2 Translation of CNIC to CIC + T: Types 119
6.3 Translation of CNIC to CIC + T: Pattern-Matching Functions . . . 120
6.4 Translation of CNIC to CIC + T: Contexts 121

7.1 Syntax of CPTT . 152
7.2 Operational Semantics of CPTT: Terms 152
7.3 Operational Semantics of CPTT: CPs 153
7.4 Typing for CPTT . 156

ix

Chapter 1

Introduction

The concept of a name is ubiquitous in Computer Science: programming language

variables are names that refer to the formal parameters of functions; pointers in Java

or C are names that refer to data stored on the heap; and file descriptors are names

that refer to files and other system resources in the UNIX operating system. The

concept of naming is powerful exactly because it is simple. Using names abstracts

away the specifics of what an entity is and how it is accessed. For example, variables

hide the details of where exactly a formal parameter is stored, and pointers obviate

concerns of how to access the virtual page that contains a particular piece of data in

the heap. Names are also a convenient mechanism to express access and permissions.

For instance, if a program is not given a file descriptor for a file, the program cannot

even express accesses on that file.

One question concerning names is how they are created. Under the name binding

paradigm, names can be created only in a limited scope. A common example is the

declaration of formal parameters in programming languages. Consider for example the

following definintion of the doubling function in a programming language of arithmetic

functions:

f (x) = x ∗ 2

The definition of this function creates the new name x to refer to the formal parameter

of the function. This particular function uses the name x in the expression x ∗ 2,

specifying that the input to the function is to be doubled. It is nonsensical, however,

to refer to the formal parameter x outside the definition of the doubling function.

To ensure this cannot happen, x is created only in the limited scope of the function

definition, and exists nowhere else. Any object that creates a name with a limited

1

scope in this fashion is called a name binding. x in this case is said to be bound by

the function definition f (x) = x ∗ 2.

Name binding has the following four properties:

1. Freshness: When the name x is bound, the name x itself becomes a new object

that is distinct from all other objects, including other names. This is why the

two functions

f (x, y) = x ∗ 2 f (x, y) = y ∗ 2

are disinct. The variable x is even distinct from other names written as x. For

example, if we allow nested functions, meaning a functions returning functions,

then the function

f (x) = (g (x) = x ∗ 2)

takes any argument and returns the doubling function. In this example, the x

in x ∗ 2 refers to the innermost argument, while the outer-most argument is not

used. The two copies of x are thus distinct.

2. α-equivalence: It should not matter what symbol is used in name binding.

Thus name bindings are equal modulo renaming of bound names, and the func-

tion f (x) = x ∗ 2 should be indistinguishable from the function f (y) = y ∗ 2,

even if the observer can “look inside” the definitions.

3. Scoping: Names cannot escape their bindings, and the funciton

f (x) = x+ y

is malformed, unless it is a nested function inside another function with argu-

ment y.

4. Typing: When a name is bound, it is often given a specific type or classifier

indicating how it can be used. For example, the doubling function above requires

its argument to be a number. For example, if the notation [1, 2, 3] is used for

the list of the numbers 1, 2, and 3, and l1 ++l2 denotes appending of lists, then

the function

f (x) = x+ +[x, (x ∗ 2)]

2

is malformed, as x is used as both a list and a number.

Note that typing is not always necessary, for instance in a language with just number

expressions. Thus we consider it as an optional property here. A formalization of

variable binding that includes typing will be called higher-order below, while others

are called first-order.

These four properties can be viewed as axioms for defining name binding, and have

a number of implications. Scoping implies that names cannot be created except

by name bindings, or else names could be used out of their scope. α-equivalence

implies that names are interchangeable, and thus a program must behave identically

no matter which actual name is used. Names must therefore have no observable

internal structure, unless this structure is the same across all names.

Unfortunately, although these concepts are intuitively straightforward, it is cumber-

some to define name binding formally. This means it is likewise cumbersome to

formalize programming languages and prove properties about them, as almost all

programming languages rely in an integral way on name binding. Programming

languages, however, are making stronger guarantees about software. For example,

strongly-typed languages such as ML [45] and Haskell [69] ensure that executing a

program can never yield a type error such as trying to add to objects that are not

numbers. As another example, ownership types can be used to a strict locking pro-

tocol [9]. In order that programmers may trust these guarantees, there is a growing

call in the research community for formalized, machine-checkable proofs about pro-

gramming languages. As suggested by the POPLmark Challenge [4], at least two

workshops [54, 75], and much research [42, 21, 74, 71, 62, 55, 57, 63, 60, 10], formal-

izing name binding is a key obstacle to this goal.

It is the purpose of this dissertation to propose a new approach to formalizing vari-

able binding. This approach, called Higher-Order Encodings with Constructors or

HOEC, enriches the standard concept of algebraic datatypes with a construct, called

the ν-abstraction, that is useful for encoding name binding. Algebraic datatypes

encode data with a set of constructors, or function symbols, for building elements

of the datatype. For example, the natural numbers are often encoded as an alge-

braic datatype with the nullary constructor zero and the unary constructor succ.

3

HOEC enriches this notion by adding ν-abstractions, which introduce a new con-

structor in a local scope. ν-abstractions can then be used to encode name bindings,

while the locally-scoped constructors they introduce can be used to encode names.

ν-abstractions themselves are binding constructs, and so already have the aforemen-

tioned four properties of name binding. Thus name binding need only be formalized

once, in the meta-language, and the user then gets these properties “for free” and

need not formalize them explicitly. Note that the ν-abstraction itself was introduced

in other work [63], but its use here is novel.

HOEC is similar to Higher-Order Abstract Syntax, or HOAS [52]. The key differ-

ence is that HOAS uses meta-language variables to encode names, while HOEC uses

constructors. The difficulty with the HOAS approach is that meta-language variables

cannot be considered distinct from any other term. This is because of the Substitution

principle, which states that properties that can be expressed in the meta-language

are closed under substitution for variables. Thus if x 6= M were true for any M then

the Substitution principle implies that M itself can be substituted for x, yielding the

contradiction M 6= M ! This means that, in a sense, HOAS encodings do not satisfy

freshness. This is discussed in Section 8.1 below. In contrast, in the paradigm of

algebraic datatypes, constructors are always distinct from all other terms.

HOEC is developed in two ways in this dissertation. First, the formalism of Higher-

Order Name-Binding Rewriting is developed. This is an extension of Higher-Order

Rewriting, which is itself an extension of standard Term Rewriting [67, 15]. Term

Rewriting allows the definition of computation on algebraic datatypes. For example,

the definition of computation in a programming language of functions over the natural

numbers might include the rewrite rules

plus x zero x

plus x (succ y) succ (plus x y)

to specify how to compute the value of addition expressions. Term Rewriting uses

algebraic datatypes as the base language over which computation is defined. Higher-

Order Rewriting enriches this base language to the simply-typed λ-calculus, adding

simple functions. Higher-Order Name-Binding Rewriting enriches the base language

further to the λν-calculus, allowing locally-bound constructors as well as simple func-

tions. The need for a rewriting formalism in the context of names and name binding

4

is already motivated in other work [22], and will also be indispensible for defining

CPTT and CNIC, introduced below.

The second direction in which HOEC is developed in this dissertation is that it is

integrated with Intensional Constructive Type Theory. Intensional Constructive Type

Theory, or ICTT, is a logical theory that is also a programming language. This allows

the user to write programs and prove properties of them in the same language. The

correctness of the proofs can also be checked by machine, increasing user confidence

in them. This is especially useful in proving properties of programming languages,

where the often repetitive and voluminous nature of the proofs make human analysis

error-prone.

HOEC is integrated with ICTT here in two steps. The first step is the Calculus of

Nominal Inductive Constructions, or CNIC. CNIC extends the Calculus of Inductive

Constructions, a well-known form of ICTT, to give the user the first three properties

of name binding, namely, freshness, α-equivalence, and scoping. Typing is omitted

to simplify the theory. Instead, all names reside in a single type of names. This is

accomplished with a restricted form of the ν-abstraction where constructors can only

be bound with the type Name. Recursion is allowed inside ν-abstractions and names

can be compared for equality. CNIC is itself of independent interest, as it is closely

related to Nominal Logic [59, 23] and similar research [10, 71].

The second step of this development is a language called Constructor Predicate Type

Theory, or CPTT, which allows ν-abstractions to bind constructors of any type. The

key difficulty here is that recursive functions over algebraic datatypes are defined by

pattern-matching, but since arbitrarily many constructors can be introduced at arbi-

trary types, a pattern-matching function would need infinitely many cases to specify

its behavior for each possible constructor. To solve this difficulty, CPTT introduces

the novel concept of constructor predicates, which specify what constructors may oc-

cur in a term. A pattern-matching function must only be specified for the finitely

many cases specified by its constructor predicate, and so again becomes finite.

The remainder of this document is structured as follows. The remainder of this

Introduction, Section 1.1, introduces the notions of HOEC informally through exam-

ples. Chapter 2 gives the necessary for the remainder of the document. Chapter 4

5

defines and proves some properties of Higher-Order Name-Binding Rewriting. Chap-

ter 3 gives a brief introduction to Intensional Constructive Type Theory. Chapter

5 defines CNIC and proves Type Safety. Chapter 6 proves CNIC consistent with

a reduction to a slightly modified version of Intensional Constructive Type Theory

already known to be consistent. Chapter 7 defined CPTT, proves Type Safety for it,

and informally describes how a subset of it is consistent. The full consistency proof

is left as future work. Finally, Chapter 8 concludes with a discussion of related work

and potential future work.

1.1 Higher-Order Encodings with Constructors

As suggested above, the goal of HOEC is to enrich algebraic datatypes with a means

for encoding name binding. To illustrate this concept, this section considers again the

concept of a programming language of arithmetic functions over the natural numbers.

Section 1.1.1 introduces the concept of encodings in algebraic datatypes by giving an

example encoding of just arithmetic expressions using natural numbers, addition,

and multiplication. Section 1.1.2 extends this example to include simple arithmetic

functions. The reader conversant with Higher-Order Abstract Syntax will find these

sections familiar, as a HOEC encoding is almost identical to a HOAS encoding except

that ν-abstractions are used in place of λ-abstractions. The difference between the two

approaches is to be found in Section 1.1.3, which gives some examples of operations

defined over the given encoding. Here and in the below the phrase object language is

used to denote the language of arithmetic functions being encoded, while the phrase

meta-language is used for language in which that encoding is written. Note that the

meta-language is not made precise here, as various forms of meta-language are the

subject of the remainder of this dissertation.

1.1.1 Algebraic Datatypes

In this section we consider how to encode arithmetic expressions built from the natural

numbers and the binary operators + and×. To encode an expression E as an algebraic

6

datatype, the encoding function pEq is used, defined as

pnq = lit pnqnat

pE1 + E2q = plus pE1q pE2q

pE1 × E2q = mult pE1q pE2q

p0qnat = zero

pn+ 1qnat = succ pnqnat

where pnqnat is used to encode the natural number n, called a literal of the language,

by cases on whether n is 0 or not. As an exmple, the expression 1 + 1 is encoded as

plus (succ zero) (succ zero). + and × are assumed to associate to the left, so that

1 + 1 + 1 is really (1 + 1) + 1, and thus would be encoded as

plus (plus (succ zero) (succ zero)) (succ zero)

The encoding function pEq assumes two algebraic datatypes, the type expr for ex-

pressions and the type nat for natural numbers. These are defined by the signature

zero : nat

succ : nat ⇒ nat

lit : nat ⇒ expr

plus : expr ⇒ expr ⇒ expr

mult : expr ⇒ expr ⇒ expr

where the symbols on the left of the colons are called constructors and the syntax to

the right of the colons gives a type for each constructor, or specification of how it can

be used. The zero constructor is given type nat, meaning it is a nullary constructor for

the algebraic datatype nat. succ is given the type nat ⇒ nat, specifying that succ M ,

called the application of succ to M , has type nat for any M of type nat. Thus nat is a

unary constructor that builds an expression from another. lit is a unary constructor

that builds elements of expr from elements of nat. ⇒ associates to the right, so the

type expr ⇒ expr ⇒ expr given to plus and mult is really expr ⇒ (expr ⇒ expr). This

specifies that plus M has type expr ⇒ expr for M of type expr, and so (plus M) N

has type expr for N of type expr. Application associates to the left, so (plus M) N is

also written plus M N . Thus plus and mult are thus binary constructors for the type

7

expr. This approach of using nested applications to encode application to multiple

arguments is called currying in the literature.

It is straightforward to see that the encoding functions pEq and pnqnat given above

are isomorphisms from the arithmetic expressions to terms of type expr and from the

natural numbers and the terms of type nat, respectively. This means that all terms

of type expr or nat are encodings of actual expressions or natural numbers, and two

different expressions or natural numbers are encoded as two distinct terms of type

expr or nat, respectively. Encodings with this property are said to be adequate.

1.1.2 Encoding Name Binding

Encoding becomes more difficult when functions are added to the expressions above.

This requires the definition of pf (x) = Eq for functions of the language as well as

the definition of pxq for variables. The difficulties come in trying to satisfy the four

properties of name binding discussed above. α-equivalence requires that pf (x) =

E(x)q should be equal to pf (y) = E(y)q. This means that pxq in the context of

encoding f (x) = E(x) should be equal to pyq in the context of encoding f (y) = E(y).

Freshness requires that pxq and pyq be different otherwise. Scoping requires not only

that pxq be undefined when not in the context of encoding f (x) = E(x), but also

that the value of pxq in such a context cannot be created outside of such a context.

Typing requires that pxq cannot, for example, be used as a natural number in a literal

expression.

To accommodate these requirements, HOEC adds the ν-abstraction to the concept of

algebraic datatypes. A ν-abstraction has the form ν c :A .M , where c is a constructor,

A is a type, and M is a term. The type A is often omitted when clear from context,

and the above ν-abstraction is written ν c .M . Intuitively, ν c :A .M creates a new

constructor c of type A that can be used only in M . This affects the world, a word

which here means the set of constructors available for building terms. For exam-

ple, in the constructor declarations given above for encoding arithmetic expressions,

the world includes the four constructors zero, succ, plus, and mult. A ν-abstraction

thus extends the world, though this extended world is only available inside the ν-

abstraction. The definition of ν-abstractions themselves satisfies the four properties

8

of name binding given above: the new constructor c is guaranteed to be distinct from

all other constructors in the world, so freshness is satisfied; ν c :A .M is by definition

equal to ν d : A .N when N is got from M by replacing occurrences of c by d, so

α-equivalence is satisfied; a constructor c is only a valid term in a world containing

it, so scoping is satisfied; and ν-abstractions allow constructors of different types A

to be added to the world, so typing is satisfied.

The HOEC approach then uses ν-abstractions to encode name binding. Such an

encoding has the four properties automatically, and need not be formalized explicitly.

For example, consider the addition of functions to the above language of arithmetic

expressions, where a function of n arguments is written f (x1, . . . , xn) = E for some

expression E. The function that computes the polynomial (x∗y)+x+y, for instance,

is written in this extension as f (x, y) = (x ∗ y) + x + y. To encode this extended

language, the encoding function pEq is extended with a function f mapping object-

language variables to locally-bound constructors that encode them. This is written

pEqf . pEqf is then defined as

pnqf = lit pnqnat

pE1 + E2qf = plus pE1qf pE2qf

pE1 × E2qf = mult pE1qf pE2qf

pxqf = f(x)

pf (x) = Eqf = fun-one (ν c . pEqf,x7→c)

pf (x1, x2, . . .) = Eqf = fun-many (ν c . pf (x2, . . .) = Eqf,x7→c)

where f, x 7→ c is the function that is identical to f except the result for argument

x is changed to be c. To encode a function of a single argument, the constructor

fun-one is used. For example, the doubling function f (x) = x ∗ 2 given above would

be encoded as

fun-one (ν c :expr .mult c (succ (succ zero))).

Note that the variable x gets encoded as the locally bound constructor c. To encode a

function of two or more arguments, the constructor fun-many is used, so the function

f (x, y) = (x ∗ y) + x+ y would be encoded as

fun-many (ν c1 :expr . fun-one (ν c2 :expr . plus (mult c1 c2) (plus c1 c2)))

9

recalling that + associates to the left. The associated datatypes are then the types

nat and expr given above along with the type fun-expr of function expressions, defined

as
fun-one : (∇expr . expr) ⇒ fun-expr

fun-many : (∇expr . fun-expr) ⇒ fun-expr

where ∇expr . expr is the type of ν-abstractions ν c : expr .M where M has type expr

and ∇expr . fun-expr is similarly the type of similar ν-abstractions ν c :expr .M where

M has type fun-expr.

It is the case that pFq· is an adequate encoding of the function F , where · is the

function that is everywhere undefined. To see this, the adequacy of pEqf must first

be established. The domain of pEqf is the set of expressions E over variables in the

domain of f . The range of pEqf is the terms of type expr in the world containing the

above constructors plus the unary constructors in the range of f . Given this domain

and range, it is straightforward to see that pEqf is an isomorphism from the one set

to the other. Adequacy of pf (x1, . . . , xn) = Eq· then follows by induction on the

number of variables n.

1.1.3 Operations on HOEC Data

In this section a number of operations are considered on the HOEC encoding given

above. These operations are defined by pattern-matching and recursion on the struc-

ture of the input. Again, the meta-language is not made precise here. Many of the

operations given here can in fact be defined in both the Higher-Order Name-Binding

Rewriting formalism of Chapter 4 and the Constructor Predicate Type Theory of

Chapter 7, though the syntax differs between the two formalisms. The focus here is

instead on the benefits of the HOEC approach for writing such operations.

As a first example, the function countvars is given that computes the number of

occurrences of variables in an arithmetic expression. countvars is defined by the

10

following cases:

countvars (lit x) \ x = zero

countvars c \ c = succ zero

countvars (plus x y) \ x, y = add (countvars x) (countvars y)

countvars (mult x y) \ x, y = add (countvars x) (countvars y)

The syntax M \ Γ is a pattern, where M is a term and Γ is a list of variables and

constructors. Such a pattern is said to match any term that can be got from M by

replacing variables and constructors listed in Γ by arbitrary terms and constructors,

respectively. The cases above stipulate the value of countvars on inputs that match

the various patterns. The first case thus states that countvars of a literal returns zero,

while the third and fourth cases state that countvars of an addition or multiplication

expression recursively computes countvars of the two arguments and adds the results.

Adding is done with the function add, which itself can be defined as

add x zero \ x = x

add x (succ y) \ x, y = succ (add x y)

The second case of countvars states that countvars of an arbitrary nullary constructor

c returns succ zero, as such constructors are used to encode object language variables.

This case cannot be written directly for a HOAS encoding, because a pattern cannot

distinguish whether an input is a meta-language variable. As stated above, if a

pattern could distinguish meta-language variables then the Substitution principle

would be violated, as the property of being a meta-language variable is not closed

under substitution for meta-language variables.

To extend countvars to the full language of arithmetic functions requires recursing

inside ν-abstractions. This is done with the function countvars-fun, defined as follows:

countvars-fun (fun-one x) \ x = lift-nat (ν c . countvars x 〈c〉)
countvars-fun (fun-many x) \ x = lift-nat (ν c . countvars-fun x 〈c〉)

The intent of this definition is that if the input to countvars-fun is a one-argument

function of the form fun-one (ν c . E), then countvars is called on the expression E, and

otherwise the input is a many-argument function of the form fun-many (ν c . F) and

11

countvars-fun recurses on F . The difficulty, though, is that pattern-matching cannot

match a term of the form fun-one (ν c . E) and extract E itself. Such an operation

would be unsafe, as E would be removed from the scope of the ν-abstraction, possibly

allowing c to escape the scope of the ν-abstraction. Scoping states that this cannot

happen.

To extract E from ν c . E is safe, however, if another constructor d is supplied to

use for c in E. Intuitively this is because the only freshness stipulation made by

ν c . E is that the new constructor c be fresh for all other constructors that E “knows

about.” If d is not such a constructor then it is perfectly valid to use it in place of

c in E. In a sense, this states that ν c . E can be viewed as a partial function whose

domain excludes all constructors for which c is required to be fresh. The construct

M 〈c〉, called a constructor replacement, calls this function with argument c. This is

equivalent to the concretion operator of [10]. Such a term is only well-formed if c is

fresh for M .

The first case of countvars-fun above takes an input of the form fun-one M , binds a

fresh constructor c, and calls countvars on M 〈c〉. This yields ν c : expr . n for some

(encoding of a) natural number n. Note that c could not possibly be used in n, as

neither zero or succ take any arguments of type expr. Thus it should be possible

to remove n from this ν-abstraction without using a constructor replacment. This

is done with the function lift-nat, which lifts n out of the ν-abstraction. Similarly,

the second case of countvars-fun takes an input of the form fun-one M , binds a fresh

constructor c, recurses on M 〈c〉, and calls lift-nat on the resulting ν-abstraction of

the form ν c : fun-expr . n. Note that, technically speaking, the two copies of lift-nat

are different, as one lifts past a constructor of type expr and the other lifts past a

constructor of type fun-expr. The two functions are otherwise identical, so we use the

same name here.

lift-nat is a pattern-matching function over a ν-abstraction, and can be defined as

follows:
lift-nat (ν c . zero) \ = zero

lift-nat (ν c . succ x 〈c〉) \ x = succ (lift-nat (ν c . x 〈c〉))

The first case takes the input (ν c . zero) to the output zero. The intent of the second

case is to take an input of the form ν c . succ x, recurse on ν c . x, and the return succ

12

of the result. For the same safety reasons given above, however, a pattern cannot

directly match ν c . succ x, as matching x could remove c from its scope. Instead the

pattern ν c . succ x 〈c〉 is used. If the input to lift-nat is ν c . succ N , this pattern

matches x 〈c〉 against N , meaning that x becomes a ν-abstraction whose constructor

replacement is N . This is equivalent to setting x to ν c .N . lift-nat then recurses on

ν c . x 〈c〉 and returns its successor.

13

Chapter 2

Background and Technical

Preliminaries

In this chapter, various background material is given that is relevant to this disserta-

tion. Section 2.1 discusses general concepts, such as sets and sequences, and defines

some notation for these. Section 2.2 define graphs and a number of related concepts.

Section 2.3 discusses term rewriting.

2.1 General Concepts

In the below, standard notation for set theory is assumed. For example, {1, 2, 3}
denotes the set containing exactly the elements 1, 2, and 3. ∪ denotes union and ∩
denotes intersection. Ordered pairs are written (x, y). Relations are sets of ordered

pairs. If R is a relation, then the notation xRy denotes that the ordered pair (x, y)

is in the set R. For any relation R, R= denotes the reflexive closure of R, meaning

xR=y if and only if xRy or x = y. RS denotes the composition of R and S, meaning

xRSy if and only if xRzSy for some z. R+ denotes the transitive closure of R,

meaning xR+y if and only if xRx1R . . . RxnRy for some sequence of zero or more

elements x1, . . . , xn. R∗ is the reflexive-transitive closure of R, meaning xR∗y if and

only if xR+y or x = y. R−1 is the inverse of R, meaning xR−1y if and only if yRx.

Arrows are sometimes used in the below for relations. In this case, the reflexivie-

symmetric-transitive closure of the relation is written !∗. This is equivalent to

(∪ −1)∗.

14

Sequences are written x1, x2, . . . , xn. For any symbol x, the notation ~x denotes the

sequence x1, x2, . . . , xn of the symbol x with different natural number subscripts. The

notation |~x| is sometimes used for the length of the sequence, meaning the biggest

i such that xi is an object in the sequence. Often these notions are left somehwat

implicit.

A category is triple (O,A, ◦) of a set O, a family of sets A(o1,o2) indexed by ordered

pairs (o1, o2) of elements of O, and a binary function ◦ mapping elements of Ao3,o2 ×
Ao2,o1 to Ao3,o1 . The elements of O are called the objects, the elements of Ao2,o1 are

called the morphisms from o1 to o2, and ◦ is called the composition operator. ◦ is

further required to be associative, meaning a3 ◦ (a2 ◦ a1) = (a3 ◦ a2) ◦ a1, and every

object o is required to have an identity mapping id in Ao,o such that a ◦ id = a and

id ◦ a = a for every mapping a.

2.2 Graphs

In this section some concepts related to graphs are briefly defined. These are standard,

and can be found in many textbooks [13].

Definition 2.2.1 (Graph). A directed graph is a pair of a set V , called the vertices

of the graph, and a binary relation E on V , called the edges of the graph.

Viewing binary relations as sets of ordered pairs, an edge is thus an ordered pair

(v1, v2) of vertices v1, v2 ∈ V .

Definition 2.2.2 (Graph Concepts). Given a graph G = (V,E), the following are

useful definitions:

• A finite graph is one where V and E are both finite. Since E is not a multiset

here, V being finite implies that E is also finite.

• The in-degree of v ∈ V is the number of edges (v′, v) ∈ E for some v′ ∈ V .

• The out-degree of v ∈ V is the number of edges (v, v′) ∈ E for some v′ ∈ V .

15

• A path from v1 to vn in G is a sequence (v1, v2), (v2, v3), . . . , (vn−1, vn) of edges

in E such that vi 6= vj for i 6= j, except for the special case, called a loop, where

v1 = vn is allowed. v1 is the beginning of the path and v2 is the end. Excluding

the loops, paths by this definition are also called simple paths elsewhere.

• An empty path is a path that is an empty sequence. Note that empty sequences

of edges are distinguished by their beginning vertices.

• Vertex v2 is reachable from v1 in G if and only if there exists a path from v1 to

v2 in G.

• Vertices v1, v2 ∈ V are connected in G if and only if there exists a path from

one to the other in G; i.e. , if one is reachable from the other.

• A vertex v ∈ V is on a path p if and only if p contains either (v, v′) or (v′, v)

for some v′ ∈ V or if p is the empty path from v to itself.

• Two paths share a vertex if and only if there is some v ∈ V such that v is on

both paths.

• Two loops are identical up to their starting points if and only if one of the

loops is the sequence (v1, v2), (v2, v3), . . . , (vn, v1) and the other is the sequence

(vi, vi+1), . . . , (vn, v1), (v1, v2), . . . , (vi−1, vi) for some i.

• A maximal path in G is a path that is not a proper subsequence of any valid

paths in G.

• The maximal paths modulo loops of G include all maximal paths of G that are

not loops as well as the equivalence classes of the loops under the equivalence

relation of being identical up to starting points.

• The union of G with some other G′ = (V ′, E ′), written G ∪ G′, is the graph

(V ∪ V ′, E ∪ E ′).

• A graph homomorphism from G to some other G′ = (V ′, E ′) is a function from

V to V ′ such that if (v1, v2) ∈ E then (f(v1), f(v2)) ∈ E ′.

• A graph isomorphism between G and some other G′ = (V ′, E ′) is a bijective

graph homomorphism whose inverse is also a graph homomorphism. Stated

16

differently, a graph isomorphism is a bijective function f from V to V ′ such

that (v1, v2) ∈ E if and only if (f(v1), f(v2)) ∈ E ′.

2.3 Term Rewriting

This section is meant as a brief overview of aspects of Term Rewriting that are rele-

vant to this dissertation. A more in-depth discussion can be found in many standard

sources [15, 67, 6]. Term rewriting was originally developed as an approach to au-

tomated theorem proving in theories of equality. Consider for example the equality

axioms
plus x zero = x

plus x (succ y) = succ (plus x y)

for addition over the natural numbers. It is apparent that equality modulo these

axioms can be decided by repeatedly replacing expressions of the form x + 0 with x

and replacing expressions of the form x+ (succ y) with succ (x+ y). This yields the

system

plus x zero x

plus x (succ y) succ (plus x y)

of simplification rules for addition expressions over the natural numbers. We call this

system Rplus below. For example, the above rules would simplify plus (succ zero) zero

to succ zero. Such a system is called a term rewrite system or TRS.

Term rewrite systems are also useful for defining computation. For example, Rplus

can also be seen as a definition of the function plus. In this view, a term is a com-

putation that is in the process of executing. Rewriting specifies the possible “next

steps” or reductions of a computation. The value of a computation is then found by

repeatedly finding a next step, or reducing, a term until there are no more rules to

apply. plus (succ zero) zero is thus a computation whose value by the above rules is

succ zero.

Term rewriting is in general a non-deterministic notion of computation. For exam-

ple, the term plus (plus zero (succ zero)) zero reduces to the two different terms

plus zero (succ zero) and plus (succ (plus zero zero)) zero. In this case, however, two

17

more reductions on each term lead to the common value succ zero. The property that

different sequences of reductions starting at the same term can always be brought

back together is called confluence. Graphically, confluence can be illistrated as

M

∗}}{{{{{{{{

∗ !!CCCCCCCC

M1

∗
!!C

C
C

C M2

∗
}}{

{
{

{

N

where the existence of the solid lines implies the existence of the dashed lines and the

symbols ∗ indicate zero or more steps of reduction. Confluence of a TRS implies that

every computation has at most one value. Note that not every TRS is confluent. A

simple counterexample is the system

c d

c e

In this case, c has two values, d and e.

In order that every computation has at least one value, every term must have some

sequence of reductions that terminates. A TRS is said to be weakly normalizing if

this property holds. In a weakly normalizing system, however, there might still be

infinite sequences of reductions, and reductions performed in the wrong order might

lead to such an infinite sequence. For example, the system

c f c

f x d

is weakly normalizing, as every term has value d, but the term c has the infinite

reduction c f c f (f c) The stronger property of strong normalization

or termination states that this is not possible, that is, that there are no infinite

sequences of reductions. This ensures not only that every computation has a value

but also that reductions can be applied in any order and some value will eventually

be reached.

18

When a rewrite system is both terminating and confluent it is called convergent.

Viewed as a system of computation, this ensures that every term has a value in the

given rewrite system. Convergence is also useful for the automated theorem proving

aspect of rewriting, as it ensures that equality in the associated equational theory is

decidable. This is because any two terms may be reduced in finitely many steps to

their unique values, and these values will be identical if and only if the original terms

are equal in the theory. For example, Rplus is convergent, and thus equality in the

associated equational theory is decidable.

Unfortunately, the plus operator in this theory is neither associative nor commuta-

tive as one would expect. A simple counterexample to commutativity is the term

plus zero x. This term is a value, because it matches neither of the left-hand sides in

Rplus. Commuting the arguments, however, leads to plus x zero which reduces to the

value x. Commutativity is in general problematic, as the rule

f x y f y x

will make any system non-terminating. In some theories, associativity can be handled

by orienting it in one way or the other, but this is not always the case. Examples are

in many standard references.

The standard solution to this problem is to incorporate associativity and commuta-

tivity into the definition of rewriting. The resulting formalism is called AC-rewriting.

An associtive-commutative rewrite system or ACRS is a set of rules along with a set

of binary operations to be considered associative and commutative. Terms are then

considered equal up to associativity and commutativity of the given operators, and

a term reduces if and only if it is equal up to associativity and commutativity to a

left-hand side in the given ACRS. For example, if Rplus is considered as an ACRS,

where plus is stipulated as associative and commutative, then plus x zero reduces to

x.

The remainder of this section is organized as follows. First, Section 2.3.1 defines

standard rewriting. Next, Section 2.3.2 defines Associative-Commutative Rewriting.

Finally, Section 2.3.3 concludes with some standard results on proving confluence.

Standard results on termination are not addressed here as they will not be used in

this document.

19

2.3.1 Term Rewrite Systems

In this section, term rewrite systems are defined. This is done by first defining

the term language on which rewriting operates, and then term rewriting systems

themselves are defined. To define the terms, we assume two disjoint sets C and V
of symbols are given, along with a function mapping each element of C to a natural

number. The elements of C are called the constructors and those of V are called the

variables below. while number associated with an element of C is called its arity. A

constructor with arity 0 is called nullary, one with arity 1 is called unary, and one

with arity 2 is called binary. c, d, e, and f are used for constructors and x, y, and z

are used for variables below, all possibly with subscripts. The terms are then defined

inductively as follows:

• x ∈ V is a term; and

• If M1, . . . ,Mn are all terms then so is c M1 . . .Mn, where n is the arity of c.

M , N , l, and r, possibly with subscripts, are used for terms below, where l and r

are reserved for the left- and right-hand sides of rewrite rules. The notation c ~M is

sometimes used below for c M1 . . .Mn. A term N is a subterm of M if and only if M

contains N . N is in addition said to be a strict subterm if M 6= N . The set of free

variables of M , written FV(M), is then the set of all variables that occur as subterms

of M .

Another useful concept is the substitutions. A substitution is a mapping from vari-

ables to terms that is the identity for all but finitely many variables. σ is used for

substitutions below. The domain of a substitution σ, written Dom(σ), is the set of all

x such that σ(x) 6= x. A substitution can also be written out as [M1/x1, . . . ,Mn/xn]

where the {x1, . . . , xn} is the domain of the substitution and Mi is the value of

the substitution on xi. Substitutions can also be extended to terms by setting

σ(c M1 . . .Mn) = c σ(M1) . . . σ(Mn).

A final notion that will be necessary is the term contexts. A term context is a term

with exactly one occurrence of the special symbol . Term contexts are written C

below. Intuitively, a term context represents a term with a hole. This hole can be

20

filled by replacing it with a term M . This is written C[M]. It is straightforward to

see that M = C[N] for some C if and only if N is a subterm of M .

Given these definitions, a term rewrite system is a set of pairs of terms (l r) such

that l is not a variable and FV(r) ⊆ FV(l). The first condition is so that a rule does

not apply to every term, while the second is because it is not clear for example what

term to use for y in the rule c x d x y. Rewrite systems are written R and S below.

A rewrite system R induces a relation, written R, called the one-step R-reduction.

 R is defined to be the set of all pairs C[σl] C[σr] for C a term context, σ a

substitution, and (l r) ∈ R. The symbol R itself is sometimes also used for this

relation. A term of the form σl is called an R-redex, or just a redex if R is clear from

context. A term M is said to R-reduce to N , or just reduce, if M ∗
R N , recalling

that ∗
R is the reflexive-transitive closure of R. In this case, N is said to be an

R-reduct of M . Two terms are then said to be R-joinable if and only if they share a

common R-reduct. Finally, two terms are said to be R-equal, written !∗ or =R, if

and only if the two terms are related by the reflexive-symmetric-transitive closure of

 R.

2.3.2 Associative-Commutative Rewrite Systems

An associative-commutative rewrite system, or ACRS, is a TRS along with a set of

binary constructors to be considered associative and commutative. These are called

the AC constructors below. Equality up to associativity and commutativity of these

operators, written =AC, is defined as the reflexive-symmetric-transitive closure of the

one-step rewrite relation of the system containing the two rules

f x y f y x

f (f x y) z f x (f y z)

for every AC constructor f .

AC-Rewriting is defined by the one-step AC-reduction relation R/AC. Given terms

M and N , M R/AC N holds if and only if

M =AC C[σl] ∧ C[σr] =AC N

21

for some rule (l r) ∈ R, some term context C, and some substitution σ. Note

that this is essentially rewriting on =AC-equivalence classes of terms. The R-redexes

here are the terms M =AC σl for some substitution σ and left-hand side l. Note

however that a term can reduce without having an R-redex, since it might just be

=AC-equivalent to a term with an R-redex. The notion that M R-reduces to N when

R is an ACRS is modified to include =AC, so that this phrase means that either

M ∗
R N or M =AC N . N is still an R-reduct of M whenever M R-reduces to

N , but this means here that N could also be equal under =AC to M . Similarly,

R-joinability is considered modulo =AC, and R-equality, written =R, the reflexive-

symmetric-transitive closure of the union R/AC ∪ =AC, which is easily seen to be

equivalent to!∗
R/AC ∪ =AC.

2.3.3 Confluence Results

Confluence is an important result for programming languages. Confluence ensures

that a computation does not have different values depending on how that computation

is executed. In many forms of type theory, like those introduced in Chapters 5 and

7, this is crucial to proving many of the meta-theoretic properties of the language.

Termination of such systems is generally proved by special techniques, such as logical

relations [25, 12], as standard techniques from rewriting do not apply. Confluence of

such sytems, in contrast, is generally proved by standard rewriting techniques. The

remainder of this section proceeds gives some standard confluence results. Results

of abstract reduction systems, which include any binary relations, are given first,

followed by the Critical Pairs Lemma for both standard and associative-commutative

rewriting. Proofs are given where straightforward, and otherwise the reader is referred

to standard references [15, 67, 6].

Confluence of Abstract Reduction Systems

A number of useful properties of rewrite systems can be shown without any reference

to the definition of rewriting. Stated differently, these results hold for any binary

relation or relations on a given set, a class which happens to include rewrite systems.

Binary relations here are thus called abstract reduction systems. The word “term”

22

here thus refers to any element of the domain or range of the given binary relation or

relations.

The first result relates to the well-known Church-Rosser property of a relation R.

This property states that equality under the reflexive-symmetric-transitive closure

!∗
R is equivalent to joinability. This is why confluence is important: in a confluent

system, equality of two terms can be checked by just running the system forward to

see if the terms are joinable.

Definition 2.3.1 (Church-Rosser). A relation R is Church-Rosser if and only if,

for any M1 and M2, M1 !∗
R M2 implies there exists an N such that Mi ∗

R N for

i ∈ {1, 2}.

Theorem 2.3.1. A relation R is Church-Rosser if and only if it is confluent.

Proof. The “only if” direction is immediate. The “if” direction can be shown graph-

ically. If M1 !∗
R Mn then there must exist M2 through Mn−1 related to M1 and Mn

as in the following figure:

M2

∗

}}{{{{{{{{
∗

!!CCCCCCCC
∗

����������
. . .

∗

��>>>>>>>>>

M1 M3 Mn

By confluence, this implies that the first “peak” may be turned into a “valley” as:

∗
~~||||||||

. . .
∗
 BBBBBBBB

M1

∗

!!CCCCCCCC M3

∗

}}{{{{{{{{
Mn

M ′
2

By induction on the number of peaks, this process may be iterated until there are no

peaks, implying that M1 and Mn are joinable.

The simplest way to prove confluence is through strong confluence. Strong confluence

states that if a term reduces in one step to two different terms then those terms are

23

joinable in a single step. Graphically, this can be depicted as

M

}}{{{{{{{{

!!CCCCCCCC

M1

∗
!!C

C
C

C M2

∗
}}{

{
{

{

N

where the existence of the solid lines implies that of the dashed lines.

Definition 2.3.2. The relation R is called strongly confluent if and only if R−1R ⊆
R=(R=)−1.

Lemma 2.3.1. If R is strongly confluent then it is confluent.

Proof. We first show that ifM =
R M1 andM ∗

R M2 thenM1 ∗
R N andM2 =

R N

by induction on the number of steps in M ∗
R N . The result is immediate if this

number is 0, as then M2 = M . The result is also immediate if M = M1. Otherwise

we have the picture M

��

//M ′
2

=

���
�
�

∗ //M2
=//

M1=
// N ′ ∗ //___ N

where the first square is by the strong

confluence of R and the second is by the induction hypothesis. A similar proof then

extends this fact to full confluence of R.

It is sometimes useful to prove confluence of a relation R by proving confluence of

some R′ such that R ⊆ R′ ⊆ R∗. This is shown valid by the following lemma:

Lemma 2.3.2. For any relations R and R′ such that R ⊆ R′ ⊆ R∗, if R′ is confluent

then so is R.

Proof. If M ∗
R M1 and M ∗

R M2, then M ∗
R′ Mi by the assumed subset relation.

By confluence of R′ it follows that Mi ∗
R′ N for some N , and so Mi ∗

R N , also by

the assumed subset relation.

It is also sometimes useful to prove confluence by proving the following local confluence

property:

24

Definition 2.3.3 (Local Confluence). A relation R is locally confluent if M R

M1 and M R M2 implies there exists some N such that Mi ∗
R N for i ∈ {1, 2}.

This can be displayed graphically as

M

}}{{{{{{{{

!!CCCCCCCC

M1

∗

!!C
C

C
C M2

∗

}}{
{

{
{

N

where the existence of the solid lines implies the existence of the dashed lines. Local

confluence implies confluence if the relation is terminating, as shown by the following

lemma. To see that termination is necessary, the relation given graphically as

a boo ((chh // d

is a standard counterexample of a non-terminating relation that is locally confluent

but not confluent.

Lemma 2.3.3 (Newman’s Lemma). If R is locally confluent and terminating then

it is confluent.

Proof. Let M ∗
R M1 and M ∗

R M2. We now need to show that there is some N

such that Mi ∗
R N for i ∈ {1, 2}. We prove this by induction on the maximum

number of R-steps that can be taken from M , or, more precisely, the maximum

number of terms M ′, M ′′, M ′′′, etc. such that M R M ′ R M ′′ R M ′′′ R

This is well-defined and finite as R is terminating. If M is equal to either M1 or M2,

then the result is immediate. Otherwise the situation can be depicted graphically as

M

}}||||||||

!!BBBBBBBB

M ′
1

∗

}}{{{{{{{{
M ′

2

∗

!!CCCCCCCC

M1 M2

25

for some M ′
1 and M ′

2. Local confluence then yields

M

}}||||||||

!!BBBBBBBB

M ′
1

∗

}}{{{{{{{{ ∗

 BBBBBBBB
M ′

2

∗

~~|||||||| ∗

!!CCCCCCCC

M1 N ′ M2

for some N ′. The number of R-steps that can be taken from M ′
i must be less than

the number of R-steps that can be taken from M , as the R-reduction step from M

to M ′
i can be prepended to any sequence of R-reductions starting at M ′

i . Thus by

the induction hypothesis we have

M

}}||||||||

!!BBBBBBBB

M ′
1

∗

}}{{{{{{{{ ∗

 BBBBBBBB
M ′

2

∗

~~|||||||| ∗

!!CCCCCCCC

M1

∗

!!CCCCCCCC N ′

∗

~~||||||||
∗

 BBBBBBBB M2

∗

}}{{{{{{{{

N ′
1

∗

!!BBBBBBBB
N ′

2

∗

}}||||||||

N

for some N ′
1, N

′
2, and N , where the existence of N follows by a third application of

the induction hypothesis to N ′.

We now turn briefly to modularity of confluence, the property that the confluence of

two relations R and S implies the confluence of their union. A standard modularity

of confluence result is the Hindley-Rosen Lemma, which states that the union of

two strongly confluent is confluent if the relations commute. Recall that R= is the

reflexive closure of R.

Definition 2.3.4 (Strongly Confluent). A relation R is strongly confluent if and

only if R−1R ⊆ R=(R=)−1.

26

Definition 2.3.5 (Commutativity of Relations). The relations R and S are said

to commute if and only if R−1S ⊆ S=(R=)−1.

These two notions can be conveyed graphically as

M
R

}}{{{{{{{{

R !!CCCCCCCC M
R

}}{{{{{{{{

S !!CCCCCCCC

M1

R
=

!!C
C

C
C M2

R
=

}}{
{

{
{

M1

S
=

!!C
C

C
C M2

R
=

}}{
{

{
{

N N

where the existence of the solid lines implies the existence of the dashed lines. The first

diagram describes strong confluence of R while the second describes commutativity

of R and S.

Lemma 2.3.4 (Hindly-Rosen Lemma). If R and S commute and are both strongly

confluent then their union is confluent.

Proof. Assume M R∪S M1 and M R∪S M2. These reductions are equivalent to a

sequence of individual steps of R and S. Thus we have a peak

M

}}||||||||

!!BBBBBBBB

M ′
1

}}{{{{{{{{
M ′

2

��<<<<<<<<<

M ′′
1

.

M1 M2

27

where each line is a reduction of either R or S. Any peak may be “pushed down” to

form a valley as in the proof of Newman’s Lemma:

M ′
1

}}{{{{{{{{

=
 AAAAAAAA

M ′
2

~~}}}}}}}}
=

��<<<<<<<<<

M ′′
1

. . .
N ′

. . .

M1 M2

Because the “sides” of the new valley have length at most one, induction is not needed

on the number of steps to a normal form. Thus neither of the relations R or S need be

terminating. Instead, induction may proceed on the number of steps in M R∪S M1

and M R∪S M2, and the process of pushing down peaks may be repeated until an

N is found such that Mi R∪S N .

Note that if R is confluent then R∗ is strongly confluent for any relation R. Thus a

direct corollary of the Hindley-Rosen Lemma is that if R∗ and S∗ commute then R
and S satisfy modularity of confluence.

The Critical Pairs Lemma

We now consider a confluence result, the Critical Pairs Lemma, that relies on more

specific properties of rewrite systems. The Critical Pairs Lemma shows how local

confluence may be proved by checking joinability of only finitely many terms. Coupled

with Newman’s Lemma this can then be used to prove confluence of terminating

systems. The key idea of the Critical Pairs Lemma is that the only difficulty in

proving local confluence is when two rules overlap in a non-trivial way. In this case,

reducing one redex of one rule could cause a redex for the other rule to disappear. In

all other cases, local confluence is straightforward. After the Critical Pairs Lemma is

introduced, it is generalized to include ACRSs.

We turn first to the standard Critical Pairs Lemma without associativity or commu-

tativity. The first notion needed is that of overlap:

28

Definition 2.3.6 (Overlap). A term M is said to overlap a term N if and only if

there exists some substitution σ and some subterm N ′ of N such that σM = σN . M

is said to non-trivially overlap N if and only if M is not equal to N and the given

N ′ is not a variable.

When σM = σN σ is said to be a unifier of M and N . If such a σ exists, M and

N are said to unify. In general, if two terms unify then they have infinitely many

unifiers. Consider the terms c x and c (d y) for some constructors c, d, and e. Any

substitution that makes σx = d (σy) is a unifier of these terms. There are infinitely

many such substitutions. What is needed is the idea of most general unifier.

Definition 2.3.7 (Most General Unifier). A substitution σ is said to be more

general than a substitution σ′ if and only if there exists some substitution σ1 such

that σ′x = σ1(σx) for all x. Two substitutions are called incomparably general if and

only if neither is more general than the other. A most general unifier of M and N is

then a unifier of M and N that is more general than any other unifier of M and N .

It is a standard result that any two terms that unify in fact have a most general

unifier [7]. The concepts of non-trivial overlap and most general unifier can then be

used to define the critical pairs. A non-trivial overlap of the left-hand sides of two

rules yields some term that can be rewritten two different ways by the two rules. A

critical pair is the (most general) pair of terms resulting from this rewriting:

Definition 2.3.8 (Critical Pair). Let (l1 r1) and (l2 r2) be two (not neces-

sarily distinct) rules in R whose variables are renamed to be distinct. If l1 ≡ C[M]

for some term context C and non-variable term M , and σ is a most general unifier

of M and l2, then the pair (σr1, C[σr2]) is called a critical pair of the rules (l1 r1)

and (l2 r2). If the two rules are the same then C is required to not be the trivial

term context .

Lemma 2.3.5 (Critical Pairs Lemma). If R is terminating and all of its critical

pairs are joinable then it is locally confluent and thus confluent.

Proof. The proof goes as described at the beginning of this section. The details are

quite involved, so the reader is referred to any standard reference. See Baader and

Nipkow [6] for an especially readable development.

29

For AC-rewriting, the situation is more complicated. First, two unifiable terms need

not have a most general unifier. For example, if f is an AC constructor and c and

d are two other constructors then f x y and f c d has the two incomparable unifiers

[c/x, d/y] and [d/x, c/y]. It is however a standard result that any terms that unify

with respect to =AC will always have a finite set of unifiers that cover all the necessary

cases [7], where this notion can be defined precisely as follows:

Definition 2.3.9 (Minimal Complete Set of AC-Unifiers). A complete set of

AC-unifiers for M and N is a set of unifiers of M and N with respect to =AC such that

for any unifier σ′ of M and N with respect to =AC there is some more general σ in

the given set. A minimal complete set of AC-unifiers is a complete set of AC-unifiers

such that every pair of elements in the set is incomparably general.

In this terminology, any two terms that unify with respect to =AC will have a finite

minimal complete set of AC-unifiers. Note that there are infinitely many minimal

complete sets of AC-unifiers for a particular pair of terms, but since each set is

complete it suffices to consider just one minimal complete set of AC-unifiers for every

unifiable pair of terms. This leads to the following adapted definition of critical pairs:

Definition 2.3.10 (AC Critical Pairs). Let (l1 r1) and (l2 r2) be two (not

necessarily distinct) rules in R whose variables are renamed to be distinct. If l1 =AC

C[M] for some term context C and non-variable term M , and σ is in a minimal

complete set of AC-unifiers for M and l2, then the pair (σr1, C[σr2]) is an AC critical

pair of the rules (l1 r1) and (l2 r2).

Because of the swapping performed by =AC, two AC rewrite rules can still interfere

with each other even if they have no critical pairs. For example, if f is an AC

constructor then the system

f c1 c2 d

f c2 c3 e

is not confluent, even though it is obviously terminating and has no critical pairs.

This is because f c1 (f c2 c3) can reduce both to f c1 e and to f d c3. Peterson and

Stickel [51] showed, however, that it is enough to consider all AC critical pairs in an

extended system got by adding the rule

f l x f r x

30

for every rule (l r) in the original system where l is of the form f M N and f

is an AC constructor. Note that the original rules are retained. The above example

does have a critical pair in this extended system, since the left-hand side f c1 c2 has

a non-trivial overlap (modulo =AC) with the new rule f (f c2 c3) x. The resulting

unifier is [c1/x], leading to the critical pair (f e c1, f d c3), which is exactly the pair

that could not be joined above. Peterson and Stickel proved the following result for

AC critical pairs:

Theorem 2.3.2. Let R be an AC-rewrite system such that, for every rule of the form

(f M N r) in R, R also contains a rule of the form (f (f M N) x f r x) for

some fresh variable x not occurring in M , N , and r. If all AC critical pairs of R are

joinable, then R is locally confluent.

It follows that if R is extended to contain the above new rules, and all the AC critical

pairs in the resulting system are joinable, then R is locally confluent. This is because

any reduction performed by one of the new extended rules could also be performed

by the original rule, so reduction in the extended system is identical to reduction in

R.

31

Chapter 3

A Brief Introduction to Intensional

Constructive Type Theory

Intensional Constructive Type Theory, or ICTT, is a logical theory that is also a

programming language. This allows the user to write programs and prove properties

of them in the same language. Originally introduced by Per Martin-Löf [40], ICTT

is a foundational theory of mathematics based on the ideas of Type Theory that

came from Russell. It can thus be compared to Zermelo-Frankel Set Theory, a more

common foundational theory of mathematics.

ICTT is a syntactic theory organized, as its name suggests, around a combination

of the philosophy of Constructivism and the notion of intensionality. Constructivism

is a broad topic, but the basic tenet is that the only mathematical objects whose

existence can be accepted are those that can be constructed in some concrete fashion

by the mathematician. Thus an object cannot be proved to exist by reductio ad

absurdum, as such a proof only shows that an object cannot fail to exist and does not

show how the object may be constructed. ICTT is constructive, meaning it adheres

to Constructivism, in the sense that the only objects that exist in the theory are those

that can be constructed syntactically. This is in contrast to ZF Set Theory, in which

the set of real numbers has uncountably many elements that cannot be written down,

as the language of ZF Set Theory is countable.

ICTT is also intensional, meaning equality of objects is defined as a purely syntactic

notion. In contrast, an extensional theory makes object equality a semantic notion,

based on properties defined in the theory itself. Thus, for example, Zermelo-Frankel

set theory is an extensional theory, because two sets are equal in ZF set theory if and

32

only if they have the same elements, which is a semantic notion. Equality in ICTT is

instead defined by the syntactic transformations of a rewrite system (see Section 2.3).

This defines a notion of computation: an element of ICTT computes, or evaluates, to

another term through the reductions of the given rewrite system. Thus, for example,

the term for 2 + 2 reduces to the term for 4. The rewrite system for ICTT is in fact

convergent, meaning all terms have a canonical form, which can be computed. This

is an important property of ICTT, as it is how the theory is proved consistent. It

also means that all computations are guaranteed to terminate. Equality in ICTT can

thus be decided, by checking if two terms have the same canonical form.

The remainder of this chapter is organized as follows. Section 3.1 discusses Construc-

tivism and introduces the Curry-Howard Isomorphism, a central concept in ICTT.

Section 3.2 then gives an informal introduction to the Calculus of Inductive Construc-

tions, a particular version of ICTT, by example.

3.1 Constructivism and the Curry-Howard Isomor-

phism

This section gives a brief overview of Constructivism and the Curry-Howard Isomor-

phism. For more details, see [70, 30]. Constructivism is the philosophical stance that

mathematical objects can only be considered to exist if the mathematician demon-

strates how they can be constructed, or built up from some starting objects via some

allowed operations. For example, the set of natural numbers might be an allowed

starting object, assumed to exist a priori, and the allowed operations might include

taking the union of two sets or taking the image of a set under some partial function.

Constructivism rejects existence proofs that use reductio ad absurdum. The reasoning

is that such proofs only posit that an object cannot not exist, and do not give any

means to construct the object.

Rejecting reductio ad absurdum existence proofs also requires the rejection of the Law

of the Excluded Middle. The Law of the Excluded Middle states that, for any formula

φ, the formula φ∨¬φ is true. Stated differently, the Law of the Excluded Middle means

that every formula is either true or false. It is well-known that the Law of the Excluded

33

Middle is equivalent (modulo the standard rules for disjunction and implication) to

the Law of Double Negation, written ¬¬φ→ φ. Substituting ∃x.ψ(x) for φ, the Law

of Double Negation implies the validity of reductio ad absurdum existence proofs,

and hence cannot be accepted by Constructivism. Thus, under Constructivism, a

proposition is not necessarily either true or false.

One approach to understanding Constructivism is in terms of the Brouwer-Heyting-

Kolmogorov interpretation, or BHK-interpretation, of first-order logic. This interpre-

tation gives a Constructivist meaning to the first-order logical connectives by defining

what constitutes a proof of each of these connectives. The BHK-interpretation can

be summarized as follows:

• A proof of φ ∧ ψ is a pair of a proof of φ and a proof of ψ.

• A proof of φ ∨ ψ contains either a proof of φ or a proof of ψ.

• A proof of φ→ ψ is a function that creates proofs of ψ from proofs of φ.

• A proof of ∃x.φ(x) is a pair of an individual i and a proof of φ(i).

• A proof of ∀x.φ(x) is a function that creates a proof of φ(x) from any x.

Negations ¬φ are read as implications φ→ ⊥, where ⊥ is the absurd proposition that

has no proof. The BHK-interpretation yields a form of what is called intuitionistic

first-order logic. (The philosophies of Intuitionism and Constructivism are closely

tied; see [70].) Intuitionistic first-order logic is known to be strictly weaker than stan-

dard, or classical first-order logic. Specifically, as discussed in the previous paragraph,

∃x.φ(x) can only be proved by giving (constructing) a particular i and proving φ(i).

In addition, φ∨¬φ cannot be proved without giving either a proof of φ or one of ¬φ,

so if neither of these is provable then the disjunction is also not provable.

The reader will note that the BHK-interpretation is not actually fully defined. The

one piece that was left implicit was the stipulation of what constitutes a function. This

is intended: the BHK-interpretation is parameterized by the class of allowed func-

tions. Different classes of functions will give different logics. The class of functions,

however, should include only total functions. Otherwise every implication φ → ψ

would be provable using the (partial) function that is undefined on all inputs. In

34

most uses (including CTT), the functions are also required to be recursive. This

makes ideological sense in Constructivism, because a mathematician cannot truly be

said to construct the result of a non-recursive function. Thus, as a side note, in or-

der for the class of functions itself to be decidable it must not contain all recursive

functions, since this set is known to not even be recursively enumerable.

The BHK-interpretation has a similar flavor to algebraic datatype definitions. This

similarity is made formal with the Curry-Howard Isomorphism, also known as the

Propositions-as-Types principle. Under the Curry-Howard Isomorphism, propositions

are identified with the sets of their proofs. Provability of a proposition then becomes

non-emptiness of its set. Moving to programming languages, these sets can be viewed

as datatypes, where provability is non-emptiness of the datatype. This follows from

the following re-statement of the BHK-interpretation:

• φ ∧ ψ is the type of pairs whose first element has type φ and whose second

element has type ψ;

• φ ∨ ψ is the type of variants, or disjoint sets, which contain either an element

of type φ or one of type ψ;

• φ→ ψ is the type of functions from type φ to type ψ;

• ∃x.φ(x) is the type of pairs whose first element i has some type A, reflecting

the domain of quantification, and whose second element has type φ(i); and

• ∀x.φ(x) is the type of functions from argument i in the domain A of quantifi-

cation to type φ(i).

Note that the last two clauses require dependent types, or types that can contain data.

For example, the proposition that all natural numbers are either odd or even might

be interpreted by the formula ∀x.(isodd x) ∨ (iseven x). Viewed as a datatype this

type include the functions whose input is a natural number x and whose output is

a variant type containing either an element of the datatype isodd x or an element of

the datatype iseven x. Note again that this re-interpretation still requires functions

to be total, since, for example, a proof that all natural numbers are odd or even must

return a proof for all inputs x.

35

3.2 Informal Calculus of Inductive Constructions

In this Section a particular version of ICTT, called the Calculus of Inductive Con-

structions or CIC, is introduced by example. For a more in-depth treatment of ICTT

in various forms, see [49, 3]. For an implementation of CIC, see the Coq system [68].

The data of CIC are defined by the user with constructors. A constructor is an

atomic, named piece of syntax in CIC. These allow the user to define standard al-

gebraic datatypes, such as natural numbers and lists, as well as properties of data,

such as the concept that a number is less than another number. Types defined by

constructors are in general called inductive types. CIC also allows the user to write

functions over these data. Functions on algebraic datatypes define operations on data,

whereas functions on properties of data can be viewed as proofs of implications, as

discussed above. Syntactic restrictions ensure that pattern-matching functions are

total.

The remainder of this section proceeds as follows. Section 3.2.1 gives some example

inductive types, and discusses how these can encode both data and proofs. Section

3.2.2 then describes some example functions over those inductive types, including

examples of both operations and proofs. Finally, Section 3.2.3 briefly introduces the

type universes alluded to in the previous sections.

3.2.1 Example Datatypes

Figure 3.1 gives some example constructor declarations in CIC. In an implementation

of ICTT, such as Coq, these declarations could be entered by the user to define the

given constructors. Each line of the figure declares a constructor by putting it to

the left of a colon. For example, the first line declares the constructor nat. This

declaration adds the symbol nat as a term, or syntactic element, of the theory. Every

term must have a type, so when nat is declared it must be also given a type. This is

done by putting a type, or term that is itself a term of type Typei for some i, to the

right of the colon. In this case, nat is given the type Type0, classifying nat itself as a

type. Such a constructor is called a type constructor. The terms Typei for each i are

called the type universes, and are discussed below in Section 3.2.3. For the present

36

nat : Type0

zero : nat
succ : nat ⇒ nat

list : Type0 ⇒ Type0

nil : ΠA :Type0 . list A
cons : ΠA :Type0 . A⇒ list A⇒ list A

True : Type0

true-i : True
False : Type0

eq : ΠA :Type0 . A⇒ A⇒ Type0

eq-refl : ΠA :Type0 .Πx :A . eq x x

le : nat ⇒ nat ⇒ Type0

le-refl : Πx :nat . le x x
le-succ : Πx :nat .Πy :nat . le x y ⇒ le x (succ y)

is-sorted : ΠA :Type0 .ΠR : (A⇒ A⇒ Type0) . list A⇒ Type0

is-sorted-nil : ΠA :Type0 .ΠR : (A⇒ A⇒ Type0) . is-sorted A R (nil A)
is-sorted-one : ΠA :Type0 .ΠR : (A⇒ A⇒ Type0) .

Πx :A . is-sorted A R (cons A x (nil A))
is-sorted-many : ΠA :Type0 .ΠR : (A⇒ A⇒ Type0) .Πx1 :A .Πx2 :A .Πl : list A .

(R x1 x2) ⇒ is-sorted A R (cons A x2 l) ⇒
is-sorted A R (cons A x1 (cons A x2 l))

Figure 3.1: Example Constructor Declarations in CIC

discussion, it suffices to say that all terms used as types here, including Type0 itself,

will have type Typei for some i.

The next two lines of Figure 3.1 declare the constructors zero and succ. zero is given

type nat, while succ is given type nat ⇒ nat. This latter type, called a function type,

means that the term succ M is of type nat for any M which itself is of type nat.

(nat ⇒ nat is actually an abbreviation for the type Πx : nat . nat, introduced below.)

Since zero and succ can both be used to construct terms of type nat, they are called

constructors of nat. It is clear from the definitions that there is an isomorphism from

the natural numbers to the terms of type nat built from zero and succ. It will further

be true in CIC that terms built from different constructors are not equal, and that

all terms of some type A built from a type constructor a will be equal to some term

built from the constructors of a. Thus there is an isomorphism from the natural

37

numbers to the terms of type nat modulo equality in CIC. nat is then said to be an

adequate encoding of the natural numbers. In the below, terminology is loosened a

bit and a type that is an adequate encoding of a set of mathematic objects is said to

be the type of that set of objects. Thus nat is said to be the type of natural numbers,

and elements of nat are said to be natural numbers. This is despite the fact that,

technically, the natural numbers themselves are external to CIC.

The next lines in Figure 3.1 define the type of (encodings of) finite polymorphic

lists, or lists of objects of any given type. The first line declares list A as a type for

any type A. The next line declares nil as a constructor for this list. nil is given the

type ΠA : Type0 . list A, which is a dependent function type. This is a function type

where the input can appear in the type of the output. nil A thus has type list A

for any A of type Type0. For example, nil nat has type list nat. The non-dependent

function type A⇒ B is actually just an abbreviation for the dependent function type

Πx : A .B when x does not occur in B. The following line then declares cons as a

second constructor for list. cons is given type ΠA :Type0 . A⇒ list A⇒ list A, which

is equivalent to ΠA :Type0 . (A⇒ (list A⇒ list A)), as function types associate to the

right. This means that ((cons A) M) L for any type A, any term M of type A, and

any term L of type list A. Note that we are here using the notion of currying, where

arguments of multiple functions are represented as functions that return functions.

((cons A) M) L can also be written cons A M L, as application associates to the left.

list A is intended as an encoding of finite lists of elements of the type A. The empty list

is encoded as nil A, while the list of one or more elements is encoded as cons A M L,

where M is the encoding of the first element and L is an encoding of the remainder

of the list. For example, the list 0, 1, 0 of natural numbers would be encoded as

cons nat zero (cons nat (succ zero) (cons A zero nil))

which itself has type list nat. It clear that this is an adequate encoding of finite lists.

The next two types defined in Figure 3.1, True, and False, reflect the Curry-Howard

Isomorphism. Recall from Section 3.1 that propositions are encoded into CIC as

types. True is an encoding of the vacuously true proposition. It correspondingly has

a constructor true-i for proving it. False is an encoding of the absurd proposition that

38

has no proof. Accordingly False has no constructors. It is straightforward to see that

these are adequate encodings of the notions of truth and falsity.

The next type, eq, is an encoding of the notion of equality. For any type A and

elements a1 and a2 of A, the type eq A a1 a2 encodes the proposition that a1 and

a2 are equal. eq has one constructor, eq-refl, which, for any type A and any element

a of A, returns a proof that a equals itself. Thus eq-refl encodes the reflexivity of

equality. For example, the term eq-refl nat zero zero is a proof of, or term of type,

eq nat zero zero. It is straightforward to see that this is an adequate encoding of the

notion of equality, as an object should be equal to itself and no other objects.

As suggested in Section 3.1, False can be used to encode negation. Specifically, for

any type A, the type A ⇒ False is the type of functions that create an element of

type False from an element of type A. If this type is inhabited, meaning there is an

object f of type A⇒ False, then there can be no element a of A, as f a would then

be an element of the type False. Note, however, that it is not the case that there is

an object f of type A ⇒ False whenever there is not an object of type A, as this

would imply the Law of the Excluded Middle, which is rejected by Constructivism.

Combining False with eq, the proposition that two objects a1 and a2 of type A are

not equal can now be stated as the type eq A a1 a2 ⇒ False. For example, it will be

possible prove, or create a term of type, (eq nat zero (succ zero)) ⇒ False indicating

that 0 is not equal to 1.

The next three lines of Figure 3.1 define the type le m n of proofs that m ≤ n for

natural numbers m and n. (m and n are actually terms M and N that are encodings

of natural numbers m and n.) The first constructor for le is le-refl, which produces a

proof that n ≤ n for any n. The second constructor for le is le-succ. le-succ m n P is

a proof that m ≤ n+ 1, provided that P is a proof that m ≤ n. To construct a proof

that m ≤ m+ k for arbitrary m, then, le-refl can be used to prove that m ≤ m, and

k applications of le-succ can be applied to build the desired proof. For example, the

following is a proof that 1 ≤ 3:

le-succ (succ; zero) (succ (succ (succ; zero)))

(le-succ (succ zero) (succ zero) (le-refl (succ zero)))

39

If M and N are encodings of natural numbers m and n, then it is straightforward

to see that le M N is inhabited, meaning there is a term of this type, if and only if

m ≤ n. Thus it is not possible to construct a proof of le m n, and this type is an

empty type, when m ≤ n does not hold. Note that the type le could instead have

been defined using one constructor for proving 0 ≤ m for any m and one constructor

for proving m+1 ≤ n+1 given a proof that m ≤ n. The form used here will be more

convenient below.

The final type in Figure 3.1 defines the proposition that a list is sorted. Specifically,

is-sorted A R L is inhabited if and only if the list L of elements of type A is sorted with

respect to binary relation R. Abstractly, a binary relation on a set is a proposition

that can hold (or fail to hold) on any two elements of the set. Thus a binary relation

on a type A is encoded into CIC as a term R of type A ⇒ A ⇒ Type0. Terms M

and N of type A are considered to be in the relation defined by R if and only if the

type R M N is inhabited. Thus, for example, le is a relation on nat, as would be

expected. The type is-sorted A R L is then defined as follows. is-sorted-nil constructs

a proof that the empty list is sorted, while is-sorted-one constructs a proof that the

singleton list cons A M (nil A) is also sorted. These are the trivial cases. For a list of

two or more elements, is-sorted-many constructs a proof that the list is sorted if the

first element is related by R to the second and if the remainder of the list beginning

at the second element is sorted. For example, the term

is-sorted-many (list nat) le zero zero

(cons nat zero (cons nat zero (cons (succ zero) (nil nat)))) (le-zero zero)

(is-sorted-many (list nat) le zero zero (cons nat zero (cons (succ zero) (nil nat)))

(le-zero (succ zero))(is-sorted-one (list nat) le zero))

is a proof that the list 0, 0, 1 is sorted with respect to ≤.

3.2.2 Example Functions

CIC defines two sorts of function, λ-abstractions and pattern-matching functions.

A λ-abstraction is a term of the form λx : A .M , where x is a variable, A is a

type, and M is a term. This represents the function that takes any argument N of

40

type A and returns the result of substituting N for x in M . The substitution of N

for x in M is denoted [N/x]M as above. As a simple example, the λ-abstraction

λx :nat . succ (succ x) represents the function that takes any argument x and returns

x+2. The type of a λ-abstraction is a function type, so this λ-abstraction for example

has type nat ⇒ nat. This means that, as expected, a λ-abstraction can be applied

to an argument of its input type. Stated differently, if N is a term of type A and M

is a term of type B then (λx :A .M) N is a term of type B. The reduction relation

of CIC is then defined so that (λx : A .M) N reduces, or evaluates, to [N/x]M .

Thus, for example, (λx : nat . succ (succ x)) zero reduces to, and is thus equal to,

succ (succ zero).

The remainder of this sub-section focuses on pattern-matching functions. First,

pattern-matching functions are introduced by giving examples with types of the form

A ⇒ B, meaning that the return type does not depend on the scrutinee, or input

that pattern-matching examines. The full case of pattern-matching functions with

dependencies is then broached second, as this makes the notion of typing more com-

plex.

Pattern-Matching without Dependencies

A pattern-matching function in CIC examines the form of its input and returns a

different value, depending on this form. The input that is examined is called the

scrutinee. The examining is done with a list of pairs of patterns and return values. If

a scrutinee matches a pattern, then the associated return value is returned. Patterns

are given in the form P \ x1 : A1, . . . , xn : An. A term N matches this pattern if

there is some substitution of terms Ni of type Ai for the xi that makes P identical

to N . The xi are called the pattern variables. The types are often omitted from the

pattern variables, and the symbol · is used if there are no pattern variables. As an

example of matching, succ zero matches the pattern succ x \ x by substituting zero

for x. Pattern cases are of the form P \ x1, . . . , xn → M , which stipulate that if a

scrutinee matches P with some substitution σ then σM , the application of σ to M ,

is returned.

41

The following is an example pattern-matching function which implements the stan-

dard predecessor function on natural numbers:

fun (zero \ · → zero | succ x \ x→ x)

If the scrutinee is zero, then it matches the first pattern, and the first return value,

zero, is returned. If the scrutinee is instead of the form succ N for some N , then it

matches the second pattern with the substitution [N/x], and N is returned. The type

of the above example has type nat ⇒ nat, because the scrutinee has type nat and each

return value also has type nat. Also as with λ-abstractions, the behavior of patern-

matching functions is defined by the reduction relation of CIC, so, for example, the

term

(fun (zero \ · → zero | succ x \ x→ x)) (succ N)

reduces to N .

Two similar examples are the functions head and tail, which return the first element

and the remainder of the list after the first element, respectively. head is defined as

follows:

fun (A : Type0, x : A) (nil A \ · → x | cons A x l \ x, l→ x)

Note that (A : Type0, x : A) are additional formal parameters of head with the types

indicated. This function thus takes three arguments, two for the parameters A and x

and one for the scrutinee. The types of parameters are often omitted when they are

apparent. head thus returns the first element of a list, or x if the list is empty. tail is

defined as follows:

fun (A : Type0) (nil A \ · → nil A | cons A x l \ x, l→ l)

If the scrutinee to tail is the empty list, then tail returns the empty list. Otherwise,

if the scrutinee is cons A x l, tail returns l.

42

In their full form, pattern-matching functions are also recursive. As an example, the

following is the definition of the addition function for natural numbers:

fun add (x : nat) (zero \ · → x |
succ y \ y → succ (add x y)

)

The symbol add after the symbol fun is used to refer to the whole function when

making recursive calls. Recursion behaves as follows. When a scrutinee matches

a pattern, the appropriate return value is returned as before, but with the extra

stipulation that the whole function is also substituted for the given symbol. Thus we

have that, if F is the above function, then F M (succ N) reduces to succ (F M N).

The zero case works as before, with F M zero reducing to M . This function has type

nat ⇒ nat ⇒ nat, as the parameter has type nat, the scrutinee has type nat, and each

return value also has type nat.

Multiplication of natural numbers can be defined similarly. This is done with the

following function:

fun multiply (x : nat) (zero \ · → zero |
succ y \ y → plus (multiply x y) x

)

If the second argument is zero then the result is zero, as anything times 0 is 0. If the

second argument is succ M for some M , then the result is plus (multiply x y) x. This

makes sense because x ∗ (y + 1) is equal to (x ∗ y) + x.

As discussed above, all computations in CIC must terminate. This is required for CIC

to be consistent. To ensure this holds, pattern-matching functions are not considered

as valid terms unless recursive calls are on structurally smaller terms. In all the cases

considered here, a term is structurally smaller than another if the first is a strict

subterm of the second. For example, the recursive call in the add function above is

of the form add x y, while the scrutinee pattern for that case is succ y, so the second

argument, which is the pattern-matching argument, is structurally smaller than the

scrutinee. Requiring recursive calls to be on structurally smaller terms ensures that

successive recursive calls are on smaller and smaller terms, and so the recursion must

43

eventually terminate. Note that, as a second restriction, pattern-matching functions

are also required to have a case for every constructor of the given type.

Another example of a pattern-matching function without dependencies is the list

append function, which concatenates two lists. This is defined as follows:

fun append (A) (nil A \ A→ λ l : list A . l |
cons A x l1 \ A→ λ l2 : list A . cons A x (append A l1 l2)

)

append has type ΠA :Type0 . list A ⇒ list A ⇒ list A. If the first list argument is the

empty list, append returns the second. If the first list argument is cons A x l1, then

the result of appending l2 is calculated by first appending l2 to l1 with a recursive

call, and then prepending x onto the result with cons. Note that the recursive call

uses the structurally smaller argument l1.

As a final case here, the proof that falsity implies anything is considered. In logic

this proposition is called ex falso quod libet. This is proved with the pattern-matching

function

fun ()

with no cases, as False has no constructors. This pattern-matching function can in

fact have any type of the form False ⇒ A, as there are no return values and so no

requirements on A.

Pattern-Matching with Dependencies

We turn now to some pattern-matching functions for creating and manipulating

proofs. Such functions generally generally have a dependent function type Πx :A .B,

as the return type B must mention the argument. The rules for finding the type of

such a function is more complex.

The first example here is a proof that le is reflexive, meaning that any number is less

than or equal to itself. This can be written as follows:

fun f (zero \ · → le-zero zero | succ x \ x→ le-succ x x (f x))

44

This function is intended to have type Πx :nat . le x x. For the case where the input

is zero, the return value is le-zero zero, which has type le zero zero. For the case

where the input matches succ x, the return value is le-succ x x (f x), which has type

le (succ x) (succ x). Note that this requires that the variable f used for recursive

calls has the desired type of the function. The types of the two return values are thus

both le P P , where P is the corresponding pattern. It thus makes sense to say that

the whole function has type Πx : nat . le x x because, for any M that matches either

of the patterns, applying the function to M evaluates to a term with type le M M .

Generalizing, pattern-matching functions have type Πx :A .B if each return value has

type [P/x]B, where P is the corresponding pattern.

If a pattern-matching function has extra parameters that are in the type of the input,

then pattern-matching on the input can constrain these parameters. For example,

consider the following casting function, which takes a proof about x and creates a

proof about y when x = y:

fun (A, x, y) (eq-refl t z \ t, z → λP : (B ⇒ Type0) . λ p :P z . p)

This function has type

ΠA :Type0 .Πx :A .Πy :A . eq A x y ⇒ ΠP : (A⇒ Type0) . P x⇒ P y

To see why this holds, consider that the sole pattern, eq-refl B z, has type eq B z z.

In this case, then, A must be equal to B, and x and y must both be equal to z.

Thus it makes sense that the return value for this pattern could have type ΠP : (t⇒
Type0) . P z ⇒ P z, as this is the result of applying the substitution [B/A, z/x, z/y]

to the intended return type of the function. The return value of the function is

λP : (B ⇒ Type0) . λ p : P z . p, which has exactly this type. Generalizing, if a

pattern-matching function has scrutinee x of type A and return type B, and if a

pattern P has type σA for some σ, then the type of the associated return value

should be [P/x]σA.

Note that the above casting function can be used to prove that zero is not equal to

succ x for any x. Recalling that negation is encoded as the implication of falsity, the

type associated with this proposition is thus Πx : nat . eq nat zero (succ x) ⇒ False.

45

Let F be the above casting function and let G be the function

fun (zero \ · → True | succ x \ x→ False)

of type nat ⇒ Type0. The term

λx :nat . λ e :eq nat zero (succ x) . F nat zero (succ x) e G true-i

thus has type G (succ x), which by the definition of G reduces to False. Note that

this requires that true-i have type G zero, which holds, as G zero reduces to True.

As another example of a pattern-matching function with dependencies, consider the

following proof that le is transitive. The most convenient approach is to write a

pattern-matching function of type

Πy :nat .Πz :nat . le y z ⇒ Πx :nat . le x y ⇒ le x z

This is given as follows:

fun le-trans (y, z) (le-refl y′ \ y′ → λx :nat . λ p : le x y′ . p |
le-succ y′ z′ p1 \ y′, z′, p1 : le y′ z′ →

λx :nat . λ p2 : le x y′ . le-succ x z′ (le-trans y′ z′ p1 x p2)

)

The first pattern matches the proof le-refl y′ of type le y′ y′. This induces the

substitution [y′/y, y′/z] for the type of the return value, which must therefore be

Πx : nat . le x y′ ⇒ le x y′. The return value constructs a term of this type with λ-

abstractions that take in the argument x and the proof of le x y′ and just return this

proof. The second pattern matches the proof le-succ y′ z′ p1 of type le y′ (succ z′), so

the return value must have type Πx :nat . le x y′ ⇒ le x (succ z′). This is accomplished

with λ-abstractions that take in x and the proof of le x y′ and then recurse on the

proof p1 (which is structurally smaller than the input) to form a proof of type le x z′.

le-succ is then applied to produce the required proof of le x (succ z′). The standard

form of transitivity, written

Πx :nat .Πy :nat .Πz :nat . le x y ⇒ le y z ⇒ le x z

46

can then be proved with the term

λx :nat . λ y :nat . λ z :nat . λ p1 : le x y . λ p2 : le y z . F y z p2 x p1

where F is the above function.

As a final example, we consider a proof that x is less than or equal to add x y for any

y. This is a proof about the addition function add. The most convenient approach is

to write a pattern-matching function of type Πy : nat .Πx : nat . le x (add x y). This

function is given as follows:

fun le-add (zero \ · → le-refl |
succ y′ \ y′ → λx :nat . le-succ x (add x y′) (le-add y′ x)

)

In the first case, y is zero, so the return type should be Πx : nat . le x (add x zero),

which reduces to Πx :nat . le x x. This can be proved simply by using the constructor

le-refl. In the second case, y is succ y′, so the return value is required to have type

Πx :nat . le x (add x (succ y′)). This reduces to Πx :nat . le x (succ (add x y′)), which

can be proved by taking in x as an argument and applying le-succ to the result of the

recursive call.

3.2.3 Type Universes and Impredicativity

One of the stipulations of CIC is that every term has a type. This includes the type

Type0. What should be the type of Type0, which is itself the type of types? One idea

would be to have Type0 have Type0 itself. Unfortunately, this leads to a contradiction

where every type is inhabited, meaning every proposition is provable, and the theory

is thus inconsistent [11].1 Instead, either Type0 must be a special term which does

not have a type, or there must be a new term, Type1, to be the type of Type0, and

another term, Type2, to be the type of Type1, etc. This is the approach taken in CIC.

1The contradiction, known as Girard’s Paradox, stems from the fact that there is a type of all
types, and is similar to Russell’s Paradox, which stems from the existence of a set of all sets.

47

The Typei for i a natural number are called the predicative type universes. A term is

in the universe of Typei if it is either a term whose type is of type Typej for j ≤ i or

it is itself a type of type Typej for j ≤ i. The type universes are so called because

they are closed: any combination of terms in a universe results in a term still in the

universe. If the types A or B are not in the universe, however, then neither is A⇒ B.

Thus it is impossible to write a proof about all elements of the universe of Typei inside

this universe, as such a proof would have type ΠA : Typei . B for some B, and this

type is not in the universe of Typei.

The predicative universes are inconvenient, however, for expressing general proposi-

tions. This is because types in the type universe Typei cannot be “about” anything

outside of Typei. Thus we need to invent a new concept of proposition for each uni-

verse Typei. Instead, CIC includes an impredicative universe of propositions. We call

this universe TypeP for consistency with the other universe notation. If B is a TypeP ,

then the type A ⇒ B is a TypeP for any A, no matter what universe. Impredica-

tivity allows a degree of circularity: if B is a TypeP , then TypeP ⇒ B is the type of

functions that take any elements of TypeP , including the type TypeP ⇒ B itself. For

more discussion of impredicativity, see for example the Coq reference manual [68].

48

Chapter 4

Higher-Order Name-Binding

Rewriting

Though standard term rewriting is useful for defining specific operations, it is diffi-

cult to define programming languages in that formalism. This is because many pro-

gramming languages require the notion of capture-avoiding substitution. Although

capture-avoiding substitution can be formalized in standard term rewriting by adding

explicit substitution terms to the language [1, 14], this approach is complex. Instead, a

number of extensions of standard term rewriting have evolved to add capture-avoiding

substitution as a primitive notion, including Higher-Order Rewriting [48, 41], Combi-

natory Reduction Systems [38], and Expression Reduction Systems [37]. These have

all been shown to be equivalent in a certain sense [73], so we focus on Higher-Order

Rewriting here.

Higher-Order Rewriting extends the term language of standard Term Rewriting to

the simply-typed λ-calculus. A benefit of this approach is that λ-abstractions can

used encode variable binding. For example, the doubling function f (x) = x∗2 might

be encoded as the λ-calculus term

fun-one (λx .mult x (succ (succ zero))).

A second benefit of this approach is that function application can be used to express

capture-avoiding substitution for a name binding, which is useful in defining compu-

tation in a programming language. For example, the operation apply-fun that applies

49

a function to an argument might be defined with the rewrite rule

apply-fun (fun-one f) x f x

This specifies that the value of applying the function encoded as fun-one f to an

argument x is equal to the λ-calculus application of the λ-calculus function f to x.

Returning to the above example of the doubling function, the term

apply-fun (fun-one (λx .mult x (succ (succ zero)))) zero

reduces to mult zero (succ (succ zero)), meaning that applying the doubling function

to 0 is equal to 0∗2. This expression can then be further reduced by standard rewrite

rules.

Unfortunately, λ-abstractions are not good at encoding name-bindings that are not

meant as functions. This is because, by the Substitution principle, it is not possible to

distinguish variables from other terms. For example, consider the operation countvars

meant to count the number of variables occurring in an arithmetic expression. The

only way to have countvars x reduce to succ zero when x is a variable would be to add

the rule

is-var x (succ zero)

but this rule would match any x, not just those that are variables. Similarly, it is not

possible to define a construct for testing equality unless that construct either does

not produce an answer for variables or has the non-left-linear rule

is-eq x x (succ zero)

which causes problems for confluence.

To solve these problems, Higher-Order Name-Binding Rewriting is introduced. This

formalism allows rewrite rules to be defined over the simply-typed λν-calculus, an

extension of the simply-typed λ-calculus withx ν-abstractions. Rather than binding

variables, ν-abstractions bind locally bound constructors. Under the HOEC approach,

ν-abstractions are then used to encode name bindings, while the constructors they

bind are used to encode names. The advantage of this approach is that locally-bound

constructors do not have to adhere to the Substitution principle, and a rule such as

50

the proposed rule for countvars above can exactly match the constructors used to

encode variables. Also, the proposed rule for is-eq above can become left-linear, as

it now must match two copies of the same constructor instead of two copies of the

same variable. In addition, since λ-abstractions are retained, λ-abstractions can still

be used to define name-binding constructs that are meant as functions.

The remainder of this chapter is organized as follows. Section 4.1 defines the simply-

typed λν-calculus, the term language of Higher-Order Name-Binding Rewriting. Sec-

tion 4.2 defines Higher-Order Name-Binding Rewrite systems, or HNRSs. Section 4.3

proves confluence of the orthogonal HNRSs. Section 4.4 proves convergence of the

union of an orthogonal HNRS and a terminating ACRS, a result which will be used

in Chapter 7.

4.1 The λν-Calculus

To define HNRSs, the term language must first be fixed. This defines the syntactic

objects on which HNRSs operate. The underlying language of HNRSs is the simply-

typed λν-calculus. This is the simply-typed λ-calculus enriched with ν-abstractions,

a construct that locally binds constructors. In the remainder of this section, a precise

definition is given for the λν-calculus. Section 4.1.1 introduces the types and terms of

the λν-calculus. Section 4.1.2 defines the typing relation of the λν-calculus. Finally,

Section 4.1.3 defnes equality in the λν-calculus.

4.1.1 Types and Terms

We assume three disjoint sets of symbols B, C, and V have been given, with C and

V both countably infinite. Elements of these sets are referred to as base types, con-

structors, and variables, respectively. In the below, b is used for base types, x, y, and

z are used for variables, and c, d, e, and f are used for constructors.

Definition 4.1.1 (Type). The types are given by the following inductive definition:

• Any b ∈ B is a type;

51

• If A and B are types built from B then A ⇒ B is a type, called the function

type from A to B; and

• If A and B are types then ∇A .B is a type, called a ∇-type.

Types are denoted below as A or B, possibly with subscripts. The intended meaning

of the types are as classifiers of terms, where the phrase M is of type A is used to

denote that the term M belongs to the set defined by A. This notion is defined

precisely below. For now the intended meaning of the types is given. Each b ∈ B is

intended as an algebraic datatype, with terms of type b being elements of the algebraic

datatype. Terms of type A⇒ B are intended as functions that build terms of type B

from terms of type A. The type ∇A .B is used to classify ν-abstractions that bind a

local constructor of type A and contain a term of type B. For the reader unfamiliar

with the symbol, ∇ is pronounced “nabla”. If Γ is a list of pairs of the form x : A

and c : A, (Γ is thus a typing context, a notion defined below) then ΠΓ .M is defined

recursively as

Π · . A = A

Πx : A,Γ . B = A⇒ (ΠΓ . B)

Πc : A,Γ . B = ∇A . (ΠΓ . B)

It is thus apparent that every type is of the form ΠΓ . b for some Γ and b. Note that

⇒ associates to the right, so A1 ⇒ (A2 ⇒ A3) is also written A1 ⇒ A2 ⇒ A3.

Definition 4.1.2 (Term). The terms are defined inductively as follows:

• If c ∈ C then c is a term;

• If x ∈ V then x is a term;

• If M and N are terms then so is M N , called the application of M to N ;

• If M is a term and c ∈ C then M 〈c〉 is a term, called the constructor replace-

ment of c in M ;

• If M is a term, A is a type, and x ∈ V then λx : A .M is a term, called a

λ-abstraction; and

• If M is a term, A is a type, and c ∈ C then ν c : A .M is a term, called a

ν-abstraction.

52

M and N are used for terms below. The type annotations are often dropped on λ-

and ν-abstractions when clear from context, writing λx .M in place of λx :A .M and

writing ν c .M in place of ν c :A .M . The following notations relating to sequences

are used below to abbreviate repetitive uses of notation. If Γ is again a list of pairs

of the form x : A and c : A then λΓ .M is defined recursively as

λ · .M = M

λx : A,Γ .M = λx :A . λΓ .M

λc : A,Γ .M = ν c :A . λΓ .M

This generalizes the similar notions of λ- and ν-abstracion. An argument is either a

term or the form 〈c〉 for some constructor c. Arguments are written R below. The

notation M ~R can then be defined recursively as

M · = M

M (N, ~R) = (M N) ~R

M (〈c〉, ~R) = (M 〈c〉) ~R

This generalizes the similar notions of application and constructor replacment. The

notation M Γ is then defined by considering the variables in Γ as term arguments and

the constructors as constructor replacements, so that for example M (x1 : A1, c2 :

A2, c3 : A3) abbreviates the term ((M x1) 〈c2〉) 〈c3〉. Note that both applications

and constructor replacements associate to the left, so this term can also be written

M x1 〈c2〉 〈c3〉.

The concept of a term context is now defined. Term contexts are not to be confused

with the type contexts, introduced below. To form the term contexts, the definition

of term is enriched to include the special symbol . A term context is then a term

by this enriched definition that contains exactly one occurrence of . Term contexts

are written as C below. Intuitively, a term context represents a term with a hole. A

term context may be filled with another term M by replacing with M in C. This is

written C[M]. Note that the filling operation is different from substitution, defined

below, as filling is not capture-avoiding. The filling operation is also called grafting

in the literature. A term context C1 can also be filled with another term context C2,

written C1[C2], yielding a bigger term context.

53

The term contexts enable a number of useful definitions. A term M is a subterm of

C[M] for any term context C. M is additionally said to be a strict subterm if C is

not the trivial context . Conversely, C[M] is said to be a superterm of M , and is also

called a strict superterm of M if C is again not the trivial context . An occurrence of

M in N is a term context C such that C[M] = N . An occurrence of a variable x in M

is said to be bound if and only if the occurrence is of the form C1[λx . [C2]]. Stated

differently, an occurrence of x is bound in M if it is inside a λ-abstraction using x as

argument. An occurrence of a variable x that is not bound in M is said to be free in

M . The set of all free variables in M is denoted FV(M). Similarly, an occurrence of

constructor c in M is bound if and only if the occurrence is of the form C1[ν c . [C2]].

Otherwise an occurrence of c in M is free. The set of all free constructors in M is

denoted FC(M).

4.1.2 Typing

Typing is used to classify terms and also acts as a well-formedness condition on terms.

Typing is defined in terms of typing contexts, which associate types with variables

and constructors. These are defined inductively as follows:

• · is a typing context, called the empty context ;

• If Γ is a typing context and A is a type then Γ, x : A is a typing context; and

• If Γ is a typing context and A is a type then Γ, c : A is a typing context.

Γ is used here and below to denote contexts. Typically, the terminating · is dropped,

and contexts are written, for example, x : A1, c : A2. Dom(Γ) denotes the domain of

Γ, meaning the set of constructors and variables to the left of a colon in Γ. x : A ∈ Γ

denotes that x ∈ Dom(Γ) and that the last (right-most) occurrence of x in Γ is paired

with A. c : A ∈ Γ denotes the similar notion for c.

54

A constructor can be removed from a context by removing it and all variables after

it. This is denoted removec(Γ), and is defined as follows:

removec(Γ, c : A) = Γ

removec(Γ, x : A) = removec(Γ)

removec(Γ, c
′ : A) = removec(Γ) if c 6≡ c′

The intuitive notion behind this definition is that a term typable in removec(Γ)

cannot possibly contain c, even after substitutions for variables.

Terms are associated with types by the judgment Γ ` M : A. When this judgment

holds, M is said to have type A in context Γ. This is defined according to the following

rules:
x : A ∈ Γ
Γ ` x : A

c : A ∈ Γ
Γ ` c : A

Γ, x : A `M : B

Γ ` λx .M : A⇒ B
Γ `M : A⇒ B Γ ` N : A

Γ `M N : B

Γ, c : A `M : B

Γ ` ν c .M : ∇A .B
removec(Γ) `M : ∇A .B Γ ` c : A

Γ `M 〈c〉 : B

Typing serves as a well-formedness condition on terms. In the below all terms are

assumed be well-typed with respect to some context.

4.1.3 Equality in the λν-Calculus

The λν-calculus defines two notions of equality, α-equivalence and βνη-equivalence.

α-equivalence enriches the standard notion of being equal up to renaming of bound

variables by also considering bound constructors. βνη-equivalence includes the stan-

dard β and η rules of the simply-typed λ-calculus along with a rule for reducing

constructor replacements and an extensionality rule for ν-abstractions.

Terms are considered syntactically equal up to renaming of bound variables and

constructors. More precisely, α-equivalence of terms, denoted ≡, is defined by the

55

following set of rules:

x ≡ x c ≡ c

x 6∈ FV(M1) ∪ FV(M2) M1{x1 7→ x} ≡M2{x2 7→ x}
λx1 .M1 ≡ λx2 .M2

M1 ≡M2 N1 ≡ N2

M1 N1 ≡M2 N2

c 6∈ FC(M1) ∪ FC(M2) M1{c1 7→ c} ≡M2{c2 7→ c}
ν c1 .M ≡ ν c2 .M2

M1 ≡M2

M1 〈c〉 ≡M2 〈c〉

where M{x1 7→ x} and M{c1 7→ c} are the terms resulting from replacing all free

occurrences in M of x1 by x and those of c1 by c, respectively. It is straightfor-

ward to see that this notion of equality is decidable, reflexive, and symmetric, and a

straightforward inductive argument shows that it is transitive.

Capture-avoiding substitution is written [M/x]N , which is read as the substitution

of M for x in N . This can be defined as follows:

[M/x]x = M

[M/x]y = y if x 6≡ y

[M/x]c = c

[M/x](λ y .N) = λ y . [M/x]N if y 6∈ FV(M) ∪ {x}
[M/x](N1 N2) = [M/x]N1 [M/x]N2

[M/x](ν c .N) = ν c . [M/x]N if c 6∈ FC(M)

[M/x](N 〈c〉) = [M/x]N 〈c〉

Note that this operation is defined up to α-equivalence of N . Thus, despite the side

conditions on substituting into λ- and ν-abstractions, renaming the bound variable

or constructor can always ensure that substitution is defined. A straightforward

inductive argument shows that substitution is well-defined, meaning that if N1 ≡ N2

then [M/x]N1 ≡ [M/x]N2 when these are both defined.

56

It is now possible to define βνη-equality. This is defined in terms of the one-step

βνη-reduction relation βνη, defined as follows:

(β) C[(λx .N) M] βνη C[[M/x]N]

(νβ) C[(ν c .M) 〈d〉] βνη C[M{c 7→ d}]
(η) C[λx .M x] βνη C[M] if x 6∈ FV(M)

(νη) C[ν c .M 〈c〉] βνη C[M]

The one-step β-reduction relation β is similar but only uses the rule β. Similarly,

 ν uses only the rule ν and βν uses only the rules β and ν. η refers to both η

rules. Note that η here is split into the standard λ-calculus η rule, here called ηβ, and

an extensionality rule ην for ν-abstractions.

The following auxiliary definitions will be used below. A term of the form (λx .M) N

is called a β-redex, a term of the form (ν c .M) 〈d〉 is called a ν-redex, and a term

of the form ν c .M 〈c〉 or λx .M x with x 6∈ FV(M) is called an η-redex. M is said

to βνη-reduce to N if and only if M ∗
βνη N holds. The βνη-equality relation =βνη

is defined as the reflexive-symmetric-transitive closure of βνη. It is straightforward

to show that βη preserves typing, meaning that if Γ ` M : A and M βη N then

Γ ` N : A. This follows from preservation of typing for substitution.

To ensure that every (well-typed) term of the simply-typed λν-calculus has a unique

normal form, βνη must be guaranteed to be confluent and strongly normalizing on

the well-typed terms. This is straightforward by a translation J·K from the terms and

types of the simply-typed λν-calculus to those of the simply-typed λ-calculus, where

the simply-typed λ-calculus is exactly the simply-typed λν-calculus with ∇-types,

ν-abstractions, and name replacements removed. The translation J·K is the identity

on most types and terms, except on the constructs of the λν-calculus that are not in

the λ-calculus, in which case it behaves as follows:

J∇A .BK = JAK⇒ JBK
Jν c .MK = λxc . JMK{c 7→ xc}
JM 〈c〉K = JMK c

Again, M{c 7→ xc} replaces free occurrences of c in M with xc. Straightforward

inductive arguments yield Γ `M : A iff JΓK ` JMK : JAK and M N iff JMK JNK,

57

where JΓK translates all types in Γ and replaces constructors on the left with variables.

Thus the properties of confluence and strong normalization, which are known to hold

for the simply-typed λ-calculus, carry directly over to the simply-typed λν-calculus.

Note that a similar translation is also carried out to the same effect in [10].

This proof also allows the definition of the long βνη-normal form of a term. A

term M is in long βνη-normal form if and only if it contains no β- or ν-redexes and

every occurrence of a variable or constructor is fully applied, meaning the subterm

at that occurrence is of the form x ~R or c ~R and has base type. Long βνη-normal

form is useful because the only long βνη-normal forms of functional or ∇-type are

λ-abstractions or ν-abstractions, respectively.

To find a long βη-normal form for a particular M requires first taking the η-expansion

of M . This is defined as the result of replacing every variable x or constructor c of

type ΠΓ . b with λΓ . x Γ or λΓ . c Γ, respectively. The long βνη-normal form of a

term is then the βν-normal form of the η-expansion of that term. The resulting

term is βνη-equal to the original term, as the η-expansion of a term is η-equal to the

original term, as η-expansion simply does η-reduction in reverse, and βν-reduction

obviously preserves βνη-equality. The resulting term is also in long βνη-normal form,

as η-expansion ensures that every constructor and free variable is fully applied and

βν-reduction removes all βν-redexes but cannot decrease the number of arguments

to which a free variable or constructor is applied. To see that the long βνη-normal

form is unique, note that η-reducing it eventually yields the unique (by confluence)

βνη-normal form, and a straightforward inductive argument shows that taking the

η-expansion and βν-reducing the result yields the same term again. Thus it is a

well-defined notion to talk of the long βη-normal form of a term M . This is denoted

NF(M).

4.2 HNRSs Defined

A higher-order name-binding rewrite system, or HNRS, is a typing context Γc of

constructors along with a set of rules. A rule is a triple Γ.l r, for terms l and r

and context Γ, that adherers to the following restrictions:

58

1. l and r must be in long βη-normal form;

2. l and r must be of the same base type b ∈ B with respect to the typing context

Γc,Γ;

3. l must not be a single variable;

4. FV(r) ⊆ FV(l); and

5. l is required to be a pattern, meaning that every occurrence of a free variable

x in l is of the form x ~R where the term arguments in ~R are distinct variables

bound in l.

The first three conditions are useful for technical reasons. The fourth is because it

is not clear for example what term to use for y in the rule x c x y. The final

condition is to ensure that the rewrite relation itself is decidable. It is known that

finding a substitution σ such that σM =βη N is decidable in the simply-typed λ-

calculus [43, 20], and the translation given above from the simply-typed λν-calculus

to the λ-calculus shows that this decidability result extends in a straightforward

manner to the simply-typed λν-calculus. As a side note, many definitions of HRSs do

not enforce the patterns condition. Authors often refer to HRSs that do satisfy this

condition as pattern rewrite systems or PRSs. Since even the question of whether

a term rewrites in a single step to another term is undecidable in general with the

patterns condition, and because most instances of HRSs in the literature are PRSs,

this condition is made part of the definition of HNRSs here. This also simplifies the

proof that orthogonality implies confluence below.

As with AC-rewriting, an HNRS R induces a one-step R-reduction relation. For any

given terms M and N , M R N if and only if

M ≡ C[M ′] ∧N ≡ C[N ′] ∧ (λΓ . l) ~R =βνη M
′ ∧ (λΓ . r) ~R =βνη N

′

for some rule (Γ.l r) ∈ R, some term context C, some terms M ′ and N ′, and some

sequence of arguments ~R with the same length as Γ. This last condition assures that

only terms of base type will be replaced by R. An R-redex for HNRS R is then

defined as any M ′ =βνη (λΓ . l) ~R for some rule (Γ.l r) ∈ R and some sequence ~R

of arguments. As before, M R-reduces to N if and only if M ∗
R N holds, in which

59

case N is called an R-reduct of M . Two terms are again said to be R-joinable if and

only if they share a common R-reduct. Two terms are said to be R-equal, written

=R, if and only if they are related by the reflexive-symmetric-transitive closure of the

union R ∪ βνη.

One difference between the HNRS definition of R-reduction and the correspond-

ing ACRS version is that the R-reduction relation here does not use the equalities

C[M ′] =βνη M and C[N ′] =βνη M . Instead, the equality relation used here is ≡. It

is a standard result for HRSs that this does not matter, as M =R N if and only if

NF(M)!∗
R NF(N) for HRSs [41]. This result is rather complex to prove, however.

Instead, in this document it is assumed that all terms are in long βνη-normal form.

R-Equality can then be tested by R-reduction steps on long βνη-normal forms. The

following theorem shows that this is a valid approach:

Theorem 4.2.1. If M =R N for M in long βνη-normal form then M!∗
R NF(N).

Proof. If M R N then M ≡ C[M ′] and N ≡ C[N ′] for some term context C, some

rule (Γ.l r) ∈ R, some M ′ =βη (λΓ . l) ~R, some N ′ =βη (λΓ . r) ~R, and some
~R. Since NF(N ′) =βνη N

′ =βνη (λΓ . r) ~R, we have that M R C[NF(N ′)]. Since

(λΓ . l) ~R and (λΓ . r) ~R must be of base type, so must M ′ and N ′. This implies that

C[NF(N ′)] must be in long βνη-normal form, as C[M ′] is, and replacing a term of

base type with another in long βνη-normal form cannot either create any β- or ν-

redexes or cause any constructors or variables to no longer be fully applied. Further,

since NF(N ′) =βνη N
′ it follows that C[NF(N ′)] =βνη N and so C[NF(N ′)] is the long

βνη-normal form of N . Similarly, if N is in long βη-normal form then NF(M) R N .

The desired result then follows by induction over the number of steps in a deduction

of M =R N .

4.3 Orthogonality

The Critical Pairs Lemma is useful for terminating systems, but does not necessarily

hold for non-terminating systems. For HRSs, the infamous Klop Counterexample

demonstrates that a (non-terminating) rewrite system can have no critical pairs and

still fail confluence (see, for example, [72]). One reason confluence fails for the Klop

60

Counterexample is because it is not left linear. A rule is called left-linear if its left-

hand side contains at most one occurrence of any free variable. A rule that is not

left-linear therefore requires that two or more subterms be equal. For example, the

rule

f x x r

only applies to terms of the form f M N where M =βνη N . Thus any rule (including

the non-left-linear rule itself) can rewrite M to M ′, leaving N as it is, turning the

redex f M N into the non-redex f M ′ N . This is true even when the two rules have

no non-trivial overlap. If, however, the rules of a rewrite system are all left-linear,

and additionally there is no non-trivial overlap, then the rules can no longer interfere

with each other in this manner. Such a system is called orthogonal, and this is enough

to prove confluence. Note that, technically speaking, confluence is only proved here

for terms in long βνη-normal form. This will be all that is needed in this document.

For the remainder of this section, an orthogonal HNRSR is fixed. To prove confluence

for R, we follow here the second proof given for HRSs by Mayr and Nipkow [41], using

complete superdevelopments. The approach is to find a confluent relation > between

R and R∗, or more precisely such that R ⊆>⊆ R∗. By Lemma 2.3.2 this then implies

that R is confluent. The relation used here, called simultaneous reduction, is defined

as follows:

∀i(Ri > R′
i)

c ~R > c ~R′
(C)

∀i(Ri > R′
i)

x ~R > x ~R′
(X) M > N

λx .M > λx .N
(L)

M > N
ν c .M > ν c .N

(N)

∀i(R1,i > R′
1,i) (Γ.l r) c ~R′

1 =βνη ((λΓ . l) ~R2)

c ~R1 > NF((λΓ . r) ~R2)
(R)

The notation ~R > ~R′ means that Ri and R′
i have the same length, the same indicies

are terms, Ri > R′
i for every term Ri, and Rj = R′

j for every constructor argument

Rj. Intuitively, simultaneous reduction can reduce any number of redexes in a term

simultaneously, though it is actually slightly stronger since it can reduce an inner

reduction to create a redex in a strict superterm which can then be reduced in the

same step of >.

We first give some important properties of >.

61

Lemma 4.3.1. M >M for all M .

Proof. Immediate by induction on M .

Lemma 4.3.2. λx .M > N implies N ≡ λx .N ′ for some N ′ and ν c .M > N

implies N ≡ ν c .N ′ for some N ′.

Proof. Immediate by the definition of >, as only rule (L) applies to λ-abstractions

and only rule (N) applies to ν-abstractions.

Lemma 4.3.3. R⊆>⊆ R ∗

Proof. R⊆> is immediate by induction on terms and >⊆ R ∗ is immediate by

induction on derivations of >.

Lemma 4.3.4. > preserves long βνη-normal forms.

Proof. By induction on derivations of >. For rule (R), a long βνη-normal form is

used on the right-hand side in the definition. The property follows for all other rules

by the induction hypothesis.

The following lemma states that, if a term matches a left-hand side of R, then no

steps of > in its strict subtersm can make this matching disappear.

Lemma 4.3.5. Let c ~R ≡ NF((λΓ . l) ~Rl) for some constructor c, some rule (Γ.l

r) ∈ R, and some sequences of arguments ~R and ~Rl. If c ~R > c ~R′ then c ~R′ ≡
NF((λΓ . l) ~R′

l) for some sequence of arguments ~R′
l with ~Rl > ~R′

l.

Proof. If c ~R ≡ NF((λΓ . l) ~Rl) then there is some “top part” of c ~R that matches l.

No steps of R-reduction on c ~R can cause this mathing to disappear, as this would

imply a non-trivial overlap of left-hand sides in R. Lemma 4.3.3 shows that steps of

> therefore cannot make this matching disappear either. Thus c ~R > c ~R′ can only

hold because terms matching ~Rl have been changed by >, and so ~Rl > ~R′
l for some

~R′
l such that c varR′ ≡ NF((λΓ . l) ~Rl) as required.

62

The other technical lemma needed for the proof of confluence states that simultaneous

reduction on the arguments substituted into a left-hand side implies simultaneous

reduction on the substitution of those arguments into that left-hand side.

Lemma 4.3.6. Let ~R and ~R′ be sequences of arguments whose terms are in long

βνη-normal form. If ~R > ~R′ then NF(λΓ . l ~R) > NF(λΓ . l ~R′) for any left-hand side

l in R.

Proof. By induction on l. The only interesting case is for free variables in l, which

always must occur as x ~Rx where the term arguments in ~Rx are distinct variables

bound in l. In NF(λΓ . l ~R) this occurrence of x becomes NF(Ri
~Rx) for some term

argument Ri in ~R, and similarly for ~R′. Since Ri is in long βνη-normal form it

must be λΓ′ .M for some M , and thus NF(Ri
~Rx) is just a renaming of the variables

and constructors in Ri, since Ri cannot have any variables or constructors in ~Rx free.

Similarly, R′
i must be λΓ′ . N for some N , and NF(λΓ . l ~R′) turns the given occurrence

of x to a renaming of N . Ri > R′
i then yields M > N , and a straightforward induction

then yields that> holds between the given renamings of the variables and constructors

in M and N .

To show confluence, we will now consider the biggest possible simultaneous reduction

on a term. This is called the complete superdevelopment of a term, following the

literature. The proof then shows that if M reduces by a simultaneous reduction to

N , then N can be reduced by another simultaneous reduction to the complete su-

perdevelopment of M . This then shows that the relation > is strongly confluent, as if

M >M1 and M >M2 then each Mi > N where N is the complete superdevelopment

of M . Thus > is confluent, and by Lemma 2.3.2, so is R.

The complete superdevelopment ofM in long βνη-normal form is defined by induction

on M as follows:

(c ~R)∗ = c ~R∗ if c ~R is not a redex

(c ~R)∗ = NF((λΓ . r) ~Rl) if c ~R∗ =βνη (λΓ . l) ~Rl for (Γ.l r) ∈ R
(x ~R)∗ = x ~R∗

(λx .M)∗ = λx .M∗

(ν x .M)∗ = ν x .M∗

63

where ~R∗ is defined as the constructors and complete superdevelopments of the terms

of ~R.

We now turn to the main theorem:

Theorem 4.3.1. If M is in long βνη-normal form and M > N then N >M∗.

Proof. This is proved by induction on the derivation of M > N .

Case: c ~RM > c ~RN by rule (C).

~RN > ~RM

∗
by the induction hypothesis. If c ~RM

∗
=βνη (λΓ . l ~Rl) for some rule

(Γ.l r) ∈ R, then (c ~RM)∗ = NF((λΓ . r) ~Rl) and c ~RN > NF((λΓ . r) ~Rl) by rule

(R). Otherwise (c ~RM)∗ = c ~RM

∗
and c ~RN > c ~RM

∗
by rule (C).

Case: x ~RM > x ~RN by rule (X).

~RN > ~RM

∗
by the induction hypothesis, and so c ~RN > c ~RM

∗
by rule (X).

Case: λx .M > λx .N by rule (L).

N >M∗ by the induction hypothesis, so λx .N > λx .M∗ by rule (L).

Case: ν x .M > ν x .N by rule (N).

N >M∗ by the induction hypothesis, so ν x .N > ν x .M∗ by rule (N).

Case: c ~RM > NF((λΓ . r) ~Rl) by rule (R) for some ~Rl and some rule (Γ.l r) ∈ R
such that ~RM > ~RN and c ~RN =βνη (λΓ . l) ~Rl.

~RN > ~RM

∗
by the induction hypothesis. By Lemma 4.3.5 there is some sequence

~R′
l of arguments such that c ~RM

∗
≡ NF((λΓ . l) ~R′

l) and ~Rl > ~R′
l. By Lemma 4.3.6

we thus have that NF((λΓ . r) ~Rl) > NF((λΓ . r) ~R′
l).

64

4.4 Modularity of Convergence on a Restricted

Set

In Chapter 7 it shall be necessary to combine an orthogonal HNRS defining a pro-

gramming language with another rewrite system for simplifying the constructor pred-

icates in a term. The constructor predicates form a boolean algebra using the usual

boolean connectives ∧, ∨, and ¬. Unfortunately, the widely-accepted rewrite sys-

tem for simplifying boolean connectives is an ACRS that is not left-linear, so the

combined system is not orthogonal [31]. Though there is a wide literature on the

preservation, or modularity, of confluence and termination in the union of two sys-

tems [17, 18, 16, 26], little of this research has considered either HRSs or ACRSs.

Given the increased complexity of the critical pair criteria for ACRSs, as well as the

fact that many properties shown for standard TRSs are known to fail for HRSs [72],

modularity of confluence and termination might or might not hold in this case, as

HNRSs are generalizations of HRSs.

Instead, we focus here on modularity of restricted confluence and termination, that

is, confluence and termination of a union system when restricted to a set of terms

with some useful properties. The difficulty with respect to modularity properties of

non-left-linear rules is that such rules require two distinct subterms to be syntactically

identical. Thus even if two systems R and S are non-overlapping, if S is non-left-

linear then steps of R can create or destroy S-redexes by rewriting distinct subterms

to identical ones or rewriting identical subterms to distinct ones. If R and S are non-

overlapping, this can only happen when R-reduction happens on a subterm of an

S-redex. If, in contrast, R and S are restricted to a set T of terms with no R-redexes

in subterms of S-redexes, then this problem disappears. This is demonstrated with

the following theorem:

Theorem 4.4.1. Let R be an HNRS, S be an ACRS, and T be any set of terms

closed under R-reduction, S-reduction, and =AC given the associative-commutative

operators in S. Further, assume that the following hold:

• R is left-linear;

• the rules for R contain no associative-commutative operators from S;

65

• the left-hand sides in R have no non-trivial overlap with any left- or right-hand

sides in §; and

• and no R-redex appears as a subterm of an S-redex in any term in T .

It is then the case that both confluence and termination on T are modular for R and

S.

Proof. It is first proved that R commutes with =AC, R−1S ⊆ (S−1)∗R, and SR ⊆
R−1(S−1)∗, all on terms in T . Graphically, these properties can be displayed as

M

R
��

oo =AC //M ′

R
���
�
� M

R
��

S∗ //M ′

R
���
�
� M

R
��

oo S
∗
M ′

R
���
�
�

N oo
=AC //___ N ′ N

S∗ //___ N ′ N oo
S∗ ___ N ′

where the existence of the solid lines implies that of the dashed lines. For all properties

we assume M R N . Further, let QM be the redex that is reduced in going from

M to N , and let QN be the term that replaces it in N , so that M and N are

equivalent under ≡ except that a copy of QM in M is replaced in N with QN . Thus

QM =βνη (λΓ . l) ~R and QN =βνη (λΓ . r) ~R for some ~R. For the first property,

note that =AC cannot change QM itself as R is assumed to have no AC operators.

=AC can only move the occurrence of QM in M to a different position and change

the associative commutative arrangement of AC operators in ~R. Thus M ′ has some

subterm (λΓ . l) ~R′ where Ri =AC R
′
i for every term argument Ri and Rj and R′

j are

identical for every constructor argument Rj. Let N ′ be the result of replacing the

appropriate copy of (λΓ . l) ~R′ in M ′ with (λΓ . r) ~R′. It is then straightforward to see

that M ′ R N ′ and N =AC N ′. In addition, N ′ must be in T as T is closed under

 R and =AC.

For the second property, we may ignore any steps of =AC in S by the previous

property, so let σS lS be the subterm of M replaced by S-rewriting with σSrS in M ′.

If neither of QM and σS lS is a subterm of the other, the result is immediate. By the

requirements on T , it is not possible that QM be a subterm of σS lS . The only other

possibility is that σS lS is a strict subterm of QM . Since l and lS have no non-trivial

overlap by assumption, σS lS is a subterm of some Ri. Let ~R′ be a new sequence of

66

arguments that is identical to ~R except σS lS is replaced in Ri by σSrS . Further, let

N ′ be the result of replacing the appropriate copy of QN in N by NF((λΓ . r) ~R′). It

is then apparent that M ′ R N ′. To see that N ∗
S N ′, note that Ri S R′

i by

construction. Since ith element of Γ may occur zero, one, or multiple times in r, and

since N and N ′ only differ in N having Ri where N ′ has R′
i, it follows that N ∗

S N
′.

In addition, N ′ must be in T as T is closed under R and S . The proof of the

third property is similar.

To show modularity of confluence, note that R and S∗ commute by an inductive

argument on the number of S-steps in S∗ using the second property above. A second

inductive argument on the number of R-steps in R∗ then shows that R∗ and S∗

commute, so by the Hindley-Rosen Lemma it follows that confluence is modular for

R and S for terms in T , meaning that if M ∈ T then any two (R∪ S)-reducts of M

can be joined. Further, all (R∪ S)-reducts of any M ∈ T must also be in T , as T is

closed under (R ∪ S)-reduction, so confluence restricted to T is modular for R and

S.

To show modularity of termination, the combination of two similar inductive argu-

ments and the third property above show that S+R+ ⊆ R+S∗. It is also trivially the

case that R+ ⊆ R+S∗, since S∗ is reflexive. Thus, since S∗ equals the union of the

identity relation and S+, it follows that S∗R+ ⊆ R+S∗. Now assume that R and S
are both terminating but that their union is not. It follows that there must be an

infinite sequence of alternating R+ and S+ steps, as any other infinite reduction in

the union would imply an sequence of reductions in R or S. By the above, however,

any series of n steps of R+S+ implies a series of n steps of R+ starting from the same

point, since S+ ⊆ S∗ and any S∗ steps can be permuted past any R+ steps. Thus an

infinite reduction of alternating R+ and S+ steps implies the existence of an infinite

sequence of R steps, which is a contradiction.

67

Chapter 5

The Calculus of Nominal Inductive

Constructions

In this chapter we introduce CNIC, the Calculus of Nominal Inductive Constructions.

CNIC adds untyped names and name binders, along with the ability to recurse over

these binders, to CIC. By untyped names it is meant that all names are in a single

type Name of names. Thus encoding name binding in CNIC does not satisfy the

fourth property, typing, above. There do exist other formalisms in the literature with

untyped names in this sense, however, and these have proven useful [59, 23, 10].

The remainder of this chapter is organized as follows. Section 5.1 informally intro-

duces CNIC and gives example CNIC programs. Finally, Section 5.3 develops the

metatheory for CNIC. Strong normalization and consistency of CNIC are deferred

to Chapter 6.

68

5.1 Examples

As an example of how the untyped ν-abstraction is used to encode name-binding

constructs, consider the following constructor declarations:

nat : Type0

zero : nat

succ : nat ⇒ nat

expr : Type0

var-inj : Name ⇒ expr

lit : nat ⇒ expr

plus : expr ⇒ expr ⇒ expr

mult : expr ⇒ expr ⇒ expr

fun-expr : Type0

fun-one : (∇α . expr) ⇒ fun-expr

fun-many : (∇α . fun-expr) ⇒ fun-expr

The type nat is a straightforward encoding of the natural numbers. The type expr is

an encoding of arithmetic expressions, including literals, addition expressions, mul-

tiplication expressions, and variables. Since names have type Name, names used to

encode variables in the object language must be wrapped in var-inj to create an el-

ement of type expr. The type fun-expr is the type of functions. fun-one takes as

argument the type ∇α . expr of ν-abstractions that bind a name α and build an ele-

ment of expr. Note that this is different from the ∇ type in the λν-calculus above.

Here, a type need not be given for the name, but, because of dependent types, the

name itself might appear in the result type so it must be given. fun-many takes a

similar argument of type ∇α . fun-expr which encodes a name binding over the type

fun-expr.

We now consider some operations over this encoding. The first of these is countvars,

which counts the number of variable occurrences in an expression. This can be defined

69

as follows:

fun countvars (lit n \ n→ zero

var-inj x \ x→ succ zero

plus x y \ x, y → add (countvars x) (countvars y)

mult x y \ x, y → add (countvars x) (countvars y)

)

This function behaves in a straightforward manner, returning 0 for literals, 1 for

variables, and the sum of the number of variables in the subexpressions for addi-

tion and multiplication expressions. To count the number of variables in a function,

countvars-fun is used, defined as follows:

fun countvars-fun (fun-one E \ E → lift-nat (ν α . countvars E 〈α〉)
fun-many F \ F → lift-nat (ν α . countvars-fun F 〈α〉)

)

For the fun-one case, countvars-fun introduces a new name α so that the body of E

may be accessed with the name replacement E 〈α〉. countvars is then called on this

name replacement, and lift-nat is used to lift the result out of the ν-abstraction. The

fun-many case is similar, except recursion is required instead of a call to countvars.

The lift-nat function used in both cases is defined as

fun lift-nat (ν α . zero \ · → zero |
ν α . succ x 〈α〉 \ x→ succ (lift-nat x)

)

If the input to lift-nat is ν α . zero then zero is returned. If the input is ν α . succ M

for some M then succ (lift-nat ν α .M) is returned.

70

We next consider operations for finding the value of an arithmetic function for a given

input. For expressions, this is defined by eval-expr, given as:

fun eval-expr (lit n \ n→ n

var-inj x \ x→ zero

plus x y \ x→ add (eval-expr x) (eval-expr y)

mult x y \ x→ multiply (eval-expr x) (eval-expr y)

)

eval-expr of a literal is the literal, of an addition expression is the sum, and of a

multiplication expression is the product. The value for a free variable is arbitrarily

set as 0.

To extend eval-expr to the functions, the substitution function is first needed. This is

defined as follows:

fun subst (z) (ν α . lit n 〈α〉 \ n→ lit (lift-nat n)

ν α . var-inj x 〈α〉 \ x→ (nfun (ν α . α \ · → z | ν α . α′ \ α′ → α′)) x

ν α . plus x 〈α〉 y 〈α〉 \ x→ plus (subst z x) (subst z y)

ν α .mult x 〈α〉 y 〈α〉 \ x→ mult (subst z x) (subst z y)

)

subst substitutes the expression z into the binding ν α .M by replacing var-inj α in

M with z and removing the ν-abstraction. In a way this is like lift-nat, except names

can occur in expressions, so these are replaced by z. subst of a literal just calls

lift-nat. subst of a variable must determine whether the variable is α or not. This is

done with a name-matching function, which behaves similarly to a standard pattern-

matching function except names are matched instead of other terms. The plus and

mult cases simply recurse on the subterms, pulling the plus and mult cases outside of

the recursion.

71

We now write apply-fun, which substitutes a list of arguments into a function:

fun apply-fun (fun-one E \ E → λ l : list nat . subst (head A x l) E |
fun-many F \ F →

λ l : list nat . subst (head A x l) (ν α . apply-fun F 〈α〉 (tail A l))

)

apply-fun has type fun-expr ⇒ (list nat) ⇒ expr. If the scrutinee is fun-one E, apply-fun

calls subst to substitute the head of the list argument into E. If the scrutinee is

fun-many F , apply-fun recurses on F inside a ν-abstraction to produce an expr. In the

recursion, tail l is passed as the list argument to ensure that the next argument in the

list gets passed for the next variable in the function. apply-fun then calls subst to pass

the head of the list to the ν-abstraction with the result of the recursive call. Putting

all the pieces together, eval-expr (apply-fun F l) applies a function F to a list l of

natural numbers and evaluates the resulting expression, yielding a natural number.

5.2 CNIC Formalized

In this section CNIC is formalized by giving the syntax of the term language as well as

the operational and static semantics. One of the design goals of this formalization was

to ensure that pattern-matching functions can always be lifted, meaning they can be

brought to the top level. This implies that a pattern-matching function have no free

names or variables. Any input must come directly via its parameters or its scrutinee.

One exception is that recursive calls can still be made from inside a pattern-matching

function to another pattern-matching function containing it. Lifting is known to be

useful for implementing functional languages [33], but this design goal was more to

enable the translation in Chapter 6. As vague as this may sound here, something

about the translation seemed to require this to hold.

Constructors and variables representing recursive calls must thus be separated from

the other variables and the names. This is done by defining two sorts of variable, one

for recursive calls and one for normal variables, as well as two sorts of typing context,

one for constructors and recursive calls and the other for names and normal variables.

72

Terms M ::= Typei Πx :A .B ∇α .A a Name u x c α
ν α .M M 〈α〉 λx :A .M M1 M2

fun u (~α,Γx) (P c
1 →M1 | . . . | P c

n →Mn)
nfun (~α) (Pα

1 →M1 | . . . | Pα
n →Mn)

c-Patterns P c ::= ν ~α . c x1 〈~α〉 . . . xn 〈~α〉 \ x1 : ∇~α .A1, . . . , xn : ∇~α .An

α-Patterns Pα ::= ν ~α . α \ · ν ~α . α \ α
Contexts Γ ::= Γ, x : A Γ, α ·
Modal Σ ::= Σ, c : A Σ, u : A ·
Contexts

Substitutions σ ::= [M/x, σ] ·

Figure 5.1: Syntax of CNIC

The variables for recursive calls are called modal variables here, and the contexts that

assign types to constructors and modal variables are called modal contexts.

With this stipulation, the syntax of CNIC can be given in Figure 5.1. In it and

the below, x, y, and z are used for variables, u for modal variables, α, β, and γ for

names, c for constructors, a for type constructors, M and N for terms, A and B for

terms intended to be types, P for patterns, Γ for contexts, Γx for variable contexts, or

contexts only containing bindings for variables, and σ for substitutions. All of these

may appear with subscripts or primes (as in M ′) to distinguish different elements of

these classes.

Figure 5.1 defines the syntax of CNIC by giving a grammar for a number of syntac-

tic categories. The terms have all been introduced and discussed above. Note that

there is a small bureaucratic stipulation that the parameters in a pattern-matching

function put the name parameters first and the term ones second. A further stipu-

lation requires that the only parameters to name-matching functions be names. The

c-patterns are patterns that match constructors. As discussed above, these can con-

tain ν-abstractions, but all variables in the pattern must have a name replacement

for all names bound in the pattern. The α-patterns are patterns for matching names.

These can either match one of the name parameters of the function, one of the names

bound in the pattern, or some other name external to all of these names. Normal

contexts assign types to variables and list the names considered in scope. Modal

contexts assign types to constructors and modal variables. Substitutions list terms

to substitute for variables.

73

(fun u (~α,Γx) (. . . | ν ~β . ci ~x 〈~β〉 \ ~x→Mi | . . .)) 〈~α〉 ~N ′ (ν ~β . ci ~N)

[fun u (~α,Γx) (. . . | ν ~β . ci ~x 〈~β〉 \ ~x→Mi | . . .)/u, (ν ~β . ~N)/~x]Mi

(nfun (~α) (. . . | ν ~β . αi \ · → ~Mαi | . . .)) 〈~α〉 (ν ~β . αi) Mαi

(nfun (~α) (. . . | ν ~β . βi \ · → ~Mβi
| . . .)) 〈~α〉 (ν ~β . αi) Mβi

(nfun (~α) (. . . | ν ~β . γ \ γ →Mγ)) 〈~α〉 (ν ~β . γ) Mγ

(λx :A .M) N [N/x]M
(ν α .M) 〈α〉 M

Figure 5.2: Operational Semantics of CNIC

The operational semantics for CNIC is given by the rewrite system of Figure 5.2.

This is an HNRS, as defined in Chapter 4. Further, note that it is orthogonal, since

the there is trivially no non-trivial overlap, and the only constructs that are repeated

on the left-hand side are variables. Thus this is a confluent HNRS. Note that this

rewrite system could not be written without an HNRS, as the rules for reducing

name-matching functions must determine if the name in the argument is equal to one

of the αi or not. The equality judgment ` M = N is then defined as the reflexive-

symmetric-transitive closure of this rewrite relation.

Typing in CNIC is given by the the typing judgment Σ; Γ ` M : A which gives M

type A relative to two contexts, a modal and a normal one. This judgment is defined

in Figure 5.4. Many of these are straightforward. The first rule gives a term type

B if it already has type A for some subtype A of B. Subtyping is as in CIC, and

is repeated in Figure 5.3 for convenience. Typei has type Typei+1. Πx : A .B has

type Typei if both A and B do, and it has type TypeP if A is a type and B has type

TypeP . ∇α .A has type Typei is A does as welll. Name is a Type0. Constructors,

type constructors, modal variabbles, and normal variables have the type given them

by their appropriate context. Names α have type Name as long as they are in the

normal context. ν α .M has type ∇α .A if M has type A in the context extended

with α. λx :A .M has type Πx :A .B if M has type B in the context extended with

x : A. Applications M N have type [N/x]B if M has type Πx :A .B and N has type

A.

` A = B
` A . B

st-eq
i ≤ j

` Typei . Typej

st-type
` B1 . A1 ` A2 . B2

` Πx :A1 . A2 . Πx :B1 . B2
st-pi

Figure 5.3: Subtyping for CNIC

74

Σ; Γ `M : A Σ; Γ ` B : Typei ` A . B
Σ; Γ `M : B t-subt Σ; Γ ` Typei : Typei+1

t-type

Σ; Γ ` A : Typei Σ; Γ, x : A ` B : Typei

Σ; Γ ` Πx :A .B : Typei

t-pi-p
Σ; Γ ` A : Typei Σ; Γ, x : A ` B : TypeP

Σ; Γ ` Πx :A .B : TypeP
t-pi-i

Σ; Γ, c : A ` B : Typei

Σ; Γ ` ∇α .A : Typei
t-nabla

a : A ∈ Σ
Σ; Γ ` a : A t-tctor Σ; Γ ` Name : Type0

t-name

x : A ∈ Γ
Σ; Γ ` x : A t-var

u : A ∈ Σ
Σ; Γ ` u : A t-mvar

c : A ∈ Σ
Σ; Γ ` c : A t-ctor

α ∈ Γ
Σ; Γ ` α : Name

t-alpha

Σ; Γ, α `M : A
Σ; Γ ` ν α .M : ∇α .A t-nu

Σ; removeα(Γ) `M : ∇α .A
Σ; Γ `M 〈α〉 : A

t-namerepl

Σ; Γ, x : A `M : B
Σ; Γ ` λx :A .M : Πx :A .B t-lambda

Σ; Γ `M : Πx :A .B Σ; Γ ` N : A
Σ; Γ `M N : [N/x]B

t-app

Σ; · ` ∇~α .ΠΓx↑~β .Πx : (a Γx)↑~β
∇ . B : Typei ∀i(Σ; · ` ci : ΠΓx

ci
. a ~Mi)

∀i(Σ, u : (∇~α .ΠΓx↑~β .Πx : (a Γx)↑~β
∇ . B) ; ~α,Γx

i↑
~β` Ni : [(Mi)↑

~β /Γx , (ci Γx
i)↑

~β /x]B)
Γx fully applied w.r.t. ~β in B ∀i(` app-checku(Γx

i ;Ni)) Γ ` ~c covers a

Σ; Γ ` fun u (~α,Γx↑~β) ((c Γx
c)↑

~β \ ~Γx
c↑

~β→ ~N) : ∇~α .ΠΓx↑~β .Πx : ((a Γx)↑~β
∇) . B

t-pmfun

Σ; · ` ∇~α .Πx : (∇~β .Name) . B : Typei

∀i(Σ; ~α,Γα
i `Mi : ∇~β .Name) ∀i(Σ; ~α,Γα

i ` Ni : [Mi/x]B)

Σ; Γ ` nfun (~α) (ν ~β . ~Mi \ ~Γα → ~N) : ∇~α .Πx : (∇~β .Name) . B
t-nfun

Figure 5.4: Typing for CNIC

To type the name replacement M 〈c〉, M must have type ∇α .A in the context

removeα(Γ). This context operation is defined as follows:

removeα(Γ, α) = Γ

removeα(Γ, α′) = removeα(Γ, α′) if α 6≡ α′

removeα(Γ, x : A) = removeα(Γ)

Intuitively, removeα(Γ) removes α from Γ. Any variables bound after α, however,

could possibly be instantiated with a term containing α. Thus these variables must

also be removed from Γ.

Typing the name-matching function nfun (~α) (ν ~β . ~Mi \ ~Γα → ~N) makes three re-

quirements. First, the intended type, ∇~α .Πx : (∇~β .Name) . B, must be well-typed

in the empty non-modal context. This is because, as discussed above, pattern- and

75

name-matching functions must be able to be lifted, meaning they must have no re-

liance on the non-modal context. The second requirement is that the pattern be

well-typed in the non-modal context including only the name parameters and any

name bound by the pattern. Finally, the return value Mi must have type [Mi/x]B,

also in the non-modal context including only the name parameters and any name

bound by the pattern.

To discuss the typing rule for pattern-matching functions, the notion of raising must

be defined. The notation M ↑~β is called the raising of M by the names ~β. This

denotes the term ν ~β .M ′ where M ′ is the result of replacing all free variables x in

M with x 〈~β〉. Similarly, the notation A↑~β
∇ raises A as a type, and denotes the term

∇~β .A′ where A′ is again the result of replacing all free variables x in M with x 〈~β〉.
Contexts can also be raised with the notation Γ↑~β. This operation replaces every pair

x : A in Γ by x : A↑~β
∇. It is then straightforward to see that Σ; Γ ` M : A implies

Σ; Γ↑~β`M↑~β: A↑~β
∇.

Returning to the typing rule for pattern-matching functions, six requirements are

made. First, the intended type must be well-typed in the empty non-modal context.

This is again per the requirement that pattern- and name-matching functions be able

to be lifted. In general, a pattern-matching function can match inside ν-abstractions

binding some names β. Thus the scrutinee type is (a Γx)↑~β
∇. By the above discussion

about raising, it then makes sense to require the context of parameters to be Γx↑~β.

Thus the expected type for the whole pattern-matching function is ∇~α .ΠΓx↑~β .Πx :

(a Γx)↑~β
∇ . B for some B. The second requirement ensures that the constructor ci in

each pattern has type ΠΓx
ci
. a ~Mi for some ~Mi. The third requirement checks that

each return value Ni has the appropriate instance of the type B in the modal context

extended with the modal variable u for recursive calls and the non-modal context

containing just the names ~α and the lifted pattern variables for the ci pattern. The

fourth requirement, that the variables in Γx be fully applied with respect to ~β in B.

This is a technical condition which requires that these variables always occur as x 〈~γ〉
for some names γ. The fifth requirement, ` app-checku(Γ

x
i ;Ni), is just notation for

stating that u is only applied to terms that are structurally smaller than ci Γx
i in Ni,

while the sixth requirement, Γ ` ~c covers a, states that the constructors ~c must be

all of the constructors for a.

76

The typing judgment Σ; Γ ` M : A also implicitly assumes that Σ and Γ are well-

formed. The judgment ` Σ states that Σ is a well-formed modal context. The rules

for this judgment are as follows:

` ·
` Σ Σ; · ` A : Typei

` Σ, u : A

` Σ Σ; · ` A : Typei A ≡ Πx1 :A1Πxn :An .Typej

` Σ, a : A

` Σ Σ; · ` A : Typei A ≡ Πx1 :B1Πxn :Bn . a ~M

` Σ, c : A

These rules ensure that the types associated with each modal variable u, each type

constructor a, and each object constructor c are all well-typed in the preceeding

signature. Type constructors are also required to have a type that makes them

a function of zero or more arguments to a type, and object constructors must be

functions of zero or more arguments to an element of a previously defined inductive

type. The judgment ` Σ also implicitly includes standard side conditions on the

formation of inductive types, ensuring that the Ai in the type of a are not of a higher

level than that of a, and that the Bi in the type of c only contain a strictly positively.

For more precise definitions of these conditions, the rules for the Coq system may be

consulted [68, 50].

The well-formedness judgment Σ ` Γ for normal contexts is very similar to that for

modal contexts. This judgment is given by the rules

Σ ` ·
Σ ` Γ Σ; Γ ` A : Typei

Σ ` Γ, x : A

Σ ` Γ
Σ ` Γ, α

These rules simply ensure that all types in a context are well-typed as types.

77

5.3 Metatheory of CNIC

In this section the metatheory of CNIC is developed, including Subect Reduction

and Canonical Forms. Subject Reduction states that computation does not alter the

type of a term. Canonical Forms states that objects of type a ~M for some ~M must

be built from a constructor. This allows adequacy to be proved.

To prove Canonical Forms, the following lemma is needed:

Lemma 5.3.1. If the forms of the types A and B are different elements of the list

a ~M , Πx :A1 . A2, ∇α .A1, Typei, and Name, then neither of A or B can be a subtype

of the other.

Proof. The only way a type of one of these forms could be a subtype of a type of

another of these forms is through the equality st-eq. By confluence, however, no two

of these forms can be equal, as it is straightforward that none of them share a common

reduct.

Canonical Forms is then straightforward:

Lemma 5.3.2 (Canonical Forms). If Σ; · ` M : a ~N for some Σ with no modal

variables and some M in normal form with respect to reduction in CNIC, then M is

of the form c ~M ′ for some constructor c of a and some terms M ′.

Proof. We consider the typing rules that can possibly yield the type a ~N for a term.

t-subt cannot change the form of the type. t-var is impossible as the non-modal

signature is empty. t-mvar is impossible as there are no modal variables in Σ. Thus

M must either be a constructor or a term of the formM ′ ~R for some arguments and/or

name replacements R with M ′ not an application or a constructor replacment. If M ′

is a constructor then again we are finished. M ′ cannot be a λ- or ν-abstraction, as

then M would not be in normal form. Further, M ′ cannot be a variable or modal

variable, as there are no such variables in scope. Thus M must be of the required

form.

Proving Subject Reduction requires a number of lemmas. The first of these are

Weakening and Substitution:

78

Lemma 5.3.3 (Weakening). If Σ; Γ ` M : A then Σ; Γ′ ` M : A for any context

Γ′ containing all the variables and names of Γ and satisfying the property that if x

comes before α in Γ then it also does in Γ′.

Proof. By induction on the typing judgment Σ; Γ ` M : A. The result is mostly

straightforward, and so is omitted here. Note, however, that the side condition about

ordering is needed for the t-namerepl case to show that if x : A is in removeα(Γ) then

it is also in removeα(Γ′). This is because if x : A is in removeα(Γ) then it must

come before α in Γ, so the side condition ensures that it must also come before α in

Γ′ and is therefore in removeα(Γ′).

Lemma 5.3.4 (Substitution). If Σ; Γ1 ` M : A and Σ; Γ1, x : A,Γ2 ` N : B then

Σ; Γ1,Γ2 ` [M/x]N : [M/x]B.

Proof. By induction on the typing judgment Σ; Γ `M : A. The result is straightfor-

ward, and so is omitted here.

Lemma 5.3.5 (Modal Substitution). If Σ; Γ1 ` M : A and Σ; Γ1, u : A,Γ2 ` N :

B then Σ; Γ1,Γ2 ` [M/u]N : [M/u]B.

Proof. By induction on the typing judgment Σ; Γ ` M : A. Again, the result is

straightforward and similar to normal Substitution, and so is omitted here.

Lemma 5.3.6. If ~x include all the free variables of M , then [ν ~β . ~N/~x](M↑~β) is equal

to ν ~β .M .

Proof. By straightforward induction on M .

Lemma 5.3.7 (Preservation). If Γ `M : A and M N , then Γ ` N : A.

Proof. Proof is by induction on D, the proof of Γ ` M : A. If the rewrite M N

happens in a strict subterm of M , then in most cases the result follows directly

from an invocation of the induction hypothesis, possibly with an extra application

of the t-subt rule in the case that M is an application and the rewrite happens in

the argument of M . Thus we consider only cases where M itself is the redex being

reduced.

79

Case:

D =

Σ; removeα(Γ), α `M : A

Σ; removeα(Γ) ` ν α .M : ∇α .A t-nu

Σ; Γ ` ν α .M 〈α〉 : A :
t-namerepl

In this case (ν α .M) 〈α〉 M , and so it must be shown that Σ; Γ ` M : A. Note

that Γ has all the variables and names as removeα(Γ), α, as the latter is got from

the former by removing variables and moving α to the end. Further, any variable x

before name β in removeα(Γ), α is still before β in Γ, and any variable x before α

in removeα(Γ), α must be before α in Γ or it would not be in removeα(Γ). Thus

Weakening can be used on the proof of Σ; removeα(Γ), α ` M : A to achieve the

desired result.

Case:

D =Σ; Γ ` N : A

Σ; Γ, x : A `M : B

Σ; Γ ` λx :A .M : Πx :A .B
t-lambda

Σ; Γ ` (λx :A .M) N : [N/x]B
t-app

In this case (λx :A .M) N [N/x]M . The result is immediate by Substitution.

Case:

D =

Σ; · ` ∇~α .Πx : (∇~β .Name) . B : Typei

∀i(Σ; ~α,Γα
i `Mi : ∇~β .Name) ∀i(Σ; ~α,Γα

i ` Ni : [Mi/x]B)

Σ; remove~α(Γ) ` nfun (~α) (ν ~β . ~Mi \ ~Γα → ~N) : ∇~α .Πx : (∇~β .Name) . B
t-nfun

...

Σ; Γ ` (nfun (~α) (ν ~β . ~Mi \ ~Γα → ~N)) 〈~α〉 (ν ~β . γ) : [ν ~β . γ/x]B
t-app

In this case (nfun (~α) (ν ~β . ~Mi \ ~Γα → ~N)) 〈~α〉 (ν ~β . γ) Nγ. It follows imme-

diately that Σ; ~α, γ ` Nγ : [ν ~β . γ/x]B by the typing requirement for return values

in name-matching functions, and Weakening then yields the desired result. Note

that the other cases of evaluating a name-matching function are similar, so they are

omitted.

Case:

80

Σ; · ` ∇~α .ΠΓx↑~β .Πx : (a Γx)↑~β
∇ . B : Typei ∀i(Σ; · ` ci : ΠΓx

ci
. a ~Qi)

∀i(Σ, u : (∇~α .ΠΓx↑~β .Πx : (a Γx)↑~β
∇ . B) ; ~α,Γx

i↑
~β`Mi : [(Qi)↑

~β /Γx , (ci Γx
i)↑

~β /x]B)
Γx fully applied w.r.t. ~β in B ∀i(` app-checku(Γx

i ;Mi)) Γ ` ~c covers a

Σ; Γ ` fun u (~α,Γx↑~β) ((c Γx
c)↑

~β \ ~Γx
c↑

~β→ ~M) : ∇~α .ΠΓx↑~β .Πx : ((a Γx)↑~β
∇) . B

t-pmfun

...
Σ; Γ ` (fun u (~α,Γx↑~β) ((c Γx

c)↑
~β \ ~Γx

c↑
~β→ ~M) 〈~α〉 ~N ′ (ν ~β . ci ~N)) : [(ν ~β . ~N ′)/Γx, (ν ~β . ci ~N)/x]B

In this case the following holds:

(fun u (~α,Γx) (. . . | ν ~β . ci Γx
ci
〈~β〉 \ Γx

ci
→Mi | . . .)) 〈~α〉 ~N ′ (ν ~β . ci ~N)

[fun u (~α,Γx) (. . . | ν ~β . ci Γx
ci
〈~β〉 \ Γx

ci
→Mi | . . .)/u, (ν ~β . ~N)/Γx

ci
]Mi

Since ci has type ΠΓx
ci
. a ~Qi and (ν ~β . ci ~N) has type ∇~β . a (~N ′ 〈~β〉) it is apparent

that [~N/Γx
ci
] ~Qi equals ~N ′ 〈~β〉. Further, Mi has type [(Qi)↑

~β /Γx , (ci Γx
i)↑

~β /x]B.

Letting F be the whole pattern-matching function above, we thus have

[F/u, (ν ~β . ~N)/Γx
ci
]Mi : [F/u, (ν ~β . ~N)/Γx

ci
]([(Qi)↑

~β /Γx , (ci Γx
ci
)↑~β /x]B)

= [F/u, (ν ~β . ~N ′ 〈~β〉)/Γx, ν ~β . ci ~N/x]B

= [~N ′/Γx, ν ~β . ci ~N/x]B

where the first line follows by Substitution, the second line follows from Lemma 5.3.6,

and the third follows because u cannot be free in B and because every instance of

a variable in Γx is required to be fully applied with respect to ~β in B.

81

Chapter 6

Consistency of CNIC

In this chapter, CNIC is proved consistent and strongly normalizing. This is done

with a translation from well-typed terms of CNIC to well-typed terms of some other

theory, called the target theory. Here, the target theory is an extension of CIC,

called CIC + T, which is introduced below. CIC + T is the combination of the

Calculus of Inductive Constructions with the category T, defined below. The result

of the translation is that, if the contradictory type ΠA : Typei . A is inhabited by

some term M in CNIC (and thus the contradictory proposition is provable), then

the translation of M will prove a contradiction in the target theory. If the target

theory is known to be consistent, then this will not be possible, and CNIC must be

consistent as well. Further, the translation will also be shown to preserve reduction,

so that an infinite reduction sequence starting from M in CNIC will result in an

infinite reduction sequence starting from the translation of M in the target theory.

If the target theory is strongly normalizing, then this is not possible, and so CNIC

must be strongly normalizing as well.

The translation given in this chapter also serves as a denotational semantics for

CNIC. A denotational semantics of a language is a model of the language; i.e. , if term

M evaluates to value V in the language, then the denotational semantics of the two

are the same. A denotational semantics is also required to be compositional, meaning

that the denotational semantics of a term should be built from the denotational

semantics for each of its subterms. Thus a denotational semantics gives a meaning

or interpretation of every term of the language, and this meaning is built from the

meanings of the subterms. See any standard reference (such as John Mitchell’s book

[47]) for more on denotational semantics. Here, instead of using set theory or category

82

theory to describe the meanings of terms, the target language CIC + T is used instead.

A set-theoretic or category-theoretic model for CNIC, such as the well-known proof-

irrelevant model [46], can then be obtained from models of CIC + T.

We turn now to a high-level motivation and description of the translation. The

translation is parameterized by a world, or set of names. Translation is said to take

in some given world. Intuitively, the world specifies the names that have already

been bound by ν-abstractions and other constructs. As an example, the translation

of the term ν α1 . ν α2 .M in some world W will use the translation of M in world

W ∪ {α1, α2}. Pictorially, we can view the previous sentence as follows:

world W ∪ {α1, α2} GFED@ABCM

world W ∪ {α1} ν α2 .M

OO

world W ν α1 . ν α2 .M

OO

where the arrows denote set inclusion of worlds.

The reason the notion of world is included in the translation is because it is necessary

to define the meanings of ν- and ∇-abstractions. Specifically, the behavior of ν α .M

is to bind a new name α in M , where α is distinct from all other names that have

previously been bound. Stated differently, α must be distinct from all other names

in the world. Thus ν- and ∇-abstractions act as quantifiers (like ∀ and ∃) whose

domain of quantification is the complement of the given world. Any attempt to

define a meaning for ν- and ∇-abstractions, therefore, will need to refer to worlds.

This is in fact a central difficulty with formalizing name binding, that the meaning

of name binding relies on implicit information which is dependent on the context of

the term inside a superterm.

Evaluation can move a term to a different world. For example, consider the term

(λx :A . ν α . x) M . If this term is translated in world W , then so is M . One step

of reduction leads to the term ν α .M , which, if translated again in W , contains

a translation of M in world W ∪ {α}. Evaluation can also shuffle the names in a

term through name replacements and pattern-matching under ν-abstractions. As an

83

example of the first of these, consider the term

ν α1 . ν α2 . (ν α1 . ν α2 .M) 〈α2, α1〉

Two steps of evaluating name replacements yields the term ν α1 . ν α2 .M
′ where M ′

is the result of replacing free occurrences of α1 with α2 and vice versa. This sort of

shuffling can be seen as a function mapping the names in the world of M , which here

is W∪{α1, α2}. In this case, this mapping maps back to the same world, W∪{α1, α2}.
Evaluation cannot remove names from the world of a term, however, as this might

cause some terms to become invalid.

In general, a term can be moved by evaluation from world W to world W ′ via a

renaming function, or mapping for short, from W to W ′. The renaming functions

are defined precisely in Section 6.1 as the morphisms of the category T. We note

here only that renaming functions must be injective, meaning distinct names in W

must be mapped to distinct names in W ′. As an example of a renaming function, the

previous paragraph demonstrated a situation in which a term can be moved from the

world W ∪ {α1, α2} to itself via the renaming function that is the identity on W and

that maps α1 and α2 to each other. Graphically, this renaming function looks like

α1

))TTTTTTTTTTTTTTTTTT α1

α2

55kkkkkkkkkkkkkkkkkkk α2

W //W

where the line from W to itself represents the identity on W .

To incorporate renaming functions into the translation, CNIC terms are translated

to functions (in the target language CIC + T) that take a renaming function, or

mapping, as argument. Specifically, the translation in world W produces terms of

the form λT . λ µ : ((|W |⇒ T)) . N where the first argument, T , specifies the type of

the destination world, and the second argument, µ, specifies a mapping from the type

|W | of world W to some world of type T . Thus mappings are actually defined on

collections of source and target worlds which all have the same world type. We leave

84

these notions vague here, deferring a precise definition of worlds and world types to

Section 6.1 below.

The function λT . λ µ .N produced by translating M in world W is intended to be

viewed as a set of terms, one for each mapping µ with sourceW . Intuitively, each term

in the set is a “version” of M after having been moved from W by the given mapping

µ. For example, if µ, µ1, µ
′
1, µ2, and µ′2 are mappings from world W to worlds W , W1,

W1, W2, and W2, respectively, then λT . λ µ .N applied to each of these mappings

results in a term in the given world that is in the term set represented by λT . λ µ .N .

Graphically, this can be visualized as:

world W1 N1 N ′
1 N2 N ′

2 world W2

world W N ′ λT . λ µ .N
µ

hh

µ1

ffMMMMMMMMMMMMMMMMMMMMMMMM

µ′1

]]<<<<<<<<<<<<<<<<

µ2

AA����������������

µ′2

::tttttttttttttttttttttt

where all of the terms displayed are in the term set defined by λT . λ µ .N .

Since terms translate as sets, it is necessary to define the moving operation on these

whole sets. The moving operation cannot just be the application of a λT . λ µ .N

function to a mapping, as the result could not be moved again. To move a λT . λ µ .N

term set, the operation µ(x) is used. This is called the renaming of x. µ(x) represents

the moving of the term set by the mapping µ. µ(x) is defined as λT2 . λ µ2 : ((T ⇒

T2)) . x T2 (µ2 ◦ µ), where ◦ is the composition of renaming functions. This operation

forms another term set that takes argument T2 and µ2, where µ2 is a further renaming

function from worlds of type T to worlds of some type T2. µ2 is then composed with

µ and passed to x, yielding the same result as if µ2 and µ had been composed and

passed to x without forming the renaming of x. Renaming may also be viewed as a

subset operation; if F is a function that defines a term set, then µ(F) is the subset

of F containing only those return values of F that can be attained by passing µ′ ◦ µ
to F for some µ′. This is because µ(F) T ′ µ′ equals F T ′ (µ′ ◦ µ).

An important property of renaming is that, if µ maps world W1 to W2, then µ(·)
applied to the translation of any M in W1 is equal to the translation of M in W2.

85

Graphically, this can be pictured as follows:

M

W1

��~
~

~
~

~
~

~
~

~

W2

 @
@

@
@

@
@

@
@

@

world W1 M1

µ(·)

33M2 world W2

where the dashed lines labeled with worlds represent translation in the given world.

The property described here is called re-translation, and is proved as Lemma 6.2.5

in Section 6.2. Stated differently, re-translation says that moving the translation of

a term does in fact yield the correct re-translation of the term in the new world.

Re-translation turned out to be an important consideration that shaped the work on

the translation given here. This is discused more in Section 6.2.

The discussion here is concluded here with a high-level description of how the trans-

lation is defined for some of the constructs of CNIC, as this information shaped the

definition of the category T given in Section 6.1. The construct with the transla-

tion that is conceptually most straightforward is the name α. A name is translated in

world W as a renaming function from the world {α} of exactly one name to the world

W . Such a function picks out exactly one name from W . Thus the names in W can

be equated with the mappings from the world of exactly one name to W , in a similar

fashion to the way morphisms whose domain is a singleton set are equated with the

elements of a set in the category Set of all sets. It will turn out here, however, that

the world of exactly one name is not a terminal object, unlike singleton sets in Set,

which are. See any standard reference, such as Pierce [58], for more on the category

Set and similar constructions.

ν-abstractions are translated to terms of the form λT . λ µ . λ T2 . λ µ2 .M that take

two mappings. The first mapping, µ, moves the translated term set from the world

W of the translation to some world of type T . This is as described in the preceeding

paragraphs. The second mapping, µ2, is a mapping from worlds of type T to worlds

of type T2 with one name that has been removed or canceled out. Intuitively, such

a world represents a world with a “hole” that is waiting for some new name to fill

the hole. The body M of the translated term set then introduces a new name for the

86

ν-abstraction and uses it to fill the hole in the destination world that is the range of

µ2.

The reason that the translations of ν-abstractions take two mappings is to allow for

name replacements, the elimination form for ν-abstractions. The translation of a

name replacement N 〈α〉 in world W translates the subterm N in the world resulting

from canceling out the name α in W . This is because part of the meaning of the name

replacement N 〈α〉 is that α is fresh for N . The translation for ν-abstractions then

dictates that the translation of N will create a new name α′ which will eventually be

used to fill the hole created by canceling out α in W . Any use of α′, therefore, will

be mapped by the filling action described above to a use of α in W , achieving the

desired result that a name replacement eliminates a ν-abstraction.

λ-abstractions were one of the more difficult constructs to translate. Much of the

reason T was defined as it is was to enable the translation of λ-abstractions. The

translation λx :A .M yields a term of the form λT . λ µ . F , where F is a function that

takes translations of CNIC terms of type A as input and returns the translation of

the body M . The difficulty with λ-abstractions is how to define the moving operation;

i.e. , it must be defined how the mapping µ is applied to the translation of the body

M . The standard approach to defining operations on functions, as given for instance

in the work of Meijer and Hutton [42], is to define a new function from the old one

that undoes the given opertion on the argument, passes the argument to the function,

and then re-performs the operation on the result. Graphically, this can be conveyed

as follows:

in

op−1

��

out

op−1(in)
F

// op−1(out)

op

OO

where op is the operation being performed and F is the given function.

Unfortunately, it is not in general possible to undo renaming functions. For instance,

the inverse of a renaming function that adds names would necessarily remove names,

which is disallowed. This problem is surmounted by enriching the category T as

follows. First, worlds are extended to also include mappings as elements. More

specifically, if µ is a mapping from W to some W ′ then W,µ is also a world. This

world is similar to a quoted or boxed program expression, waiting to be evaluated.

87

Three mapping constructs are then added to operate on worlds with mappings. The

eval mapping performs the evaluation of quoted expressions W,µ, so, for example,

eval maps W,µ to W ′. The mapping add(µ) adds the mapping µ to a world, and so

maps W to W,µ. Finally, the mapping eval−1
µ acts as a limited form of inverse for µ.

eval−1
µ maps from W ′ to some world W ′′, µ such that µ maps W ′′ to W ′. Thus eval−1

µ

is a right inverse to eval, meaning that eval◦ eval−1
µ = id, the identity mapping. These

definitions yield the diagram

W,µ eval //W ′
eval−1

µ

��
W

add(µ)

OO

µ

<<zzzzzzzzz
W ′′, µ

eval

[[

where the given mappings commute.

The original intent of these mappings was to have eval−1
µ be a more direct “undoing”

of µ; i.e. , the intent was to have W ′′ be the same as W , yielding a second diagram:

W,µ
eval

++
W ′

eval−1
µ

ll

W

add(µ)

OO

µ

=={{{{{{{{{{{{{{{{{

This is not possible in general, however. To see this, take any two worlds W1 and W2

of the same type along with mappings µ1 and µ2 on these worlds such that µi maps

Wi to W ′ for i ∈ {1, 2}. It is thus the case that eval maps Wi, µi to W ′, so, taking

µ in the above diagram to be eval, it must be the case that eval−1
eval maps W ′ to both

W1, µ1 and to W2, µ2. If the Wi or the µi are distinct, a contradiction results.

The first diagram above is enough, however, to translate λ-abstractions. If µ is the

mapping argument to the translation of a λ-abstraction, then eval−1
µ is applied to the

argument, moving it to some world W ′′, µ. The rest of the body of the λ-abstraction

is translated in world W,µ. The moved argument is then substituted for x in the

moved body, and the entire result is moved with the mapping eval. This moves all

pieces to the intended world W ′.

88

The second diagram above is needed to translate name-matching functions. A name-

matching function takes a name α and a set of names S, all of which are in the current

world W , and tests if α is in S. Rephrased in the language of T, a name in W is a

mapping µα from the singleton world of one name to W . Similarly, a set of names

S in W is a mapping µ from the set S to W . Graphically, this can be displayed as

follows:

S
µ //W

{α}
µα

=={{{{{{{{

The name is then in the set if and only if µα picks out a name in W to which µ maps

one of the names in S, which holds in turn if and only if µα is equal to µ ◦ µ′α for

some µ′α that maps the singleton world to S. This situation becomes the picture

S
µ //W

{α}
µα

=={{{{{{{{
µ′α

OO

where the given arrows commute.

To test whether the name given by µα is in the set specified by µ, eval−1
µ can be

composed with µα. The result is a mapping from the singleton world of one name

to the world S, µ. By the second diagram for eval−1
µ above, which does in fact hold

when the domain of µ is a set of names with no mappings or holes, if µα is in S then

the following diagram commutes:

S, µ

S
µ //

add(µ)

OO

W

eval−1
µ

bbDDDDDDDD

{α}
µα

=={{{{{{{{
µ′α

OO

This means that eval−1
µ ◦ µα maps the singleton name into the S part of the world

S, µ, as add(µ) maps all elements of S into this part. Otherwise, eval−1
µ ◦µα maps the

singleton name into the µ part of the world S, µ. Thus eval−1
µ in a sense separates the

names in W that are in S from those that are not.

89

The remainder of this chapter is split among two sections. Section 6.1 defines the

category T, while Section 6.2 gives the translation and proves it correct.

6.1 A Category of Worlds

As discussed above, a world is encoded as a tree. Trees can contain negative leaves,

which cancel out positive ones. Trees can be conveyed graphically. For example, the

tree

•

~~~~~~~~

AAAAAAAA

•

��������

???????? +

− ==E
N W _ h p

y
+

contains one negative leaf and two positive leaves. The negative leaf cancels out the

left-most positive leaf. This is denoted with a dashed arrow. Thus this tree represents

a world with just one name.

Renaming functions, also called mappings below, are injective functions mapping

positive leaves to positive leaves and negative leaves to negative leaves. These can

also be conveyed graphically:

•

~~~~~~~~

AAAAAAAA •

}}}}}}}}

@@@@@@@@

•

��������

???????? + >>C
M V _ h r

{
+ •

��������

????????

− 77P
R

T V Y [] _ a c e h j l
n+ 77P

R
T V Y [] _ a c e h j l

n− +

Note, however, that this figure looks very similar to a tree. In fact, if the polarities of

the left tree are switched, the arrows for mapping negative leaves are reversed, and a

90

common node is added at the top, the following tree results:

•

nnnnnnnnnnnnnnn

PPPPPPPPPPPPPPP

•

~~~~~~~~

AAAAAAAA •

}}}}}}}}

@@@@@@@@

•

��������

???????? − ==E
N W _ h p

y
+ •

��������

????????

+ ee K
N

Q
T W Y \ _ b e g j

m
p

s
− 99K

N
Q

T W Y \ _ b e g j
m

p
s

− +

To apply this mapping to a tree, the tree is superimposed with the left subtree of the

mapping. The left subtree is then removed, but any paths through it are retained in

the right subtree. For example, superimposing the previous example tree on the left

subtree of the above mapping yields

•

oooooooooooooo

PPPPPPPPPPPPPPP

•

��������

???????? •

}}}}}}}}

@@@@@@@@

•

��������

======== • ==E
N V _ h p

y
+ •

��������

????????

• dd K
N

Q
S V Y \ _ b e h k

n
p

s
++f c a _ ] [ X • ::K

N
Q

T V Y \ _ b e h j
m

p
s

− +

Removing the left subtree, the following tree results:

•

}}}}}}}}

@@@@@@@@

+ •

��������

????????

− ==E
N W _ h p

y
+

91



It is also possible to create a mapping from the original example to the singleton tree

with one leaf, as follows:

•

}}}}}}}}

AAAAAAAA

•

��������

@@@@@@@@ +

•

��������

???????? −

PP

] c ~
�

 

+ −aa y
ph_WN

E

Superimposing the original example tree yields

•

��������

@@@@@@@

•

��������

???????? +

•

~~~~~~~

@@@@@@@ •

QQ

\ c ~
�

!

• >>D
M V _ h q

z
•vv RV[_chl

and removing the left subtree yields the singleton tree. Swapping the two sides of

the mapping and reversing the directions of the arrows, it is also apparent that the

mapping to the singleton tree can be reversed. Thus the original tree is said to be

isomorphic to the singleton tree. This makes intuitive sense, as a world with 2 − 1

names should be equivalent to one with 1 name.

Note that this construction is very similar to the free compact closed category con-

struction of [36, 65]. The difference there is that all positive nodes in a free compact

closed category are required to have an arrow to them. Here, this is not the case.

Intuitively, the difference is that the free compact closed category is a model of a form

92

of linear logic, where all resources must be preserved. Here, new names can always

be created, an the main requirement is simply that names cannot be destroyed.

The remainder of this section proceeds as follows. Section 6.1.1 introduces the concept

of a path disjoint graph. These are used to model trees. Section 6.1.2 uses path disjoint

graphs to formally define the category T of trees and tree mappings. Section 6.1.3

then briefly discusses CIC + T.

6.1.1 Path Disjoint Graphs

Definition 6.1.1 (Path Disjoint). A graph G = (V,E) is path disjoint if and only

if every vertex has in- and out-degree at most 1. Given such a G, the following are

useful definitions:

• A vertex v ∈ V is a source if and only if it has in-degree 0 and out-degree at

most 1.

• A vertex v ∈ V is a sink if and only if it has in-degree at most 1 and out-degree

0. A source is a strict sink if it has in-degree equal to 1.

• A vertex v ∈ V is an intermediate vertex if and only if it has in-degree and

out-degree 1.

• A vertex v ∈ V is an unused vertex if and only if it has in-degree and out-degree

0.

Lemma 6.1.1. If G = (V,E) is path disjoint and p is a path in G then p is maximal

if and only if it begins at an unused vertex, is a non-empty loop, or is a path from a

source vertex to a sink vertex.

Proof. If v ∈ V is an unused vertex then there can be no non-empty paths containing

it, so the empty path beginning at v is maximal. If p = (v1, v2), . . . , (vn, v1) is a

non-empty loop then any proper super-sequence would contain v1 twice but not as

the last element, so would not be a valid path. If p = (v1, v2), . . . , (vn−1, vn) is a path

from a source vertex to a sink vertex then any proper super-sequence would either

93

need an edge (v, v1), contradicting the fact that v1 is a source vertex, or would need

an edge (vn, v), contradicting the fact that vn is a sink vertex.

Conversely, let p = (v1, v2), . . . , (vn−1, vn) be any maximal path. If p is empty then

v1 must be an unused vertex, or there would be some super-sequence of p that is a

valid path. So let p be non-empty. If v1 is not a source vertex then there is some

edge (v, v1) ∈ E. Since p is maximal, (v, v1), p cannot be a valid path, and so v

must be distinct from vn and must already be on p. Let v = vi. i 6= n − 1 implies

a contradiction, since this means (vi, vi+1) ∈ E and (vi, v1) ∈ E, meaning either vi

has out-degree at least 2, contradicting the assumption that G is path disjoint, or

vi+1 = v1 and so p is not a valid path. Thus i = n− 1, and either v1 = vn and p is a

loop, or vn−1 has out-degree at least 2, contradicting the assumption that G is path

disjoint. A similar argument shows that if vn is not a sink vertex then p must also be

a loop.

Lemma 6.1.2. Let G = (V,E) be any path disjoint graph and v ∈ V . If p1 and p2

are paths in G that both start at v, then one is a prefix of the other, while if p1 and

p2 are paths in G that both end at v, then one is a suffix of the other.

Proof. Proof is by induction on the length of the shorter of the two paths. If one of

these is empty then it is trivially a prefix of the other. Otherwise p1 = (v, v1), p
′
1 and

p2 = (v, v2), p
′
2. By the induction hypothesis, one of p′1 and p′2 is a prefix of the other.

It must also be that v1 = v2, or v would have out-degree at least 2, contradicting the

path disjointedness of G. Thus one of p1 and p2 is a prefix of the other. The case for

two paths ending at v is similar.

Lemma 6.1.3. If G = (V,E) is path disjoint then no two distinct maximal paths

modulo loops share a vertex.

Proof. Let v be any vertex in V . If there is some non-empty path p from v to itself,

p is a loop and thus, by Lemma 6.1.1, is maximal. To see that p is unique modulo

loops, let p1, p2 be another maximal path containing v, where p1 is the prefix of this

new path ending at v and p2 is the suffix beginning at v. By Lemma 6.1.2 and the

maximality of p, p2 is a prefix of p and p1 is a suffix of p. Thus p = p′1, p1, p2, p
′
2

94

for some p′1 and p′2. The maximality of p1, p2 ensures that p is not a proper super-

sequence of p1, p2, so p′1 and p′2 are empty, and p1, p2 is a loop that is identical to p

up to its starting point.

Otherwise v is not on any loop, so by Lemma 6.1.1 any two maximal paths p1, p2 and

p′1, p
′
2 containing v begin at a source and end at a sink node, where p1 and p′1 are the

prefixes before v and p2 and p′2 are the suffixes after v. By Lemma 6.1.2 one of p1

and p′1 must be a suffix of the other, but since both begin at a source node neither

can be a proper suffix and both must be equal. Similarly, one of p2 and p′2 must be a

prefix of the other but both begin at a source node so the two must be equal. Thus

the two maximal paths containing v are identical.

Lemma 6.1.4. If G = (V,E) is path disjoint and v ∈ V is a source or sink ver-

tex connected in G to only finitely many vertices, then there is a maximal path p

containing v.

Proof. Proof is by induction on the number of vertices connected to v. If v is a source

vertex, then either it is unused, in which case it is also a sink vertex and the empty

path is a maximal path from it to itself, or there is some (v, v′) ∈ E, where v′ 6= v

follows from the fact that v is a source vertex. Let G′ = (V,E − (v, v′)). In this

graph, v′ is a source vertex and is connected to one less vertex than is v in G. To see

this note that if v′ is connected to some v′′ in G′ then, because v′ is a source vertex,

there must be a path p in G′ from v to v′, and so (v, v′), p is a path from v to v′ in

G. v′ cannot, however, be connected to v in G′, as v is unused in G′. Thus, by the

inductive hypothesis, there is a maximal path p in G′ containing v′. p must begin at

v′ as v′ is a source vertex in G′, so (v, v′), p is a valid path in G. This path is maximal

because no edge can be added to the beginning, as v is a source vertex in G, and

no edge can be added to the end, as this edge would also be in G′, contradicting the

maximality of p in G′. The argument for v being a sink vertex is similar.

Lemma 6.1.5. If G = (V,E) is path disjoint and v ∈ V is connected to only finitely

many vertices in G then v is on a maximal path.

Proof. If v is a sink vertex then it is on a maximal path by Lemma 6.1.4. Otherwise

there exists some edge (v, v′) ∈ E. Let G′ = (V,E − (v, v′)). v is a sink vertex and

v′ is a source vertex in G′, so by Lemma 6.1.4 there are maximal paths p ending at v

95

and p′ beginning at v′, both of which are in G′. If v′ is on p then p must begin at v′,

as v′ is a source, so (v, v′), p is a loop containing v, and is thus maximal by Lemma

6.1.1. Similarly, if v is on p′ then p′, (v, v′) is also a loop containing v. Otherwise,

p, (v, v′), p′ is a valid path. Since p ends at the sink vertex v in G′ it must begin at

a source vertex v1 in G′. Similarly, p′ ends at a sink vertex v2 in G′. Since v′ is not

on p and v is not on p′, v1 6= v′ and so is still a source vertex in G and v2 6= v and so

is still a sink vertex in G. Thus p, (v, v′), p′ begins at a source vertex and ends at a

sink vertex and hence is a maximal path in G by Lemma 6.1.1.

Lemma 6.1.6. If G = (V,E) is path disjoint and p is a maximal path in G then

every vertex on p is connected only to other vertices on p.

Proof. For any v1, v2 ∈ V with (v1, v2) ∈ E, if v1 is on p then v2 must also be on p.

If not, then p must end at v1, as otherwise there would be some edge (v1, v
′
2) ∈ E,

implying the out-degree of v1 is at least 2. In addition, p cannot contain v2, as v2 is

not on a maximal path. Thus p, (v1, v2) is a valid path, contradicting the maximality

of p. Similarly, if v2 is on a maximal path then v1 is as well. Hence, for any two

vertices v, v′ ∈ V connected by some path p′, if v is on p then, by induction on the

length of p′, so is v′.

Theorem 6.1.1. If G = (V,E) is path disjoint then v ∈ V is connected to only

finitely many vertices in G if and only if v is on a maximal path.

Proof. If v is on a maximal path p, then, by Lemma 6.1.6, v is connected only to

other vertices on p. Since paths are finite, v is thus connected to only finitely many

vertices in G. Conversely, if v is connected to only finitely many vertices in G, then

by Lemma 6.1.5 it is on a maximal path.

Lemma 6.1.7. If G is path disjoint then every source vertex on a maximal path in

G is connected to exactly one sink vertex and every sink vertex on a maximal path in

G is connected to exactly one source vertex.

Proof. If v is a source vertex on a maximal path then by Lemma 6.1.3 that maximal

path is unique and by Lemma 6.1.1 that maximal path ends at a sink vertex. Similarly,

if v is a sink vertex on a maximal path then by Lemma 6.1.3 that maximal path is

unique and by Lemma 6.1.1 that maximal path begins at a source vertex.

96

Definition 6.1.2 (Maximal Path Contraction). The maximal path contrac-

tion of path disjoint G is the graph (V ′, E ′) constructed as follows. For each loop

in the maximal paths modulo loops of G choose a canonical vertex on the loop.

Let Vloop be the set of these canonical vertices. Define V ′ to be the set of all ver-

tices in V that are either source vertices, sink vertices, vertices in Vloop, or ver-

tices not on a maximal path. Define E ′ = (E ∩ (V ′ × V ′)) ∪ Econn, where Econn =

{(v1, v2)|source vertex v1 and sink vertex v2 are connected in G}.

Theorem 6.1.2. Let G be path disjoint and let G′ be the maximal path contraction

of G. Any vertex in G′ is also in G and has in- and out-degree in G′ at most what

it has in G, with these being the same for sources and sinks. Thus G′ is also path

disjoint. Further, vertices are connected in G′ if and only if they are connected in G

and vertices are on a maximal path if and only if they are in G.

Proof. If v is not on a maximal path in G then it cannot be a source connected to

a sink or a sink connected to a source, as this connection would be a maximal path.

Thus any edges to or from v in G′ cannot be in Econn and so are also present in G,

and v has the same in- and out-degree in G′ as in G. Further, any vertex connected

to v in G must not be on a maximal path in G, by Lemma 6.1.6, and so will similarly

retain all of its edges in G′. A straightforward induction then shows that any path

containing v is in G if and only if it is in G′. Thus any connections to other vertices

are retained from G to G′. In addition, v can thus not be on any maximal path in G′

as it would be on this maximal path in G.

Now consider v on a maximal path in G. v is either in Vloop or is a strict source or a

strict sink vertex in G. If v is in Vloop then there are no edges to or from it in Econn.

Thus, since v is connected in G only to other vertices on the loop that contains it,

none of which are in G′, it cannot be connected to any other vertices and hence is

unused in G′. v thus has in- and out-degree 0 and is also on the empty maximal path

beginning at it. If v is a strict source on a maximal path in G, then by Lemma 6.1.7

there is exactly one sink vertex v′ ∈ V to which v is connected in G, and so there is

exactly one edge (v, v′) ∈ Econn. By Lemma 6.1.6 and Lemma 6.1.1 any other vertices

connected to v in G are intermediate vertices on a maximal path but not in Vloop and

so are not in G′. Thus (v, v′) is the only edge to or from v in G′, and v is a strict

source in G′. A similar argument shows that any strict sink in G must have exactly

97

one edge to it in G′, so v′ also has only the one edge (v, v′) to or from it. (v, v′) is

then a maximal path containing v and v′, and v and v′ are connected only to each

other which are the only vertices in G′ to which they are connected in G.

Corollary 6.1.1. If G = (V,E) is path disjoint with all vertices on maximal paths,

then (v1, v2) is in the maximal path contraction of G if and only if v1 is a strict source

in G, v2 is a strict sink in G, and there is a path from v1 to v2 in G.

Proof. Let G′ be the maximal path contraction of G. If (v1, v2) is in G′ then, since

v1 and v2 must be on a maximal path in G and vertices on loops in G have no edges

in G′, v1 must be a source and v2 must be a sink in G. Since the two are connected

in G′ they must be connected in G so there must be a maximal path from v1 to v2.

If, conversely, v1 is a source and v2 is a sink in G, then v1 is a source and v2 is a sink

in G′ and each is connected to exactly one other vertex. Since they are connected in

G they must also be connected in G′ and (v1, v2) must be in G′.

Definition 6.1.3 (Overlapping Union). Let G1 = (V1, E1) and G2 = (V2, E2)

be any two graphs and let f1 and f2 be injective functions with domain V1 and V2,

respectively. The pair (f1, f2) is called an overlapping of G1 and G2, with Ran(f1) ∩
Ran(f2) being the overlap of G1 and G2 with respect to (f1, f2). Further, any two

vertices v1 ∈ V1 and v2 ∈ V2 with f1(v1) = f2(v2) are said to overlap with respect

to (f1, f2). The overlapping union of G1 and G2 with respect to (f1, f2) is the graph

with vertices Ran(f1) ∪ Ran(f2) and whose edges are given by {(fi(v1), fi(v2))|i ∈
{1, 2} and (v1, v2) ∈ Ei}.

Definition 6.1.4 (Respecting Polarity). Let G1 = (V1, E1) and G2 = (V2, E2)

be any two path disjoint graphs with overlapping (f1, f2). (f1, f2) is said to respect

the polarity of G1 and G2 if and only if, for every v1 ∈ V1 and v2 ∈ V2 such that

f1(v1) = f2(v2), either v1 is a source in G1 and v2 is a sink in G2 or v2 is a source in

G2 and v1 is a sink in G1.

Theorem 6.1.3. If G1 = (V1, E1) and G2 = (V2, E2) are any two path disjoint graphs

and (f1, f2) is an overlapping for G1 and G2 that respects the polarity of G1 and G2,

then the overlapping union of G1 and G2 with respect to (f1, f2) is also path disjoint.

Further, the in- and out-degrees of any vertex v not mapped into the overlap are

identical in the overlapping union and in the original graph.

98

Proof. This is immediate, as any vertex in the overlap of G2 and G1 can only have in-

and out-degree at most one by the definition of respecting polarity, while any vertex

not in this overlap only has edges from one of the two graphs and so has in- and

out-degree at most one by assumption.

Theorem 6.1.4. Let G1 = (V1, E1) and G2 = (V2, E2) be two path disjoint graphs

with overlapping (f1, f2) that respects the polarity of G1 and G2. If G1 and G2 are

finite then every vertex

Proof.

6.1.2 The Category T

In this section, the category T is defined in terms of path disjoint graphs. The objects

of this category will be the tree types, which specify a set of trees with the same form

and with positive and negative leaves in the same positions. The morphisms from

tree type T1 to tree type T2 will then be defined as trees of type (T ∗1) ? T2, the tree

type with right child T2 and whose left child is the result of switching the polarities

in T1. These notions are formalized here in terms of path disjoint graphs over the set

of positive and negative leaves in a tree. Composition in T is defined by taking an

overlapping union of two mappings and then forming the maximal path contraction

of the result. Some useful morphisms will then be introduced below.

Definition 6.1.5 (Tree Types). The tree types are inductively defined as follows:

1. ∅ is a tree type, called the empty tree type;

2. L is a tree type, called the positive leaf, or just leaf, tree type;

3. L∗ is a tree type, called the negative leaf tree type; and

4. if T1 and T2 are tree types, T1 ? T2 is a tree type, called a node tree type.

Definition 6.1.6 (Duals of Tree Types). The dual of tree type T , written T ∗, is

the result of replacing all occurrences of L with L∗ and all occurrences of L∗ with L.

99

Definition 6.1.7 (Tree Type Positions). A tree type position, or just position,

is a sequence of elements of the set {1, 2}. The empty sequence is denoted ε. If q

is a position, then the notion of the tree at position q in T is defined inductively as

follows:

1. T is the tree at position ε in T ;

2. If T is the tree at position q in Ti for i ∈ {1, 2}, then T is the tree at position

i, q in T1 ? T2.

If L or L∗, respectively, is the tree at position q in T , then q is said to be a positive

or negative position of T , respectively. The leaf positions of T , denoted lp(T), are

the positions that are either positive or negative in T .

Note that q is used here for positions to be distinct from p which is used for paths.

Definition 6.1.8 (Trees). Given a tree type T , a tree of type T is a path disjoint

directed graph whose vertices are the leaf positions of T , with negative positions being

strict sources and positive positions being sinks or unused vertices.

In the below, T is used for tree types and τ is used for trees. τ : T is used to denote

that τ is a tree of type T . The notation |τ | is used to denote the tree type of τ .

Definition 6.1.9 (Tree Mappings). A tree mapping from T1 to T2 is a tree of type

T ∗1 ? T2.

In the below, µ is used for tree mappings, and T1 ⇒ T2 is used to denote the tree

type T ∗1 ? T2 of tree mappings from T1 to T2.

Lemma 6.1.8. Two tree mappings µ1, µ2 : T1 ⇒ T2 are equal if and only if for each

negative position q in T1 ⇒ T2 there exists the same edge (q, q′) in µ1 and µ2.

Proof. The only if part is trivial, so let µ1 and µ2 satisfy the above condition. µ1

and µ2 have the same vertices by assumption. Further, since the only vertices in a

tree mapping are sources and sinks, the edges of a tree mapping are exactly those

edges (q, q′) from some strict source to some strict sink, that is, from a negative to a

positive position. These are equal in µ1 and µ2 by assumption, so they are equal.

100

Definition 6.1.10 (Composition). Let µ1 : T1 ⇒ T2 and µ2 : T2 ⇒ T3 be any two

tree mappings. The composition graph of µ1 and µ2 is the overlapping union of µ1

and µ2 with respect to the functions

f1(1, q) = 1, q

f1(2, q) = ∗, q
f2(1, q) = ∗, q
f2(2, q) = 2, q

where ∗ is a new symbol prepended to the paths into T2 and T ∗2 to distinguish them

from the other paths. The composition of µ2 with µ1, written µ2 ◦ µ1, is defined as

the result of taking the maximal path contraction of the composition graph of µ1 and

mu2 and removing all vertices of the form ∗, q for some q.

Lemma 6.1.9 (Well-Definedness of Composition). For every µ1 : T1 ⇒ T2 and

µ2 : T2 ⇒ T3 for all tree types T1, T2, and T3, µ2 ◦ µ1 is a tree mapping of type

T1 ⇒ T3. Further, the edge (q1, q2) exists in µ2 ◦ µ1 if and only if q1 6= q2 and there is

a maximal path from q1 to q2 in the composition graph of µ1 and µ2.

Proof. To see that (f1, f2) respects polarity, first note that if two vertices overlap then

one is (2, q) in µ1 and the other is (1, q) in µ2. By the types of µ1 and µ2 q must then

be a position in T2. If q is a positive position in T2 then (2, q) is positive in T1 ⇒ T2

and is thus a sink in µ1 while (1, q) is negative in T2 ⇒ T3 and so is a strict source in

µ2. Otherwise q is a negative position in T2 and (2, q) is a strict source in µ1 and a

sink in µ2. Thus the composition graph is path disjoint by Theorem 6.1.3. Note that

this argument also shows that all vertices in the overlap of (f1, f2) have out-degree

at least 1, so no maximal path in the composition graph ends at a vertex of the form

∗, q.

Next it is shown that, for any vertices q1, q2 in µ2 ◦ µ1, the edge (q1, q2) is in µ2 ◦ µ1

if and only if q1 6= q2 and there is a maximal path from q1 to q2 in the composition

graph of µ1 and µ2. Let G be this composition graph and let G′ be its maximal path

contraction. If there is a maximal path from q1 to q2 in G with q1 6= q2, then this

maximal path is non-empty, and an application of Theorem 6.1.2 yields that the edge

(q1, q2) is in G′. Further, since q1 and q2 are assumed to be in µ2 ◦µ1, this edge is not

removed when µ2 ◦ µ1 is constructed from G′.

101

Conversely, if (q1, q2) is in µ2 ◦µ1 then it must be in G′, as µ2 ◦µ1 is constructed from

G′ by removing vertices and edges. q1 6= q2 follows by the definition of maximal path

contraction. Since tree types are finite, both µ1 and µ2 must also be finite, and it is

straightforward to see that G and G′ must therefore be finite as well. An application

of Lemma 6.1.5 yields that q1 and q2 must be on on maximal paths in G′, and an

application of Theorem 6.1.2 then shows that they must also be on maximal paths in

G. Since G′ is the maximal path contraction of G, by the definition of maximal path

contraction G′ can only contain vertices from G on maximal paths if those vertices

are source, sink, or unused vertices from G, so by Theorem 6.1.2 and by the fact that

(q1, q2) is in µ2 ◦ µ1 it must be the case that q1 is a source and q2 is a sink in G.

By Lemma 6.1.1 and Lemma 6.1.6, since q1 and q2 are connected and both are on

maximal paths, therefore, a maximal path from q1 to q2 must exist in G.

The rest of the lemma follows from the above arguments. If 1, q is a positive or

negative position, respectively, in T1 ⇒ T3, then it is the same in T1 ⇒ T2 and so

must be a sink or strict source, respectively, in µ1. Since 1, q overlaps with no vertex

of µ2, 1, q must also be a sink or strict source, respectively, in the composition graph

and, since the composition graph is finite, there must be a maximal path ending at

1, q, or, respectively, there must be a non-empty maximal path starting at 1, q in the

composition graph. Thus, by the above arguments, if 1, q is a positive or negative

position, respectively, in T1 ⇒ T3, then it is a sink or strict source in µ2 ◦ µ1. A

similar argument holds for leaf positions (2, q) in T1 ⇒ T3.

Lemma 6.1.10 (Associativity of Composition). For every µ1 : T1 ⇒ T2, µ2 :

T2 ⇒ T3, and µ3 : T3 ⇒ T4, (µ3 ◦ µ2) ◦ µ1 = µ3 ◦ (µ2 ◦ µ1).

Proof. First note that (µ3 ◦µ2) ◦µ1 and µ3 ◦ (µ2 ◦µ1) have the same vertices. For the

edges, let f1, f2, and f3 be the following injective functions on the set of vertices V1

of µ1, V2 of µ2, and V3 of µ3, respectively:

f1(1, q) = 1, q

f1(2, q) = ∗1, q

f2(1, q) = ∗1, q

f2(2, q) = ∗2, q

f3(1, q) = ∗2, q

f3(2, q) = 2, q

102

For i ∈ {1, 2, 3}, let Gi = (Ran(fi), {(f1(v1), f1(v2))|(v1, v2) ∈ µi}). It is straightfor-

ward to see this is an isomorphism. Further, letting Gi,i+1 = Gi ∪Gi+1 for i ∈ {1, 2},
it is straightforward to see that Gi,i+1 is isomorphic to the composition graph of µi

and µi+1. Thus we have that the composition graph of µ1 and (µ3 ◦µ2) is isomorphic

to G1 ∪G′
2,3, where G′

2,3 is the result of taking the maximal path contraction of G2,3

and removing vertices of the form ∗2, q. We now show that, for any two vertices

beginning with 1 or 2, the vertices are connected in G1 ∪G2,3 if and only if they are

connected in G1 ∪G′
2,3 if and only if they are connected in the composition graph of

µ1 and (µ3 ◦ µ2), by isomorphism. A similar proof applies to the composition graph

of (µ2 ◦ µ1) and µ3 and G1,2 ∪ G3, so, since G1 ∪ G2,3 = G1,2 ∪ G3, the paths of the

two composition graphs are the same and (µ3 ◦ µ2) ◦ µ1 = µ3 ◦ (µ2 ◦ µ1) by Lemma

6.1.9 and Lemma 6.1.8.

We actually show the slightly more general proposition that there exists a path p1 in

G1∪G2,3 starting and ending with vertices of the form 1, q, ∗1, q, or 2, q if and only if

there is a path p2 starting and ending at the same vertices in G1 ∪G′
2,3. The only if

is by induction on the number of vertices of the given form in p1. If p1 is empty, then

p2 can be empty. Otherwise p1 = p′1, p
′′
1, where p′1 is the non-empty prefix of p1 to the

next vertex v of the given form. By the induction hypothesis there exists some p′′2

from v to the end of p1 in G1 ∪G2,3, so we must only show there exists some p′2 from

the beginning of p1 to v. p′1 cannot have edges from both G1 and G2,3 as these graphs

only share vertices of the given form. If p′1 is entirely in G1 then we can set p′2 = p′1.

Otherwise p′1 is a path in G2,3 from vertices of the given form, and so is maximal by

the previous paragraph and there is some edge (v′, v) in G′
2,3 from the beginning of

p1 to v. Thus (v′, v), p′2 is a path in G1 ∪G′
2,3 from the beginning to the end of p1.

The if is proved by induction on the length of p2. Again, if p2 is empty then p1 can

be empty. Otherwise p2 = (v, v′), p′2. v
′ must be of the required form, as no vertices

beginning with ∗2 are in G1 or G′
2,3. Thus the desired p′1 exists by the induction

hypothesis. If (v, v′) is an edge of G1 then (v, v′), p′1 is the desired p1. Otherwise

(v, v′) is an edge of G′
2,3, so by the above there is a path p′′1 from v to v′ in G2,3, and

p′′1, p
′
1 is the desired p1.

103

Definition 6.1.11 (Identity Mapping). Let idT be the mapping of type T ⇒ T

with edges ((1, q), (2, q)) for every positive position q in T and edges ((2, q), (1, q)) for

every negative position q in T .

Lemma 6.1.11. For any mapping µ : T1 ⇒ T2, µ ◦ idT1 = µ = idT2 ◦ µ.

Proof. Let G be the composition graph of idT1 and µ. For every negative or positive

position 1, q in T1 ⇒ T2 there exists an edge ((∗, q), (1, q)) or ((1, q), (∗, q)), respec-

tively, in G resulting from idT1 . For every negative position i, q1 in T1 ⇒ T2 there

exists an edge ((i, q1), (j, q2)) in µ, thus there is an edge ((i′, q1), (j
′, q2)), where i′

and j′ are the result of changing i or j, respectively, to ∗ if it is 1. This edge can

be extended to a path from i, q1 to j, q2 in G by possibly using the edges mentioned

above resulting from idT1 . Thus µ ◦ idT1 = µ by Lemma 6.1.9 and Lemma 6.1.8. The

proof for idT2 ◦ µ = µ is similar.

Definition 6.1.12 (The Category T). The category whose objects are the tree types

and whose morphisms from T1 to T2 are the tree mappings of type T1 ⇒ T2 is a valid

category.

By Lemmas 6.1.10 and 6.1.11, T is indeed a well-defined category. In fact, T is a

compact closed category, with ∅ as the identity object, ? as the tensor operation

on objects, and T ∗ as the dual operation on objects. It is straightforward to define

the required morphisms and show the required equations hold, but this shall not be

important here.

Definition 6.1.13 (Tensor). Let µ1 : T1 ⇒ T ′1 and µ2 : T2 ⇒ T ′2 be any two

mappings. The tensor of µ1 and µ2, written µ1⊗µ2, is the mapping of type T1?T2 ⇒

T ′1 ? T ′2 containing on edge from i, k, q to j, k, q′ for each edge from i, q to j, q′ in µk,

for all i, j, k ∈ {1, 2}.

Lemma 6.1.12. If µ1 : T1 ⇒ T2, µ
′
1 : T ′1 ⇒ T ′2, µ2 : T2 ⇒ T3, and µ′2 : T ′2 ⇒ T ′3 are

any tree mappings of the given types, then (µ2⊗µ′2)◦ (µ1⊗µ′1) = (µ2 ◦µ1)⊗ (µ′2 ◦µ′1).

Proof. Let fi(i) = i and fi(3 − i) = ∗ for i ∈ {1, 2}. The composition graph for

(µ1 ⊗ µ′1) and (µ2 ⊗ µ′2) has an edge from (fk(i)), 1, q to (fk(j)), 1, q
′ for each edge

from i, q to j, q in µk and one from (fk(i)), 2, q to (fk(j)), 2, q
′ for each edge from i, q

104

to j, q in µ′k. Thus by induction and Lemma 6.1.9 there is an edge from i, 1, q to

j, 1, q′ in (µ2⊗µ′2)◦ (µ1⊗µ′1) if and only if there is an edge from i, q to j, q′ in µ2 ◦µ1.

Similarly, there is an edge from i, 2, q to j, 2, q′ in (µ2 ⊗ µ′2) ◦ (µ1 ⊗ µ′1) if and only

if there is an edge from i, q to j, q′ in µ′2 ◦ µ′1. But this is exactly the definition of

(µ2 ◦ µ1)⊗ (µ′2 ◦ µ′1).

Definition 6.1.14. Let µ : T1 ⇒ T2 be any mapping.

• add-l is the mapping of type T ⇒ T ? L with the following edges:

((1, q), (2, 1, q)) for every positive position q in T

((2, 1, q), (1, q)) for every negative position q in T

• add(µ) is the mapping of type T ⇒ T ? (T1 ⇒ T2) with the following edges:

((1, q), (2, 1, q)) for every positive position q in T

((2, 1, q), (1, q)) for every negative position q in T

((2, 2, q), (2, 2, q′)) for every edge (q, q′) in µ

• combine-l-l∗ is the mapping of type ((T ?L∗)?L)⇒ T with the following edges:

((1, 1, 1, q), (2, q)) for every positive position q in T

((2, q), (1, 1, 1, q)) for every negative position q in T

((1, 2), (1, 1, 2))

• eval is the mapping of type (T1 ? (T1 ⇒ T2))⇒ T2 with the following edges:

((1, 1, q), (1, 2, 1, q)) for every positive position q in T1

((1, 2, 1, q), (1, 1, q)) for every negative position q in T1

((1, 2, 2, q), (2, q)) for every positive position q in T2

((2, q), (1, 2, 2, q)) for every negative position q in T2

105

• eval−1
µ is the mapping of type T2 ⇒ (T1 ? (T1 ⇒ T2)) with the following edges:

((2, 2, i, q), (2, 2, j, q′)) for every edge ((i, q), (j, q′)) in µ with i 6= j

(f(j, q), f(i, q′)) for every ((i, q), (j, q′)) in µ with i 6= 2 or j 6= 2

((1, q), (2, 2, 2, q)) for every unused positive position 2, q in µ

((1, q′), (2, 2, 2, q′)) for every edge ((2, q)(2, q′)) in µ

((2, 2, 2, q), (1, q)) for every edge ((2, q)(2, q′)) in µ

where f(1, q) = 2, 1, q and f(2, q) = 1, q

The intended meaning of these mappings is as follows. add-l adds an unused leaf as

the right subtree of any tree. add(µ) adds the mapping µ as the right subtree of a

tree. combine-l-l∗ takes any tree of type (T ?L∗)?L, which intuitively is a tree whose

right subtree is a leaf and whose left subtree is a tree with a hole, and combines the

leaf into the hole, thus “filling” the hole. eval takes any tree of type T1 ? (T1 ⇒ T2),

which intuitively is a tree whose right subtree is a mapping including the left subtree

in its domain, and applies the mapping to that left subtree. eval−1
µ is intended to take

the result µ(τ) of applying µ to τ and returns the tree τ ?µ, though, as suggested in

introduction to this chapter, this is not always quite achieved.

Lemma 6.1.13. The following equalities hold for any tree mapping µ:

1. eval ◦ eval−1
µ = id

2. eval ◦ add(µ) = µ

3. eval−1
µ ◦ µ = add(µ) for any µ : T1 ⇒ T2 where T1 has no negative leaves

4. (µ⊗ id) ◦ add-l = add-l ◦ µ

5. (µ⊗ id) ◦ add(µ′) = add(µ′) ◦ µ

6. combine-l-l∗ ◦ ((µ⊗ id)⊗ id) = µ ◦ combine-l-l∗

Proof. The proofs are routine but tedious, so are omitted here.

106

The explanation of these equalities is as follows. The first two describe the following

commutative diagram, repeated from the introduction of this chapter:

T1 ? (T1 ⇒ T2)
eval // T2

T1

add(µ)

OO

µ

88qqqqqqqqqqqqqq

When the tree type T1 contains no negative leaves, the first three of the equalities

describe the more refined diagram

T1 ? (T1 ⇒ T2)
eval

,, T2

eval−1
µ

ll

T1

add(µ)

OO

µ

::uuuuuuuuuuuuuuuuuuuuuu

also repeated from the introduction of this chapter. The fourth and fifth equalities

state that adding a right subtree and then performing an operation solely on the

left subtree is equivalent to performing the operation on the tree before the adding

and then adding the given right subtree. The last equality states that eliminating a

hole and then performing an operation on the result is equivalent to performing the

operation on the given subtree before doing the combining.

To finish this section, we briefly discuss names and how to compare them. This will

be useful below in translating name-matching functions in CNIC. In T, A world W

can be identified with a mapping µ of type ∅⇒ |W |. This is because such a mapping

has no structure in its left subtree, and so the mappings of this type are isomorphic

to the worlds of type |W |. As discussed above, the names in W will be identified as

those positive positions in W with no incident edges. Positive positions in W that do

have incident edges are considered cancelled out. It is thus possible to identify the

names in W with the mappings µ of type (∅ ? L) ⇒ |W | such that µ ◦ add-l = µW ,

where µW is the mapping of type ∅⇒ |W | corresponding to W . This is because such

mappings can only differ in the position to which the leaf on the left is mapped, and

it can only be mapped to positions in |W | that do not already have an edge to them.

107

By the same logic, ordered lists of names in W can be identified with mappings of

type (. . . (∅? L) . . .? L)⇒ |W |. We denote this type as ~α⇒ |W | below.

Name-matching functions in CNIC compare names with ordered lists of names. More

specifically, if ~α is a list of names, name-matching tests if some x of type Name is

equal to αi for some i or if x is disjoint from ~α. We now demonstrate how this may

be done in T:

Lemma 6.1.14. If T is a tree type, µ : ~α⇒ T and µn : L⇒ T such that µn ◦add-l =

µ ◦ add-ln, then either µn = µ ◦ add-lj ◦ (add-li ⊗ id) for some i+ j + 1 = n, or there

exists some µ′ : ~α, α⇒ T such that µ = µ′ ◦ add-l and µn = µ′ ◦ (add-ln ⊗ id).

Proof. It is straightforward to see that µn ◦ add-l has all the same edges in the right

subtree as µn, since µn ◦ add-l will simply remove the edge from the left subtree to

the right that must be in any mapping of type L ⇒ T . Similarly, µ ◦ add-ln has the

same edges in the right subtree as µ. Thus the assumption that µn ◦add-l = µ◦add-ln

ensures that µn and and µ have the same edges in the right subtree.

Now consider the edge ((1, 2), (2, q)) in µn from the left subtree to the right. There

cannot be an edge ((2, q′), (2, q)) in µ because this would be in the right subtree and

would thus be in µn, contradicting the fact that µn is path disjoint. Thus there is

either no edge to (2, q) in µ or there is an edge of the form ((1, 1i, 2), (2, q)), as all

negative positions in the left subtree of ~α⇒ T are of the form (1, 1i, 2). If there is no

such edge, then it is straightforward to construct the morphism µ′ : ~α, α ⇒ T that

maps the ~α as in µ but maps the new α to (2, q). µ′ ◦ add-l = µ because composing

with add-l simply removes the edge to (2, q) in µ′, and µn = µ′ ◦ (add-ln ⊗ id) since

(add-ln ⊗ id) removes the other edges from the left subtree to the right in µ′.

If there is an edge of the form ((1, 1i, 2), (2, q)) in µ, then it is straightforward to see

that add-lj ◦ (add-li ⊗ id) removes all other edges from the left subtree to the right,

yielding a mapping of type (∅?L)⇒ T with the edge ((1, 2), (2, q)) and all edges in

the right subtree the same. Thus µ ◦ add-lj ◦ (add-li ⊗ id) = µn.

108

6.1.3 Tree Mappings in Type Theory

Using the previous two sections, the category T can be defined in CIC. The tree

types are straightforward to encode, as they form a simple inductive definition. The

trees themselves can then be defined as a set of graphs that are path disjoint and

that agree with a given tree type. Composition is more complex to define, as it

involves overlapping unions and maximal path contraction. The proofs of Section

6.1.1 must also be fully encoded into CIC to show that composition is well-defined.

This is tedious and does not significantly contribute to the current presentation, so

is omitted here.

In the below, it will be useful to make the equalities of Lemma 6.1.13 hold on the

type of mappings. As shown in the proof, these do hold when the given mappings are

ground, meaning they have no variables. In addition, this proof can be encoded into

CIC to produce a proof of type eq M1 M2 for the particular cases mentioned in the

lemma. Unfortunately, this is only a provable equality, not a definitional equality.

Using provable equality in CIC can be very tedious. Many uses require the principle

of Uniqueness of Identity Proofs, meaning that any two proofs of eq M1 M2 are

themselves equal. This principle is not itself provable in CIC without adding extra

axioms [29]. Even with the extra axioms required, reasoning with provable equality

can be very tedious.

Instead, the language CIC + T is defined here to include the equalities of Lemma

6.1.13 as definitional equalities. To do this, an extra relation ∼ is added to the theory

of CIC. ∼ is defined to hold between two terms when one can be got from the other

by replacing terms up to the equalities of Lemma 6.1.13. The subtyping relation of

CIC is then extended to include the rule

A ∼ B
` A . B

st-sim

for incorporating ∼. Note that ∼ is not added to the reduction relation, as this would

require finding a convergent rewrite system that implies all the equalities of Lemma

6.1.13, and it is not known at this time whether this is possible.

109

We also add one final equality to the definition of ∼. Assuming that Lemma 6.1.14

is provable in CIC, it defines a function for determining which of the given equalities

hold. This is equivalent to writing a function find-name-case~α of type

ΠT .Πµ : (~α⇒ T) .Πµn : ((∅? L)⇒ T) .

eq (µ ◦ add-ln) (µn ◦ add-l) ⇒ name-case~α T µ µn

where the type name-case~α is defined with the signature

name-case~α : ΠT .Πµ : (~α⇒ T) .Πµn : (∅? L)⇒ T .Type0

name-case-i~α,i : ΠT .Πµ : (~α⇒ T) .

name-case~α T µ (µ ◦ (add-li−1 ⊗ id) ◦ add-ln−i)

fresh-name-case~α : ΠT .Πµ : (~α, α⇒ T) .

name-case~α T (µ ◦ add-l) (µ ◦ (add-ln ⊗ id))

The equality that is added to ∼ is

find-name-case~α T2 (µ2 ◦ µ) (µ2 ◦ µn)

∼ map-name-case~α T µ µn T2 µ2 (find-name-case~α T µ µn)

where map-name-case~α is the function

fun (T, µ, µn, T2, µ2) (name-case-i~α,i T µ \ T, µ→ name-case-i~α,i T2 (µ2 ◦ µ) |
fresh-name-case~α T µ \ T, µ→ fresh-name-case~α T2 (µ2 ◦ µ)

)

with type name-case~α T µ µn ⇒ name-case~α T2 (µ2 ◦ µ) (µ2 ◦ µ).

The purpose of the above equality is to simplify uses of the function find-name-case~α.

find-name-case~α is how name-matching will be implemented in the translation below.

In general, however, names µn in the translation will be of the form µ ◦µg where µ is

a variable and µg is ground. Thus find-name-case~α cannot reduce. The above equality

ensures that applying find-name-case~α to such a mapping is equal under ∼ to a term

that does reduce. map-name-case~α does not inspect the given mappings, so it will

always reduce if the find-name-case~α does.

110

In the below, CNIC will be proved strongly normalizing, and thus consistent, via

a reduction to CIC + T. This requires CIC + T itself to be strongly normalizing.

To see this, we note that CIC + T is an instance of a formalism called the Calculus

of Congruent Inductive Constructions, or CCIC [8]. CCIC allows equalities to be

added to CIC in the above manner, as long as the equalities are in fact provable

equalities in CIC. This is true of all equalities given for ∼ above.

Note that CCIC does has some technical side conditions disallowing the use of the

above subtyping rule st-sim in some cases. Specifically, the ∼ relation can only be used

to convert the weak terms in a type, where a weak term is a term in which all pattern-

matching functions are fully applied to arguments and there are no applications of

variables whose types are of the form A1 ⇒ . . .⇒ An ⇒ Typei for some i. The reason

for this restriction in CCIC is that that calculus allows the relation ∼ to depend on

a local context of equality assumptions, which may be contradictory. For example, in

body M of the term

λ e :eq zero (succ zero) .M

the ∼ relation could use the assumption e that zero equals succ zero to convert zero

to succ zero in types. Abbreviating the non-weak term

fun (zero \ · → nat | succ y \ y → nat ⇒ nat)

as F , we then have that nat = F zero ∼ F (succ zero) = nat ⇒ nat, which then allows

the non-terminating term (λx : F zero . x x) (λx : F zero . x x) to be typed. The ∼
relation in CIC + T, however, does not depend on any local assumptions, and thus

weakness need not be enforced here. Private correspondence with one of the authors

of the work on CCIC [34] has verified this claim.

6.2 Translating CNIC to CIC + T

In this section, the translation from CNIC to CIC + T is given by the operations

JMK∆tm and JMK∆pf , discussed below. These operations define two translations of M

with respect to a translation context ∆. Translation contexts give a specification of

111

the world of each name and variable used in M . It is also a tree itself, and specifies

the world for M .

The remainder of this section is split into two pieces. Section 6.2.1 introduces trans-

lation contexts and gives some important properties. Section 6.2.2 then defines the

translation and uses it to prove strong normalization of CNIC.

6.2.1 Translation Contexts

The translation contexts are used for three purposes in the translation below. First,

they give a world for the translation. Second, they specify which free names in a term

refer to which positive leaves in that world. Third, they specify a world for all of the

free variables of a term.

The translation contexts are inductively defined along with the world they specify.

This is as follows:

• · is a translation context, called the empty translation context, that specifies

the unique world of type ∅.

• If ∆ is a translation context that specifies a world of type |∆|, and ∆ does not

contain α, then ∆, α is a translation context that specifies the world of type

|∆|? L got from the world of ∆ by adding a new leaf as a right subtree.

• If ∆ is a translation context that specifies a world of type |∆|, and ∆ contains

α but not α∗, then ∆, α∗ is a translation context that specifies the world of type

|∆|? L∗ built by adding a negative leaf as a right subtree that cancels out the

leaf already in ∆ for α.

• If ∆ is a translation context that specifies a world of type |∆| and µ is a

mapping with type |∆|⇒ T for some T , then ∆, (µ; ~x) is a translation context

that specifies the world of type |∆| ? |∆| ⇒ T got from adding µ as a right

subtree.

Note that, in these definitions and the below, |∆| is used to denote the type of the

world specified by ∆.

112

As suggested above, translation contexts are also used to specify to mappings, ∆(~α)

and ∆(x). The first of these is used to “pick out” the names ~α from the world specified

by ∆. Specifically, ∆(~α) is defined to be the mapping of type (. . . (∅?α1) . . .?αn)⇒

|∆| that maps each αi to the positive leaf created for it in the tree specificed by ∆.

This means that this notation is undefined if, for any of the αi, either αi is not in ∆

or α∗i is in ∆.

The translation context ∆1, (µ; ~x),∆2 specifies that the variables ~x are all in the world

got by applying µ to the world specified by ∆1. To bring them to the world specified

by ∆1, (µ; ~x),∆2, eval−1
µ must first be applied to bring the variables to a world of the

type |∆1|? (|∆1|⇒ ∆2). Then a mapping must be applied to add the ∆2 part to the

world. This mapping is denoted tcadd(∆2), and is the mapping from |∆1, (µ; ~x)| to

|∆1, (µ; ~x),∆2| that is constant on positions in the input and maps the tree specified

by ∆1, (µ; ~x) to that specified by ∆1, (µ; ~x),∆2.

Note that tcadd(∆2) is not defined if ∆2 contains some α∗ but not the corresponding α.

This would constitute a negative leaf with no corresponding positive leaf, a situation

that is not allowed. This means that if we introduce a name α into ∆, then introduce

x, and then cancel α, x cannot then be used. This corresponds exactly to the typing

rule for name replacements, the only construct that cancels names. In the name

replacement M 〈α〉, the variable x cannot be used in M unless it occurs before α in

the typing context.

Lemma 6.2.1. For any ∆ and any sequence ~α of names in ∆,

1. (∆, α)(~α, α) = (∆(~α)⊗ id);

2. (∆, α∗)(~α) = (∆(~α, α)⊗ id) ◦ (~α, α, α∗)(~α); and

3. (∆, (µ; Γ))(~α) = add(µ) ◦∆(~α).

Proof. Immediate by inspection of the definitions.

An important form of translation context in the below will be the eval-ing translation

contexts. It will turn out that these are the only translation contexts that can actually

come about in the course of computation.

113

Definition 6.2.1 (Eval-ing Translation Context). The non-mapping length of

translation context ∆ is len(∆′) where ∆′ is the longest suffix of ∆ not containing

any mapping elements (µ; Γ). An eval-ing translation context is one where every

mapping element is of the form (µ ◦ (eval⊗ idn); Γ), n being the non-mapping length

of the prefix of ∆ before the given mapping element.

Lemma 6.2.2. The equivalences

• (eval⊗ idn) ◦ ((∆1, (µ; Γ),∆2)(x)) ◦ eval ∼= (eval⊗ idn) ◦ tcadd(∆2)

• (eval⊗ idn) ◦ ((∆1, (µ; Γ),∆2)(x)) ◦ µ ∼= (eval⊗ idn) ◦ tcadd((µ; Γ),∆2)

hold for any ∆1, ∆2, µ, Γ, and x with x ∈ Γ and ∆2 an eval-ing translation context

with non-mapping length n.

Proof. Straightforward by the definitions.

Definition 6.2.2 (Agreement of Translation Contexts). The notion that trans-

lation context ∆1 agrees under mapping µ1 with translation context ∆2 under mapping

µ2, written µ1(∆1) ≈ µ2(∆2), is defined inductively as follows:

1. tcadd(∆2)(∆1) ≈ id(∆1,∆2);

2. combine-l-l∗(∆1, α1,∆2, α
∗
1, α2) ≈ id(∆1, α2,∆2);

3. µ1 ⊗ id(∆1, α) ≈ µ2 ⊗ id(∆2, α) if µ1(∆1) ≈ µ2(∆2);

4. µ1 ⊗ id(∆1, α
∗) ≈ µ2 ⊗ id(∆2, α

∗) if µ1(∆1) ≈ µ2(∆2); and

5. eval(∆1, (µ ◦ µ1; Γ)) ≈ eval(∆2, (µ ◦ µ2; Γ)) if µ1(∆1) ≈ µ2(∆2).

Lemma 6.2.3. If µ1(∆1) ≈ µ2(∆2) then:

1. µ1 ◦ ∆1(~α) = µ2 ◦ ∆2(~α) for any ~α all of which have positive but no negative

occurrences in ∆1 and ∆2; and

2. µ1 ◦∆1(x) = µ2 ◦∆2(x) for any x occurring in both ∆1 and ∆2.

Proof. By straightforwrd induction on the definition of µ1(∆1) ≈ µ2(∆2).

114

6.2.2 The Translation

We turn now to the actual translation. As suggested above, the intent of the transla-

tion is to convert a term M in CNIC to a term of the form λT . λ µ .N , where µ has

type |∆|⇒ T and ∆ is the translation context used to translate M . This in a sense

denotes a set of terms, one for each tree type T and mapping µ to T . Intuitively, this

means that, although M is translated into a world with names ~α at particular posi-

tions, the translation includes a specification of what M would be at every possible

world that is reachable (via a mapping) from the world of translation.

In the following translation, however, translations of terms are not often passed a T

and a µ, because the result cannot be re-translated. Let M be a CNIC term and N

be the translation of M with respect to ∆. Restating the previous sentence, if we pass

a given T and µ to N then we get a result which is not a function on tree types and

mappings. Thus we lose the ability to re-translate N . Instead, the translation below

generally builds the new function λT2 . λ µ2 . N T2 (µ2 ◦ µ), which takes in another

mapping µ2 from T to T2 and passes the composition of this mapping to N . It is

then possible to re-translate this new function by applying the same process again,

and this may happen ad infinitum. This construction is written below as µ(N), and

is called the renaming of N .

The main difficulty of the given approach concerns inductive types. Specifically,

consider the CNIC term c for some constructor c. In CNIC, a pattern-matching

function can match against c, and distinguish it from other constructors. If c is

translated to a function, however, then it is no longer possible to pattern-match on

it. Further, we cannot perform pattern-matching on the translation of c by simply

passing it some particular T and µ, because that would just be pattern-matching on

that particular instance of the translation of c. The reason this matters is that a

function which takes in T and µ is not guaranteed to return the same constructor for

each input. Thus, by matching just one particular instance of such a function agaist

the c pattern it is not guaranteed that the given function is equal to the translation

of c. But this is what is assumed by pattern-matching, that the input is equal to the

given pattern. The same problem is apparent with name-matching functions.

115

Thus the translation is broken into two pieces. The first piece, JMK∆tm, creates the

actual translation of CNIC term M . The second piece, JMK∆pf , creates the proof that

JMK∆tm is a valid translation. Informally, a valid translation always returns the same

constructor, no matter what mapping is passed to it, and always returns the same

name modulo the renaming passed to it. Proofs must also be extended to functions

and elements of a ∇ type. To be a valid translation at function type means that

applying the function to a valid translation returns a valid translation. For a ∇ type,

a valid translation is one that returns a valid translation for every name replacement.

This approach is very similar to proofs by logical relations [25, 12]. In a logical

relations proof, some property is proved of all terms in the language by defining a set

of terms by induction on the type such that all terms in the set satisfy the property.

Induction on the terms is then used to show that all terms are in the given set. The

set in question is called a logical relation. (Presumably it is called a relation because

it defines a set for every type, which is thus a relation between terms and types.) For

base types, like the inductive types, the logical relation simply includes all terms with

the desired property. For composite types like function types, terms are in the logical

relation if they have the desired property and if, additionally, all possible elimination

forms for the term are in the set. For function types, the elimination form is function

application. For ∇ types, the proper elimination form is name replacement.

The difference between logical relations proofs and the approach here is that here the

logical relation is encoded as part of the translation. The general idea is that, if A is

a CNIC type, then JAK∆pf defines a predicate on the elements of JAK∆tm. If M is then a

CNIC term of type A, then JMK∆pf will be a proof that JMK∆tm satisfies the predicate

defined by JAK∆pf . Technically speaking, JAK∆pf will have type

λT . λ µ : (|∆|⇒ T) .Πx :µ(JAK∆tm-tp) .Typei

where the notation µ(JAK∆tm-tp) stands for ΠT2 .Πµ2 . JAK∆tm T2 (µ2◦µ). JMK∆pf will then

have type ΠT .Πµ . JAK∆pf-tp T µ µ(JMK∆tm) specifying that any renaming of JMK∆tm will

still be in the logical relation defined by A.

We turn now to the definition of the translation. This is given in Figures 6.1, 6.2,

6.3, and 6.4. Note that these figures follow the convention that the leading µ taken

as argument in λT . λ µ . for every term has type |∆| ⇒ T . We now discuss the

116

translations for the term constructs. The term translation for variables x takes a tree

type T and a mapping µ and applies x to T and (µ◦∆(x)). As discussed above, ∆(x)

brings x to the world for ∆. µ is then composed with ∆(x) to move x to pass the

input arguments on to x. For the proof translation of x, note that every variable x

always has a corresponding proof variable xpf . Otherwise it would not be possible to

prove x is in the logical relation, as x could be any term. Note the symmetry between

the term and proof translations.

For the translation of constructors, note that constructors are assumed to be fully

applied to as many arguments as the arity of the constructor. This can be assured

in the source language by η-expansion. Every constructor in CNIC gets translated

to two constructors, one for the term translation and one for the proof translation.

Similarly for the type constructors. More specifically, if a has type ΠΓx .Typei in

CNIC, then the two types a and valid-a are created in the translation with the types

a : ΠT .Πµ .ΠJΓxKµ;·
ctxt .Typei

valid-a : ΠT .Πµ .ΠJΓxKµ;·
ctxt .Πx :a T µ Γx .Typei

where JΓxKµ;·
ctxt translates Γx to take in a term and proof variable for every variable in

Γx. This notion is defined in Figure 6.4.

To translate constructor c of type ΠΓx . a ~M , we first partition Γx into the types that

do not contain a and those that do contain a. This is because the type of c cannot

mention the type valid-a, since conceptually we must define valid-a after a. So we

assume the type of c is ΠΓx
1,Γ

x
2 . a

~M where Γx
1 contains the types without a and Γx

2

contains those with a. c then translates to the constructors c and valid-c, with types

c : ΠT .Πµ .ΠJΓx
1K

µ;·
ctxt . (eval(JΓx

2K
µ;Γx

1
tm-tp)) ⇒ a eval(J ~MKµ;Γx

1
args)

valid-c : ΠT .Πµ .ΠJΓx
1,Γ

x
2K

µ;·
ctxt .

valid-a eval(J ~MKµ;Γx
1,Γx

2
args) (λT2 . λ µ2 . c T2 (µ2 ◦ µ) µ2(Γ

x
1))

where eval(JΓx
2K∆tm-tp) is used to define that only the term versions of the variables and

types in Γx
2 are used in the type of c. The notation µ(J ~MK∆args) is simply the sequence

of µ(JMiK∆tm) and µ(JMiK∆pf) for every Mi in ~M . Given these definitions, the term

translation of c ~M1
~M2 takes in T and µ and applies c to them, the term and proof

117

µ(x) ≡ λT2 . λ µ2 . x T2 (µ2 ◦ µ)
µ(JAK∆tp) = ΠT2 .Πµ2 . JAK∆tm T2 (µ2 ◦ µ)
µ(JAK∆pf-tp(x)) = ΠT2 .Πµ2 . JAK∆pf T2 (µ2 ◦ µ) (λT3 . λ µ3 . x T3 (µ3 ◦ µ2))
µ(J ~MK∆args) = µ(JM1K∆tm), µ(JM1K∆pf), . . . , µ(JMnK∆tm), µ(JMnK∆pf)

JxK∆tm = λT . λ µ . x T (µ ◦∆(x))
JxK∆pf = λT . λ µ . xpf T (µ ◦∆(xpf))

Jc ~M1
~M2K∆tm = λT . λ µ . c T (µ ◦∆(∅)) µ(J ~M1K∆args) µ(J ~M2K∆tm)

Jc ~MK∆pf = λT . λ µ . valid-c T (µ ◦∆(∅)) µ(J ~MK∆args)

JαK∆tm = λT . λ µ .mk-name T (µ ◦∆(α))
JαK∆pf = λT . λ µ .mk-valid-name T (µ ◦∆(α))

Jν α .MK∆tm = λT . λ µ . λ T2 . λ µ2 : (T ⇒ (T2 ? L∗)) .
JMK∆,α

tm T2 (combine-l-l∗ ◦ ((µ2 ◦ µ)⊗ id))
Jν α .MK∆pf = λT . λ µ . λ T2 . λ µ2 : (T ⇒ (T2 ? L∗)) .

JMK∆,α
pf T2 (combine-l-l∗ ◦ ((µ2 ◦ µ)⊗ id))

JM 〈α〉K∆tm = λT . λ µ . JMK∆,α∗

tm (T ? L∗) (µ⊗ id) T id

JM 〈α〉K∆pf = λT . λ µ . JMK∆,α∗

pf (T ? L∗) (µ⊗ id) T id

Jλx :A .MK∆tm = λT . λ µ . λ x :µ(JAK∆tm-tp) . λ xpf :µ(JAK∆pf-tp(x)) .

JMK∆,(µ;x,xpf)
tm T eval

Jλx :A .MK∆pf = λT . λ µ . λ x :µ(JAK∆tm-tp) . λ xpf :µ(JAK∆pf-tp(x)) .

JMK∆,(µ;x,xpf)
pf T eval

JM NK∆tm = λT . λ µ . JMK∆tm T µ µ(JNK∆tm) µ(JNK∆pf)
JM NK∆pf = λT . λ µ . JMK∆pf T µ µ(JNK∆tm) µ(JNK∆pf)

Figure 6.1: Translation of CNIC to CIC + T: Terms

118

JTypeiK∆tm = λT . λ µ .Typei

JTypeiK∆pf = λT . λ µ . λA :µ(JTypeiK∆tm-tp) .Πx : (ΠT2 .Πµ2 . A T2 µ2) .Typei

JΠx :A .BK∆tm = λT . λ µ .Πx :µ(JAK∆tm-tp) .Πxpf :µ(JAK∆pf-tp(x)) .

JBK∆,(µ;x,xpf)
tm T eval

JΠx :A .BK∆pf = λT . λ µ . λ y :µ(JΠx :A .BK∆tm-tp) .
Πx :µ(JAK∆tm-tp) .Πxpf :µ(JAK∆pf-tp(x)) .

JBK∆,(µ;x,xpf)
pf T eval

(λT2 . λ µ2 . y T2 µ2 µ2(x) µ2(xpf))

J∇α .AK∆tm = λT . λ µ .ΠT2 .Πµ2 : (T ⇒ (T2 ? L∗)) .
JAK∆,α

tm T2 (combine-l-l∗ ◦ ((µ2 ◦ µ)⊗ id))
J∇α .AK∆pf = λT . λ µ . λ x :µ(J∇α .AK∆tm-tp) .ΠT2 .Πµ2 : (T ⇒ T2 ? L∗) .

JAK∆,α
pf T2 (combine-l-l∗ ◦ ((µ2 ◦ µ)⊗ id))
(λT3 . λ µ3 : (T2 ⇒ T3) . x (T3 ? L∗) ((µ3 ⊗ id) ◦ µ2) T3 id)

Ja ~MK∆tm = λT . λ µ . a T (µ ◦∆(∅)) µ(J ~MK∆args)
Ja ~MK∆pf = λT . λ µ . λ x :µ(Ja ~MK∆tm-tp) .

valid-a T (µ ◦∆(∅)) µ(J ~MK∆args) x

JNameK∆tm = λT . λ µ . name T (µ ◦∆(∅))
JNameK∆pf = λT . λ µ . λ x :µ(JNameK∆tm-tp) . valid-name T (µ ◦∆(∅)) x

Figure 6.2: Translation of CNIC to CIC + T: Types

119

Ju 〈~α〉 ~N NK∆tm/pf =
λT . λ µ .

(u (T ? ~β) (tcadd(~β) ◦ µ ◦∆(∅)) (remove-nus~β
T µ(J ~NK∆args))

(remove-nus~β
T µ(JNK∆tm)) ((remove-nus~β

T µ(JNK∆pf)) (T ? ~β) id)
(remove-nus~β

T µ(JNK∆pf)) (mk-valid-eq-pf (remove-nus~β
T µ(JNK∆pf)))

T (µ ◦∆(~α)) (eq-refl (mk-pair (T ? ~β) (tcadd(~β) ◦ µ ◦∆(∅))))).1/2 T id

J(fun u (~α,Γx) (ν ~β . ~P → ~M)) 〈~α〉 ~N NK∆tm/pf =
λT . λ µ .

(Jfun u (~α,Γx) (ν ~β . ~P → ~M)Kpmfun

(T ? ~β) (tcadd(~β) ◦ µ ◦∆(∅)) (remove-nus~β
T µ(J ~NK∆args))

(remove-nus~β
T µ(JNK∆tm)) ((remove-nus~β

T µ(JNK∆pf)) (T ? ~β) id)
(remove-nus~β

T µ(JNK∆pf)) (mk-valid-eq-pf (remove-nus~β
T µ(JNK∆pf)))

T (µ ◦∆(~α)) (eq-refl (mk-pair (T ? ~β) (tcadd(~β) ◦ µ ◦∆(∅))))).1/2 T id

Jfun u (~α,Γx↑~β) (ν ~β .~c (~Γx 〈~β〉) \ ~Γx↑~β→ ~M)Kpmfun =
fun u (Ta, µa : (∅⇒ Ta), JΓxKµa;·

ctxt)
(valid-c1 Tx µx Γx

1 \ Tx, µx, JΓx
1K

µ;·
ctxt →

λxpf :ΠTc .Πµc . valid-a Tc µc (µc ◦ eval)(J ~NcK
(µx;Γx

c1
)

args) .
λ epf :eq (λTc . λ µc . valid-ci Tc µc µc(Γx

1, x)) xpf .
λ Tβ . λ µβ : (~α⇒ Tβ) .
λ e :eq (mk-pair Tx µx) (mk-pair (Tβ ? ~β) (tcadd(~β) ◦ µβ ◦ tcadd(~α))) .

cast epf , (eq-symm e)
(mk-pair

eval([add-nus~β
Tβ (cast e Γx

1)/Γ
x
1]JM1K

~α,(µβ ;Γx
1)

tm)

eval([add-nus~β
Tβ (cast e Γx

1)/Γ
x
1]JM1K

~α,(µβ ;Γx
1)

pf)) |
...
| valid-cn . . .)

J(nfun (~α) (~Pα → ~M)) 〈~α〉 NK∆tm/pf =
λT . λ µ .

(fun (T2, µ2, x, xpf)
(name-matching~α,i Tx µx \ Tx, µx : (~α⇒ Tx) → JMαiK

~α,(µx;·)
tm/pf Tx eval

| . . .
| fresh-matching~α Tx µx \ Tx, µx : (~α, α⇒ Tx) → JMαK

~α,α,(µx;·)
tm/pf Tx eval)

) T (find-matching~α T (µ ◦∆(~α)) µ(JNK∆tm) µ(JNK∆pf))

Figure 6.3: Translation of CNIC to CIC + T: Pattern-Matching Functions

120

J·Kµ;~x
ctxt = ·

Jx : A,ΓKµ;~x
ctxt = x : eval(JAK(µ;~x)

tm-tp), xpf : eval(JAK(µ;~x)
pf-tp(x)), JΓKµ;~x,x,xpf

ctxt

J·Kmctxt = ·

JΣ, a : Π~x : ~A .TypeiKmctxt =
JΣKmctxt,

a : ΠT .Πµ : (∅⇒ T) .ΠJ~x : ~AKµ;·
ctxt .Typei,

valid-a : ΠT .Πµ : (∅⇒ T) .ΠJ~x : ~AKµ;·
ctxt . (a T µ x1 xpf-1 . . . xn xpf-n) ⇒ Typei

JΣ, c : Π~x : ~A .Π~y : ~Aa . a ~MKmctxt =
JΣKmctxt,

c : ΠT .Πµ : (∅⇒ T) .ΠJ~x : ~AKµ;·
ctxt .

(evalJ ~AaK
(µ;x1,xpf-1,...,xn,xpf-n)
tm-tp) ⇒ a T µ eval(J ~MK(µ;x1,xpf-1,...,xn,xpf-n)

args)
valid-c : ΠT .Πµ : (∅⇒ T) .ΠJ~x : ~A, ~y : ~AaK

µ;·
ctxt .

valid-a T µ J ~MK(µ;−−−→x,xpf)
args eval(Jc ~xK(µ;−−−→x,xpf)

tm)

JΣ, u : ∇~α .Π(~x : ~A)↑~β .Πx : (∇~β . a (~x 〈~β〉)) . BKmctxt =
JΣKmctxt,

u : ΠT .Πµ : (∅⇒ T) .ΠJ~x : ~AKµ;·
ctxt .Πx :eval(Ja ~xK(µ;−−−→x,xpf)

tm-tp) .

Πxvalid :valid-a T µ −−−→x xpf .Πxpf :eval(Ja ~xK
(µ;−−−→x,xpf)
pf-tp (x)) .

Πepf :eq (re-move-a T µ −−−→x xpf x xvalid) xpf .ΠTβ .Πµβ : (~α⇒ Tβ) .
Πe :eq (mk-pair T µ) (mk-pair (Tβ ? ~β) (tcadd(~β) ◦ µβ ◦ tcadd(~α))) .

pair

eval([add-nus~β
Tβ (cast e (−−−→x, xpf , x, xpf))/−−−→x, xpf , x, xpf]JBK

~α,(µ;−−−→x,xpf ,x,xpf)
tm-tp)

(λ z . eval([add-nus~β
Tβ (cast e (−−−→x, xpf , x, xpf))

/−−−→x, xpf , x, xpf]JBK
~α,(µ;−−−→x,xpf ,x,xpf)
pf-tp (z)))

Figure 6.4: Translation of CNIC to CIC + T: Contexts

121

translations of ~M1, and just the term translations of ~M2. The proof translation of

c ~M1
~M2 applied valid-c to T , µ, and the term and proof translations of the arguments.

The above type and object constructor declarations must define valid inductive types

in CIC + T. This makes two requirements on the types in the declarations. First,

the types given to the type and object constructors must themselves be well-typed.

This will be straightforward after the proof of Translation Typing, given below. Note

that Translation Typing requires that translations of terms appear as eval(JMK∆tm/pf),

which is satisfied here. The second requirement on the types in the above declarations

is that these declarations satisfy the standard positivity and type universe constraints

on inductive types as in, for example, the Coq system. These mostly follow directly

from the fact that the declarations here mirror the declarations in CNIC in a manner

that preserves type universes and strict positivity. The only complication here is that

the type for valid-c itself contains c. Thus the type valid-a must intuitively be defined

after a, as mentioned above, so no constructor for a can use the type valid-a.

The fact that proving the well-typedness of the types for constructors requires a for-

ward use of Translation Typing here, though it looks at first like a circular argument,

is in fact a giant induction on the number of type and object constructors in the

modal context Σ of a given typing derivation Σ; Γ `M : A of CNIC. This is because

the type of a constructor in Σ can only contain constructors that occur earlier in Σ.

Thus, if a is the first constructor in Σ, then the types for a and valid-a given above

contain no other constructors. Therefore Translation Typing may be used directly to

prove that these types are themselves well-formed. The next inductive step can then

assume that the given types for a and valid-a are well-typed to prove that the types

for the second constructor are well-formed, and this can be repeated for all of Σ.

Names are translated using the following inductive types:

name : ΠT .Πµ :∅⇒ T .Type0

mk-name : ΠT .Πµ : (∅? L)⇒ T . name T (µ ◦ add-l)

valid-name : ΠT .Πµ :∅⇒ T . name T µ⇒ Type0

mk-valid-name : ΠT .Πµ : (∅? L)⇒ T . valid-name T (µ ◦ add-l)

(λT2 . λ µ2 .mk-name T2 (µ2 ◦ µ))

122

valid-name acts as the logical relation for names. Intuitively it states that a term is

in the logical relation for names if it is of the form λT2 . λ µ2 .mk-name T2 (µ2 ◦ µ).

It turns out that valid-name and valid-a have a very useful property: if x1 and x2

both have the same valid-name or valid-a type then those proofs must be equal. This

essentially shows why we do not need a logical relation for our logical relations proofs,

as all logical relations proofs will be “valid translations” because they are all equal.

This can be proved for valid-name with the folowing function:

fun (T, µ)

(mk-valid-name T µn \ T, µn →
λ v2 : (valid-name T (µn ◦ add-l) (λT2 . λ µ2 .mk-name T2 (µ2 ◦ µn))) .

(fun (T, µ′)

(mk-valid-name T µ′n \ T, µ′n →
λ e :eq (λT2 . λ µ2 .mk-name T2 (µ2 ◦ µn))

(λT2 . λ µ2 .mk-name T2 (µ2 ◦ µ′n))

.

cast e (refl-equal (mk-valid-name T µn)))

) (refl-equal (λT2 . λ µ2 .mk-name T2 (µ2 ◦ µn)))

)

This function has type

ΠT .Πµ : (∅⇒ T) .Πx : (ΠT2 .Πµ2 . name T2 (µ2 ◦ µ)) .

Πv1 :valid-name T µ x .Πv2 :valid-name T µ x . eq v1 v2

and is called valid-name-eq below. The function valid-a-eq of type

ΠT .Πµ : (∅⇒ T) .ΠΓ .Πx : (ΠT2 .Πµ2 . a T2 (µ2 ◦ µ) µ2(Γ)) .

Πv1 :valid-a T µ ~M x .Πv2 :valid-a T µ ~M x . eq v1 v2

can be defined in a similar fashion.

These equalities allow us to safely “re-move” valid-name and valid-a proofs. For ex-

ample, if M has type Name in CNIC, then JMK∆pf is a term set of valid-name proofs.

Applying JMK∆pf to a particular T and µ yields a particular valid-name proof in a

particular world. Specifically, JMK∆pf T µ has type valid-name T (µ ◦∆(∅)) µ(JMK∆tm).

This proof is no longer a term set, and so cannot be moved again directly using the

renaming operation µ(·). The proof can be re-moved, however, using the the function

123

re-move-name, defined as follows:

fun re-move-name (T, µ, x)

(mk-valid-name T µ \ T, µ→
λT2 . λ µ2 .mk-valid-name T2 (µ2 ◦ µ))

The re-move-name function has type

ΠT .Πµ : (∅⇒ T) .Πx : (ΠT2 .Πµ2 . name T2 (µ2 ◦ µ)) . valid-name T µ x⇒
ΠT2 .Πµ2 . valid-name T2 (µ2 ◦ µ) µ2(x)

meaning that re-move-name T µ x takes any proof of type valid-name T µ x and cre-

ates a term set function of type ΠT2 .Πµ2 . valid-name T2 (µ2 ◦ µ) µ2(x). Further, the

function valid-name-eq above demonstrates that if a valid-name proof JMK∆pf is applied

to T and µ and then re-moved, the result is equal to µ(JMK∆pf). The function witness-

ing this equality is called mk-valid-eq-pf below. A similar function to re-move-name

can be defined for inductive types a as follows:

fun re-move-a (T, µ,Γ, x)

(valid-c1 T µ Γ1 \ T, µ,Γ1 →
λT2 . λ µ2 . valid-c1 T2 (µ2 ◦ µ) µ2(Γ1) µ2(x)

...

valid-cn T µ Γn \ T, µ,Γn →
λT2 . λ µ2 . valid-cn T2 (µ2 ◦ µ) µ2(Γn) µ2(x))

Again, the valid-a-eq function above demonstrates that

re-move-a T µ −−→x xpf Mtm (Mpf T µ)

is equal to Mpf for any type indices ~x and ~xpf and any Mtm and Mpf . The function

witnessing this fact is also called mk-valid-eq-pf below. It will be clear from context

which version of mk-valid-eq-pf is intended.

The translations of ν-abstractions take in two pairs of tree types and mappings. The

first mapping, µ, maps the world ∆, without the new name α, to T . The second

mapping, µ2, is used in conjunction with the extended world that does contain α. µ2

has return type T2?L∗, which conceptually specifies a world of type T2 with a “hole”

124

in it. This hole specifies where the new name α should go in the world. The body

of the ν-abstraction is translated in world ∆, α with the new name, and the result is

passed the mapping (combine-l-l∗ ◦ ((µ2 ◦µ)⊗ id)). The mapping ((µ2 ◦µ)⊗ id) leaves

α in the same place (because of the tensor with id) and yields a world with tree type

(T2 ? L∗) ? L, where the right-most leaf is the new name α. combine-l-l∗ then “fills

the hole” by mapping α into the negative leaf. This yields a world of type T2.

To translate the name replacement M 〈α〉, M is first translated in the translation

context ∆, α∗. This cancels out the name α in ∆, or, under the hole interpretation in

the previous paragraph, ∆, α∗ creates a hole attached to α in ∆. The translation of

M will be of the type as that of ν-abstractions, so M will take two pairs of tree types

and mappings. For the first mapping, the mapping (µ⊗ id) is used. This applies µ to

the ∆ part of ∆, α∗ but leaves α∗ alone, yielding a tree of type T ? L∗. The second

mapping to ν-abstractions is a mapping to a tree of type T2 ? L∗. Since we already

have such a tree type, the identity mapping id can be passed for the second mapping,

leaving the hole intact. If M is a ν-abstraction, these mappings are then combined

with combine-l-l∗, which maps a new name into the hole represented by L∗ in T ?L∗.

The difficulty in translating λ-abstractions is in defining how to rename them. This is

because renaming a λ-abstraction means the argument is already going to be renamed.

Thus a renaming in a λ-abstraction should rename everything but the variables, as

these will already be in the new world. To achieve this behavior, the input mapping µ

is put into the translation context, along with the variable. Recall that this specifies

the variable as already having been mapped by µ. The body of the λ-abstraction is

the passed the mapping eval. When eval reaches the variable in question, eval just

cancels out the eval−1
µ applied to the variable. Names and other variables, however,

are already in ∆ and so, when they occur, will have add(µ) applied to them. When

eval reaches these, it turns add(µ) into µ, and the given construct does have µ applied

to it.

Translations of applications M N are straightforward. The input µ is passed to the

translation of M , telling it to expect an argument that has been renamed by µ. Then

the argument is renamed by µ as promised.

125

The JAK∆tm translations of the types, given in Figure 6.2, are straightforward. They

directly reflect the above discussion on how terms are translated. The proof trans-

lations are more interesting, as they define the logical relations for the types. The

proof translation for Name specifies that the logical relation includes only those terms

for which valid-name holds. For constructors, the logical relation states that valid-a

should likewise hold. The logical relation for ∇ types essentially states that a term

M is in the logical relation for ∇α .A if applying a name replacement to it is in the

logical relation for A. If a name replacement is used on M then it will pass (µ′ ⊗ id)

for the µ2 argument, and thus the term to which JAK∆pf is applied is

(λT3 . λ µ3 . x (T3 ? L∗) ((µ3 ◦ µ′)⊗ id) T3 id)

which is the renaming by µ′ of the name replacement of x. This reflects the notion

described above that the logical relation for non-base types should state that all

elimination forms of the term result in terms that are in the logical relation for the

resulting type. In the logical relation for function types this is even more apparent,

as the term in the predicate is exactly the translation of an application. Finally,

the proof translation for Typei essentially states that the proof translations of types

should be predicates.

To define the translation of pattern-matching it will be necessary to add and re-

move ν-abstractions from a term. This is defined with the operations add-nus~β and

remove-nus~β:

remove-nusα,~α T M = remove-nus~α (L? T)

(λT2 . λ µ2 : ((T ? L)⇒ (T2)) .

M (T2 ? L∗) ((µ2 ⊗ id) ◦ tcadd(α, α∗)) T2 id)

remove-nus· T M = M

add-nusα,~α T M = λT2 . λ µ2 . λ T3 . λ µ3 : (T2 ⇒ (T3 ? L∗)) .
(add-nus~α (T ? L) M) T3 (combine-l-l∗ ◦ ((µ3 ◦ µ2)⊗ id))

add-nus· T M = M

remove-nus~β follows the definition of the translation of name replacement, so it is

essentially assuming a new world of type T ? ~β and name replacing all the new names
~β into its argument. Conversely, add-nus~β follows the definition of the translation

126

of ν-abstractions. Thus it is essentially taking a term in a world of type T ? ~β and

binding the ~β with ν-abstractions, yielding a term in a world of type T .

The translation of pattern-matching functions is complex. Similar to constructors,

pattern-matching functions are assumed to be fully applied up to their scrutinee.

This can be achieved through η-expansion. Pattern-matching functions work here

by matching over the proof translation of the scrutinee, that is, over the valid-a

proof. To match inside ν-abstractions, any leading ν-abstractions are stripped with

remove-nus~β. The pattern-matching thus happens in an extended world with names
~β added. Inside the pattern-matching function, these ν-abstractions are re-added with

add-nus~β.

The translation of pattern-matching functions is broken into two pieces, the trans-

lation of the pattern-matching function itself and the translation of its application.

The translation of the pattern-matching function, denoted J·Kpmfun, does not have a

term and a proof piece, but is instead all one piece. This translation matches over the

type valid-a that the term input satisfies its logical relation. The parameters are the

parameters to this type, which include a tree type Ta, a mapping µa of type ∅⇒ Ta,

and the term and proof translations of the arguments.

A number of arguments are also taken inside the pattern match. The first argument,

xpf , is a valid-a proof for the same term as the pattern, except that the pattern can

no longer be mapped, as it is not a function. The second argument, epf , is a proof

that the pattern is in fact an instance of xpf . The third and fourth arguments are a

tree type Tβ and a mapping from ~α to Tβ. The next argument, e, gives the purpose

for Tβ and µβ, which is to show that the world of the pattern variables is actually

equal to ~α, (µβ; ~x), ~β.

The return value of the pattern-matching function is translated twice, once for the

term translation and once for the proof translation. These are translated in the world

~α, (µβ; Γx
1), corresponding to the typing judgment in CNIC that they be well-typed in

context ~α, ~x. Each copy must have the correct versions of the pattern variables, which

are cast with e, to show they in a world of the form ~β, and then their ν-abstractions

are re-added. Finally, mk-pair makes a pair of the term and type translations of the

return value.

127

The second piece of pattern-matching functions, the application, is performed as

follows. First note that the notation JMK∆tm/pf is intended to define both the term and

proof translations at once. The only difference between the two is the projection .1 is

taken in the term translation while the projection .2 is taken in the proof translation.

This is denoted .1/2.

Since the arguments all have type ∇~β .A for some A, we must first remove the leading

ν-abstractions using remove-nus~β. This yields terms in the world ∆′, ~β where ∆′ is

the world resulting from applying µ to ∆. This world can also be represented by the

mapping tcadd(~β) ◦ µ ◦∆(∅) of type T ? ~β, so this type and world are passed as the

first two arguments to the translation of the pattern-matching function. Next, the

arguments themselves are passed, with the proof argument for the scrutinee being

passed tree T ? ~β and mapping id so that we may get a term of type valid-a. Next,

the actual proof translation of the scrutinee is passed, along with the proof created by

mk-valid-eq-pf that re-move-a of the scrutinee is equal to this actual proof translation

of the scrutinee. Next, we pass the desired tree type T and mapping µ for the result

along with a proof that the tree mapping we passed before is equal to tcadd(~β) ◦
µ. Finally, we take the first projection .1 to get the term translation returned by

the pattern-matching function, or take the second projection .2 to get the proof

translation returned by the pattern-matching function. Since the result of the pattern-

matching function is already in the appropriate world, it is then just passed the same

tree type T and the identity mapping id.

For the name-matching functions, we here only translate those that do not traverse ν-

abstractions, meaning those that have type ∇~α .Πx :Name . B. It is straightforward

to model name-matching functions that do traverse ν-abstractions using ones that

do not by performing a name-matching inside the ν-abstraction, having that name-

matching produce an element of an inductive type describing which case holds, and

then traversing the ν-abstraction with a normal pattern-matching function. The

possible results of name-matching in this case can be described by the following

128

inductive type:

name-matching~α : ΠT .Πµ : (~α⇒ T) .

Πx :µ(JNameK~αtm-tp) . µ(JNameK~αpf-tp) ⇒ Type0

name-matching~α,i : ΠT .Πµ : (~α⇒ T) . name-matching~α T µ µ(JαiK~αtm) µ(JαiK~αpf)

fresh-matching~α : ΠT .Πµ : (~α, α⇒ T) .

name-matching~α T µ µ(JαK~α,α
tm) µ(JαK~α,α

pf)

To determine which of these holds, the following function can be used:

fun (T, µ, x) (mk-valid-name T µn \ T, µn →
(fun (T, µ)

(name-case-i~α,i T µi \ T, µi → name-matching~α,i T µi |
fresh-name-case~α T µf \ T, µf → fresh-matching~α T µf)

) T µn

)

This function has type

ΠT .Πµ :∅⇒ T .Πx : (ΠT2 .Πµ2 . name T2 (µ2 ◦ µ)) .

Πv :valid-name T µ x . name-matching~α T µ x (re-move-name T µ x v)

We denote by find-matching~α the function

λT . λ µ : (∅⇒ T) . λ x : (ΠT2 .Πµ2 . name T2 (µ2 ◦ µ)) .

λ xpf : (ΠT2 .Πµ2 . valid-name T2 (µ2 ◦ µ) µ2(x)) .

cast (mk-valid-eq-pf xpf) (F T µ x (xpf T id))

where F is the above function. This function returns a name-matching~α T µ x xpf for

any input. Note that the cast by the result of mk-valid-eq-pf changes the re-move-name

type above to that of xpf . The translation of name-matching functions then simply

calls find-matching~α and pattern-matches on the result.

Lemma 6.2.4. For any M and any µ1, µ2:

1. JMK∆tm/pf =admin λT . λ µ . JMK∆tm/pf T µ ∼= id(JMK∆tm/pf);

129

2. µ1(JMK∆tm/pf)
∼= µ2(JMK∆tm/pf) holds if and only if the equality JMK∆tm/pf T (µ ◦

µ1) ∼= JMK∆tm/pf T (µ ◦ µ2) holds for some variable µ, if and only if [(µ ◦
µ1)/µ]M ′ ∼= [(µ ◦ µ2)/µ]M ′, where M ′ is the part of JMK∆tm/pf after the initial

λT . λ µ . ;

3. µ2(µ1(JMK∆tm/pf))
∼= (µ2 ◦ µ1)(JMK∆tm/pf);

4. µ1(JMK∆tm-tp)
∼= µ2(JMK∆tm-tp) if and only if µ1(JMK∆tm) ∼= µ2(JMK∆tm); and

5. µ1(JMK∆pf-tp(x))
∼= µ2(JMK∆pf-tp(x)) if and only if

µ1(JMK∆pf)
∼= µ2(JMK∆pf).

Proof. For item 1, every case in Figures 6.2, 6.1, and 6.3 starts with λT . λ µ . , so

JMK∆tm/pf =admin λT . λ µ . JMK∆tm/pf T µ. Further, id(JMK∆tm/pf) is defined as the term

λT . λ µ . JMK∆tm/pf T (µ ◦ id), which is equivalent by ∼ to λT . λ µ . JMK∆tm/pf T µ.

For item 2, note that µi(JMK∆tm/pf) = λT . λ µ . JMK∆tm/pf T (µ ◦ µi). The term

JMK∆tm/pf T (µ ◦ µi) reduces by two administrative reduction steps to [(µ ◦ µi)/µ]M ′,

with M ′ being that part of JMK∆tm/pf after the initial λT . λ µ . , whereby the desired

result follows. For item 3,

µ2(µ1(JMK∆tm/pf)) = λT . λ µ . (λT . λ µ . JMK∆tm/pf T (µ ◦ µ1)) T (µ ◦ µ2)

=admin λT . λ µ . JMK∆tm/pf T ((µ ◦ µ2) ◦ µ1)

∼ λT . λ µ . JMK∆tm/pf T (µ ◦ (µ2 ◦ µ1))

= (µ2 ◦ µ1)(JMK∆tm/pf).

Item 4 follows from item 2 by the fact that µ(JMK∆tm-tp) is defined to be the term

ΠT2 .Πµ2 . JMK∆tm T2 (µ2 ◦ µ), while item 5 follows from item 2 by the fact that

µ(JMK∆pf-tp) is ΠT2 .Πµ2 . JAK∆pf T2 (µ2 ◦ µ) (λT3 . λ µ3 . x T3 (µ3 ◦ µ2)).

Lemma 6.2.5 (Re-Translation). For any ∆1, ∆2, µ1, µ2, and M , if µ1(∆1) ≈
µ2(∆2) then µ1(JMK∆1

tm/pf)
∼= µ2(JMK∆2

tm/pf) if both of these are defined.

Proof. These are proved simultaneously by induction on the structure of M , where

the tm case is considered to be before the pf case, so the pf case can use the result of

the tm case. By Lemma 6.2.4 it is sufficient to prove [(µ◦µ1)/µ]M1
∼= [(µ◦µ2)/µ]M2,

where M1 and M2 are the parts after the initial λT . λ µ . of JMK∆1

tm/pf and JMK∆2

tm/pf ,

respectively. Further, by inspection of the rules for the translation, M1 and M2 are

130

syntactically equal up to occurrences of ∆1 in M1 being replaced by occurrences of

∆2 in M2. Thus we simply consider all possible subterms of JMK∆tm/pf containing µ or

∆, and show that replacing µ by µ1 and ∆ by ∆1 in the subterm yields a term that

is equivalent under ∼= to the result of replacing µ by µ1 and ∆ by ∆1 in the same

subterm.

If the term µ(JNK∆tm/pf) occurs in JMK∆tm/pf for N a strict subterm of M , then the

equality (µ ◦ µ1)(JNK∆1

tm/pf)
∼= (µ ◦ µ2)(JNK∆2

tm/pf) holds by the induction hypothesis.

Lemma 6.2.4 then yields the desired result for µ(JNK∆tm-tp), µ(JNK∆pf-tp(x)), and any

occurrences of µ(JMK∆tm-tp) in JMK∆pf . The same argument covers µ(J ~NK∆args), as this

term includes only terms µ(JNK∆tm/pf) for subterms N of M .

If µ ◦∆(~α) occurs in JMK∆tm/pf , then, since JMK∆1

tm/pf and JMK∆2

tm/pf are both defined,

(µ ◦ µ1) ◦ ∆(~α) ∼= (µ ◦ µ2) ◦ ∆(~α) by Lemma 6.2.3. Similarly, if µ ◦ ∆(x) occurs

in JMK∆tm/pf , then, since JMK∆1

tm/pf and JMK∆2

tm/pf are both defined, (µ ◦ µ1) ◦ ∆(x) ∼=
(µ ◦ µ2) ◦∆(x) by Lemma 6.2.3.

If JNK∆,α
tm/pf T2 (µ′ ◦ (µ ⊗ id)) occurs in JMK∆tm/pf for N a strict subterm of M and

µ′ not containing µ, then, substituting µ ◦ µi for µ and applying Lemma 6.2.4, we

get the terms ((µi ⊗ id)(JNK∆,α
tm/pf)) T2 (µ′ ◦ (µ ⊗ id)). These are equivalent under

∼= by the induction hypothesis, using the fact that µ1(∆1) ≈ µ2(∆2) implies (µ1 ⊗
id)(∆1, α) ≈ (µ2 ⊗ id)(∆2, α). Note that this case also applies to M = ν α .N and

M = ∇α .N , as combine-l-l∗ ◦ ((µ2 ◦ µ) ⊗ id) ∼ combine-l-l∗ ◦ (µ2 ⊗ id) ◦ (µ ⊗ id). A

similar argument holds if JNK∆,α∗

tm/pf (T ?L∗) (µ′ ◦ (µ⊗ id)) or JNK∆,(µ;Γ)
tm/pf T eval occurs

in JMK∆tm/pf , as µ1(∆1) ≈ µ2(∆2) implies both (µ1 ⊗ id)(∆1, α
∗) ≈ (µ2 ⊗ id)(∆2, α

∗)

and eval(∆1, (µ ◦ µ1; Γ)) ≈ eval(∆2, (µ ◦ µ2; Γ)).

Lemma 6.2.6 (Translation Substitution). The equivalence

(eval⊗ idn)([µ(J ~MK∆1
args)/Γ

′]JNK∆1,(µ;Γ′),∆2

tm/pf) ∼= (eval⊗ idn)(J[~M/Γ]NK∆1,(µ;·),∆2

tm/pf)

holds for any ∆1, ∆2, µ, ~x, ~M , N , Γ, and Γ′, where ∆2 is an eval-ing translation

context with non-mapping length n and Γ′ has a term and proof variable for each

variable of Γ. Thus eval([µ(J ~MK∆args)/Γ
′]JNK∆,(µ;Γ′)) ∼= µ(J[~M/Γ]NK∆tm/pf) holds by

Re-Translation.

131

Proof. Proof is by induction on the structure of N . The only interesting case is where

N ≡ xi for some xi ∈ Γ, as the other cases are immediate by the induction hypothesis.

The following equivalences hold in this case:

(eval⊗ idn)([µ(J ~MK∆1
args)/Γ

′]JNK∆1,(µ;Γ′),∆2

tm)

≡ (eval⊗ idn)([µ(J ~MK∆1
args)/Γ

′](∆1, (µ; Γ′),∆2(xi))(xi))
∼= (eval⊗ idn) ◦ (∆1, (µ; Γ′),∆2(xi)) ◦ µ)(JMiK∆1

tm)
∼= (eval⊗ idn) ◦ (tcadd((µ; ·),∆2)))(JMiK∆1

tm)
∼= (eval⊗ idn)(JMiK

∆1,(µ;Γ′),∆2

tm)

≡ (eval⊗ idn)(J[~M/Γ]xiK
∆1,(µ;·),∆2

tm)

where the fourth line holds by Lemma 6.2.2 and the fifth holds by Re-Translation

and by the fact that no x in Γ′ can be free in M ′
i . The case for JNK∆pf is similar.

Lemma 6.2.7 (Modal Translation Substitution). The equivalence

[JF Kpmfun/u]JMK∆tm/pf ≡ J[F/u]MK∆tm/pf

holds for any translation contesxt ∆, pattern-matching function F , term M , and

modal variable u.

Proof. Proof is by straightforward induction on M .

Lemma 6.2.8. For any ∆, T , µ, ~α with length n, CNIC term M , and CIC + T
term M ′, the following hold:

1. remove-nus~α T µ(Jν ~α .MK∆tm/pf)
∼= (µ⊗ idn)(JMK∆,~α

tm/pf)

2. add-nus~α T (µ⊗ idn)(JMK∆,~α
tm/pf)

∼= µ(Jν ~α .MK∆tm/pf)

3. add-nus~α T (remove-nus~α T M ′) ∼= M ′

Proof. By straightforward induction on the definitions of remove-nus~α T M and

add-nus~α T M .

Lemma 6.2.9 (Translation Reduction). If M N then JMK∆tm ∼= JNK∆tm and

JMK∆ ∼= JNK∆pf .

132

Proof. Proof is by induction on the structure of M , where cases other than redexes

follow directly by the induction hypothesis. So we consider the case where M is a

redex.

Case: (ν α1 .M1) 〈α2〉 [α2/α1]M1

For the tm case, the left-hand side is

λT . λ µ . (λT2 . λ µ2 . λ T3 . λ µ3 . JM1K
∆,α∗2,α1

tm T3 (combine-l-l∗ ◦ ((µ3 ◦ µ2)⊗ id)))

(T ? L∗) (µ⊗ id) T id

By two reductions, this becomes

λT . λ µ . JM1K
∆,α∗2,α1

tm (combine-l-l∗ ◦ (((µ⊗ id) ◦ id)⊗ id))

By some steps of ∼ we then have

λT . λ µ . JM1K
∆,α∗2,α1

tm (µ ◦ combine-l-l∗)

and, by Re-Translation, we thus get

λT . λ µ . JM1K∆tm

which is equivalent to the right-hand side above. The pf case is similar.

Case: (λx :A .M1) M2 [M2/x]M1

For the tm case, the left-hand side is

λT . λ µ . (λT2 . λ µ2 . λ x :µ(JAK∆tm-tp) . λ xpf :µ(JAK∆tm/pf) . JM1K∆tm T2 eval)

T µ µ(JM2K∆tm) µ(JM2K∆pf)

which reduces to

[µ(JM2K∆tm)/x, µ(JM2K∆pf)/xpf](JM1K∆tm T eval)

and the result follows by Translation Substitution. The pf case is similar.

133

Case:
(fun u (~α,Γx

a) (ν ~β . ~P → ~M)) 〈~α〉 ~N (ν ~β . ci ~Q)

 [(ν ~β . ~Q)/Γx
i , fun u (~α,Γx

a) (ν ~β . ~P → ~M)/u]Mi

We have that (remove-nus~β T µ(J(ν ~β . ci ~Q)K∆pf)) applied to (T ? ~β) and id equals

valid-ci T (µ◦∆(∅)) µ(JQK∆args). Thus this matches the ith pattern in the translation

of the pattern-matching function, and a pattern-matching reduction step can take

place, along with some β-reductions to substitute the arguments after the scrutinee

into the result. In particular, the equalities in the cast become ground, and so can

reduce. Further, the projection can then occur on the mk-pair, yielding

λT . λ µ . eval([add-nus~β T (remove-nus~β T µ(J ~QK∆args))/Γ
x
1]JM1K

~α,(µ;Γx
i)

tm) T id

in the tm case. By Translation Substitution, Modal Translation Substitution, and

Lemma 6.2.4, this is then equal to

J[~Q/Γci
, fun u (~α,Γx

a) (ν ~β . ~P → ~M)/u]MiK∆tm.

The pf case is similar.

Case: (nfun (~α) (~P → ~M)) 〈~α〉 αi Mαi

For the tm case we have that µ(JαiK∆pf) T id reduces to mk-valid-name T (µ ◦∆(αi)).

The term

find-matching~α T (µ ◦∆(~α)) µ(JNK∆tm) µ(JNK∆pf)

thus reduces to a term containing

find-name-case~α T (µ ◦∆(~αi)) (µ ◦∆(αi))

This is equal under ∼ to

map-name-case~α |∆| (∆(~α)) (∆(αi)) T µ (find-name-case~α |∆| (∆(~α)) (∆(αi)))

which will reduce to a name-case-i~α,i, causing the whole find-matching~α term to reduce

to name-matching~α,i T µ. The whole term then redues to

λT . λ µ . JMαi
K~α,µ◦∆(~α)
tm Tx eval

134

which by Re-Translation is equivalent under ∼= to JMαi
K∆tm.

Case: (nfun (~α) (~P → ~M)) 〈~α〉 α Mα

Similar to the previous case.

Corollary 6.2.1 (Translation Equality). For any M , N , and ∆, ` M = N

implies JMK∆tm/pf
∼= JNK∆tm/pf .

Corollary 6.2.2 (Translation Subtyping). For any A, B, and ∆, ` A . B

implies ` JAK∆tm/pf . JBK∆tm/pf .

Proof. This is immediate by Translation Equality and by the fact that, for any i ≤ j,

` JTypeiK∆tm/pf . JTypejK∆tm/pf .

Definition 6.2.3. The translation context ∆ and context Γ′ of CIC + T are said to

agree with modal context Σ and normal context Γ of CNIC if and only if:

• Γ′ contains JΣKmctxt as a sub-context;

• ∆(α) and ∆(x) are defined for all names α and variables x in Γ;

• Γ′ contains x : eval(JAK∆1,(µ;~x)
tm-tp) and xpf : eval(JAK∆1,(µ;~x)

pf-tp (x)) for each x : A ∈ Γ,

in the same order as in Γ; and

• ∆ has the form ~α, (µ; ~x); ∆′ for eval-ing translation context ∆′.

Lemma 6.2.10. For any CNIC type A, tree types T and T2, tree mapping µ : T ⇒

T2, CIC + T context Γ, and CIC + T terms M and N , the following hold:

1. If Γ `CIC +T M : (µ⊗ ~α)(JAK∆,~α
tm-tp) then

Γ `CIC +T (add-nus~α T M) : µ(J∇~α .AK∆tm-tp);

2. If Γ `CIC +T M : (µ⊗ ~α)(JAK∆,~α
pf-tp(N)) then

Γ `CIC +T (add-nus~α T M) : µ(J∇~α .AK∆pf-tp(add-nus~α T N));

3. If Γ `CIC +T M : µ(J∇~α .AK∆tm-tp) then

Γ `CIC +T (remove-nus~α T M) : (µ⊗ ~α)(JAK∆,~α
tm-tp); and

135

4. If Γ `CIC +T M : µ(J∇~α .AK∆pf-tp(N)) then

Γ `CIC +T (remove-nus~α T M) : (µ⊗ ~α)(JAK∆,~α
pf-tp(remove-nus~α T N)).

Proof. By induction on ~α.

Lemma 6.2.11. The equivalence

eval(JMK∆,(µ;~x),~β,(eval⊗~β;x,xpf)

tm/pf)

∼= (eval⊗ ~β)([add-nus~β T x/y]J[y 〈~β〉/x]MK∆,(µ;~x,y,ypf),~β

tm/pf)

holds for any M .

Proof. By Lemma 6.2.8 we have remove-nus~β T (add-nus~β T x) ∼= x, yielding

eval(JMK∆,(µ;~x),~β,(eval⊗~β;x,xpf)

tm/pf)

∼= eval([remove-nus~β T (add-nus~β T (x, xpf))/(x, xpf)]JMK∆,(µ;~x),~β,(eval⊗~β;x,xpf)

tm/pf)

≡ eval([add-nus~β T (x, xpf)/(y, ypf)]

[remove-nus~β T (y, ypf)/(x, xpf)]JMK∆,(µ;~x),~β,(eval⊗~β;x,xpf)

tm/pf

)

∼= eval([add-nus~β T x/y]

[(eval⊗ ~β)(Jy 〈~β〉K∆,(µ;~x,y,ypf),~β

tm/pf)/x]JMK∆,(µ;~x,y,ypf),~β,(eval⊗~β;x,xpf)

tm/pf

)

∼= (eval⊗ ~β)([add-nus~β T x/y]J[y 〈~β〉/x]MK∆,(µ;~x,y,ypf),~β

tm/pf)

Lemma 6.2.12 (Translation Typing). If Σ; Γ `CNIC M : A then

• Γ′ `CIC +T JMK∆tm T µ′ : JAK∆tm T µ′ and

• Γ′ `CIC +T JMK∆pf T µ′ : JAK∆pf T µ′ (µ′(JMK∆tm)))

hold for any ∆, Γ′, and µ′ such that:

• The suffix of ∆ after its first mapping is an eval-ing translation context, i.e.

, ∆ = ∆1, (µ; ~x),∆2 for ∆1 containing no mappings and ∆2 being an eval-ing

translation context;

136

• ∆ has non-mapping length n;

• ∆ and Γ′ agree with Γ;

• JMK∆tm and JMK∆pf are defined; and

• µ′ ∼= (µ ◦ (eval⊗ idn)) for some µ.

Proof. The proof is by induction on the typing proof of M . Many of the cases are

repetitive, so we show only some of the more interesting and illustrative ones.

Case:
Γ `M : B Γ ` A : Typei ` B . A

Γ `M : A
t-subt

Immediate by the induction hypothesis and Translation Subtyping.

Case:
x : A ∈ Γ
Γ ` x : A

t-var

JxK∆tm = λT . λ µ . x T (µ ◦∆(x))

JxK∆pf = λT . λ µ . xpf T (µ ◦∆(x))

For the tm case we have that JxK∆tm being well-defined implies ∆ = ∆1, (µ; ~x),∆2

for some ∆1, (µ; ~x),∆2 with x in ~x. Further, since ∆ and Γ′ agree with Γ it follows

that x : eval(JAK∆1,(µ;~x)
tm-tp) ∈ Γ′. Hence JxK∆tm T µ′ ≡ x T (µ′ ◦∆(x)) has the following

type:

JAK∆1,(µ;~x)
tm-tp T (µ′ ◦∆(x) ◦ eval)

∼= JAK∆1,(µ;~x)
tm-tp T (µ ◦ (eval⊗ idn) ◦∆(x) ◦ eval)

∼= JAK∆1,(µ;~x)
tm-tp T (µ ◦ (eval⊗ idn) ◦ tcadd(∆2))

∼= JAK∆1,(µ;~x),∆2

tm-tp T (µ ◦ (eval⊗ idn))
∼= JAK∆1,(µ;~x),∆2

tm-tp T µ′

where the first line is just the application of a renaming, the second line is by the

assumption that µ′ ∼= µ◦(eval⊗ idn), the third line is by Lemma 6.2.2, the fourth line

is by Re-Translation, and the fifth is again by the assumption that µ′ ∼= µ◦(eval⊗idn).

The pf case is similar.

137

Case:
Γ, α `M : A

Γ ` ν α .M : ∇α .A t-nu

Jν α .MK∆tm = λT . λ µ . λ T2 . λ µ2 : (T ⇒ (T2 ? L∗)) .
JMK∆,α

tm T2 (combine-l-l∗ ◦ ((µ2 ◦ µ)⊗ id))

Jν α .MK∆pf = λT . λ µ . λ T2 . λ µ2 : (T ⇒ (T2 ? L∗)) .
JMK∆,α

pf T2 (combine-l-l∗ ◦ ((µ2 ◦ µ)⊗ id))

Since ∆ and Γ′ agree with Γ it follows that ∆, α and Γ′ agree with Γ, α. Further, by

assumption, µ′ ∼= µ ◦ (eval⊗ idn) where n is the non-mapping length of ∆, and thus

(combine-l-l∗ ◦ ((µ2 ◦ µ′) ⊗ id)) ∼= combine-l-l∗ ◦ (µ2 ⊗ id) ◦ (µ ⊗ id) ◦ (eval ⊗ idn+1).

Since n+ 1 is the non-mapping length of ∆, α, the inductive hypothesis yields

Γ′ ` JMK∆,α
tm T2 (combine-l-l∗◦((µ2◦µ′)⊗id)) : JAK∆,α

tm T2 (combine-l-l∗◦((µ2◦µ′)⊗id))

whereby Γ′ ` Jν α .MK∆tm T µ′ : ΠT .Πµ . JAK∆ T µ′ follows. The pf case is similar.

Case:
removeα(Γ) `M : ∇α .A

Γ `M 〈α〉 : A
t-namerepl

JM 〈α〉K∆tm = λT . λ µ . JMK∆,α∗

tm (T ? L∗) (µ⊗ id) T id

JM 〈α〉K∆pf = λT . λ µ . JMK∆,α∗

pf (T ? L∗) (µ⊗ id) T id

Since ∆ and Γ′ agree with Γ, ∆, α∗ and Γ′ agree with removeα(Γ). Further, by

assumption, µ′ ∼= µ ◦ (eval⊗ idn) where n is the non-mapping length of ∆, and thus

µ′ ⊗ id)) ∼= (µ⊗ id) ◦ (eval⊗ idn+1). Since n+ 1 is the non-mapping length of ∆, α∗,

the inductive hypothesis yields

Γ′ ` JMK∆,α∗

tm (T ? L∗) (µ′ ⊗ id) : J(∇α .A)K∆,α∗

tm (T ? L∗) (µ′ ⊗ id)

where the given type is equivalent under ∼= to

ΠT2 .Πµ2 : (T ? L∗ ⇒ T2 ? L∗) .
JAK∆,α∗,α

tm T2 (combine-l-l∗ ◦ ((µ2 ⊗ id) ◦ ((µ′ ⊗ id)⊗ id)))

138

by expanding the definition of J∇α .AK∆tm. Including the additional tree type and

tree mapping arguments given in JM 〈α〉K∆tm yields

Γ ` JMK∆,α∗

tm (T ? L∗) (µ⊗ id) T id

: JAK∆,α∗,α
tm T (combine-l-l∗ ◦ ((id⊗ id) ◦ ((µ′ ⊗ id)⊗ id)))

∼ JAK∆,α∗,α
tm T (µ′ ◦ combine-l-l∗)

∼= JAK∆tm T µ′

where the first line follows by the typing rule for applications, the second from the

rules for ∼, and the third by Re-Translation. The pf case is similar.

Case:

Γ, x : A `M : B

Γ ` λx :A .M : Πx :A .B
t-lambda

Jλx :A .MK∆tm = λT . λ µ . λ x :µ(JAK∆tm-tp) . λ xpf :µ(JAK∆pf-tp(x)) . JMK∆,(µ;x,xpf)
tm T eval

Jλx :A .MK∆pf = λT . λ µ . λ x :µ(JAK∆tm-tp) . λ xpf :µ(JAK∆pf-tp(x)) . JMK∆,(µ;x,xpf)
pf T eval

Since ∆ and Γ′ agree with Γ it follows that ∆, (µ′;x, xpf) and

Γ′, x : eval(JAK∆,(µ′;·)
tm-tp), x : eval(JAK∆,(µ′;·)

pf-tp (x))

agree with Γ, x : A. Further, by assumption, µ′ ∼= µ ◦ (eval ⊗ idn) where n is the

non-mapping length of ∆, and thus ∆, (µ′;x, xpf) is an eval-ing translation context

with non-mapping length 0. It follows by the inductive hypothesis that

Γ′ ` JMK∆,(µ′;x,xpf)
tm T eval : JBK∆,(µ′;x,xpf)

tm T µ′

which then yields Γ ` Jλx :A .MK∆tm : ΠT .Πµ . JΠx :A .BK∆tm T µ. The pf case is

similar.

Case:
Γ `M : Πx :A .B Γ ` N : A

Γ `M N : [N/x]B
t-app

JM NK∆tm = λT . λ µ . JMK∆tm T µ µ(JNK∆tm) µ(JNK∆pf)

JM NK∆pf = λT . λ µ . JMK∆pf T µ µ(JNK∆tm) µ(JNK∆pf)

139

The induction hypothesis yields

Γ′ ` JMK∆tm T µ′ : Πx :µ′(JAK∆tm-tp) .Πxpf :µ′(JAK∆pf-tp(x)) . JBK
∆,(µ′;x,xpf)
tm T eval

Γ′ ` JMK∆pf T µ′ : Πx :µ′(JAK∆tm-tp) .Πxpf :µ′(JAK∆pf-tp(x)) .

JBK∆,(µ′;x,xpf)
pf T eval λT2 . λ µ2 . JMK∆tm T2 µ2 µ2(x) µ2(xpf)

Γ′ ` JNK∆tm TN (µN ◦ µ′) : JNK∆pf TN (µN ◦ µ′)
Γ′ ` JNK∆pf TN (µN ◦ µ′) : JNK∆pf TN (µN ◦ µ′) (µN ◦ µ′)(JNK∆tm)

for any tree type TN and tree mapping µN : T ⇒ TN . Thus it follows that

Γ′ ` JM NK∆tm : [µ′(JNK∆tm)/x, µ′(JNK∆pf)/xpf]JBK
∆,(µ′;x,xpf)
tm T eval

Γ′ ` JM NK∆pf : [µ′(JNK∆tm)/x, µ′(JNK∆pf)/xpf]JBK
∆,(µ′;x,xpf)

pf T eval

(λT2 . λ µ2 . JMK∆tm T2 µ2 µ2(JNK∆tm) µ2(JNK∆pf))

where the required typings then hold by Translation Substitution, Re-Translation,

and the fact that (λT2 . λ µ2 . JMK∆tm T2 µ2 µ2(JNK∆tm) µ2(JNK∆pf)) ≡ JM NK∆tm.

Case:

Σ; · ` ∇~α .ΠΓx↑~β .Πx : (∇~β . a (Γx 〈~β〉)) . B : Typei ∀i(Σ; · ` ci : ΠΓx
i . a

~Mi)
∀i(Σ, u : (∇~α .ΠΓx↑~β .Πx : (∇~β . a (Γx 〈~β〉)) . B) ; ~α,Γx

i↑
~β`

Ni : [(ν ~β . [Γx
i 〈~β〉/Γx

i] ~Mi)/Γx , ν ~β . ci (Γx
i 〈~β〉) /x]B)

Γx, x fully applied w.r.t. ~β in B ∀i(` app-checku(Γx
i ;Ni)) Γ ` ~c covers a

Σ; Γ ` fun u (~α,Γx↑~β) (ν ~β .~c (Γx 〈~β〉) \ ~Γx↑~β→ ~N) : ∇~α .ΠΓx↑~β .Πx : (∇~β . a (Γx 〈~β〉)) . B
t-pmfun

...... ∀i(Σ; Γ ` Qi : ∇~β . [~Q 〈~β〉/Γx]Ai) Σ; Γ ` Q : ∇~β . a (Γx 〈~β〉)

Σ; Γ ` fun u (~α,Γx↑~β) (ν ~β .~c (Γx 〈~β〉) \ ~Γx↑~β→ ~N) 〈~α〉 ~Q Q : [~Q/Γx, Q/x]B
t-app

J(fun u (~α,Γx↑~β) (ν ~β .~c (Γx 〈~β〉) \ ~Γx↑~β→ ~N)) 〈~α〉 ~Q QK∆tm/pf =

λT . λ µ .

(Jfun u (~α,Γx↑~β) (ν ~β .~c (Γx 〈~β〉) \ ~Γx↑~β→ ~N)Kpmfun

(T ? ~β) (tcadd(~β) ◦ µ ◦∆(∅)) (remove-nus~β
T µ(J ~QK∆args))

(remove-nus~β
T µ(JQK∆tm)) ((remove-nus~β

T µ(JQK∆pf)) (T ? ~β) id)

(remove-nus~β
T µ(JQK∆pf)) (mk-valid-eq-pf (remove-nus~β

T µ(JQK∆pf)))

T (µ ◦∆(~α)) (eq-refl (mk-pair (T ? ~β) (tcadd(~β) ◦ µ ◦∆(∅))))).1/2 T id

140

We first prove that Γ′ `CIC +T Jfun u (~α,Γx↑~β) (ν ~β .~c (Γx 〈~β〉) \ ~Γx↑~β→ ~N)Kpmfun :

Au, where Au is

ΠT .Πµ : (∅⇒ T) .ΠJ~x : ~AKµ;·
ctxt .Πx :eval(Ja ~xK(µ;−−−→x,xpf)

tm-tp) .

Πxvalid :valid-a T µ −−−→x xpf .Πxpf :eval(Ja ~xK
(µ;−−−→x,xpf)
pf-tp (x)) .

Πepf :eq (re-move-a T µ −−−→x xpf x xvalid) xpf .ΠTβ .Πµβ : (~α⇒ Tβ) .

Πe :eq (mk-pair T µ) (mk-pair (Tβ ? ~β) (tcadd(~β) ◦ µβ ◦ tcadd(~α))) .

pair

eval([add-nus~β
Tβ (cast e (−−−→x, xpf , x, xpf))/−−−→x, xpf , x, xpf]JBK

~α,(µ;−−−→x,xpf ,x,xpf)
tm-tp)

(λ z . eval([add-nus~β
Tβ (cast e (−−−→x, xpf , x, xpf))

/−−−→x, xpf , x, xpf]JBK
~α,(µ;−−−→x,xpf ,x,xpf)
pf-tp (z)))

.

The desired result then follows by the induction hypothesis, Lemma 6.2.10, Trans-

lation Substitution, and Re-Translation. To see that the above typing judgment

holds, first note that

Γ′, JΓx
i↑

~βKµβ ;·
ctxt ` eval(JNiK

~α,(µβ ;Γx
i)

tm)

: eval(J[(ν ~β . [Γx
i 〈~β〉/Γx

i] ~Mi)/Γ
x , ν ~β . ci (Γx

i 〈~β〉) /x]BK
~α,(µβ ;Γx

i)
tm-tp)

The following equivalences hold on this type:

eval(J[(ν ~β . [Γx
i 〈~β〉/Γx

i] ~Mi)/Γ
x , ν ~β . ci (Γx

i 〈~β〉) /x]BK
~α,(µβ ;Γx

i)
tm-tp)

∼= eval([eval(Jν ~β . [Γx
i 〈~β〉/Γx

i] ~MiK
~α,(µβ ;Γx

i)

tm/pf)/(−−−→x, xpf),

eval(Jν ~β . ci (Γx
i 〈~β〉)K

~α,(µβ ;Γx
i)

tm/pf)/(x, xpf)]JBK
~α,(µβ ;Γx

i)
tm-tp)

∼= eval([add-nus~β T (eval⊗ ~β)(J[Γx
i 〈~β〉/Γx

i] ~MiK
~α,(µβ ;Γx

i),~β

tm/pf)/(−−−→x, xpf),

add-nus~β T (eval⊗ ~β)(Jci (Γx
i 〈~β〉)K

~α,(µβ ;Γx
i),~β

tm/pf)/(x, xpf)]JBK
~α,(µβ ;Γx

i)
tm-tp)

Using ~y for the variables in Γx
i , Lemma 6.2.11 gives

(eval⊗ ~β)([add-nus~β T
−−−→y, ypf/

−−−→y, ypf]J[Γx
i 〈~β〉/Γx

i] ~MiK
~α,(µβ ;−−−→y,ypf),~β

tm/pf)

∼= eval(J ~MiK
~α,(µβ ;·),~β,(eval⊗~β;−−−→y,ypf)

tm/pf)

∼= eval(J ~MiK
(tcadd(~β)◦µβ◦tcadd(~α);−−−→y,ypf)

tm/pf)

= eval(J ~MiK
(µx;−−−→y,ypf)

tm/pf)

141

and

(eval⊗ ~β)([add-nus~β T
−−−→y, ypf/

−−−→y, ypf]Jci (−−−→y, ypf 〈~β〉)K
~α,(µβ ;−−−→y,ypf),~β

tm/pf)

∼= eval(Jci −−−→y, ypfK
~α,(µβ ;·),~β,(eval⊗~β;−−−→y,ypf)

tm/pf)

∼= eval(Jci −−−→y, ypfK
(tcadd(~β)◦µβ◦tcadd(~α);−−−→y,ypf)

tm/pf)

= eval(Jci −−−→y, ypfK
(µx;−−−→y,ypf)

tm/pf)

where the final equality in each case comes from the equality e taken as an argument

in each branch of Jfun u (~α,Γx↑~β) (ν ~β .~c (Γx 〈~β〉) \ ~Γx↑~β→ ~N)Kpmfun. As a final

point, we also have

eval(Jci −−−→y, ypfK
(µx;−−−→y,ypf)

pf)

≡ λT . λ µ . valid-ci T (µ ◦ µx) µ(−−−→y, ypf)

= re-move-a Tx µx Γx
i x (valid-ci T µx

−−−→y, ypf)

= xpf

where this last equality holds by epf . Thus we have that the term

λxpf :ΠTc .Πµc . valid-a Tc µc (µc ◦ eval)(J ~NcK
(µx;Γx

c1
)

args) .

λ epf :eq (λTc . λ µc . valid-ci Tc µc µc(Γ
x
1, x)) xpf .

λ Tβ . λ µβ : (~α⇒ Tβ) .

λ e :eq (mk-pair Tx µx) (mk-pair (Tβ ? ~β) (tcadd(~β) ◦ µβ ◦ tcadd(~α))) .

cast epf , (eq-symm e)

(mk-pair

eval([add-nus~β Tβ (cast e Γx
i)/Γ

x
i]J ~MiK

~α,(µβ ;Γx
i)

tm)

eval([add-nus~β Tβ (cast e Γx
i)/Γ

x
i]J ~MiK

~α,(µβ ;Γx
i)

pf))

has the proper instance of type

Πxpf :eval(Ja ~xK
(µ;−−−→x,xpf)

pf-tp (x)) .

Πepf :eq (re-move-a T µ −−→x xpf x xvalid) xpf .ΠTβ .Πµβ : (~α⇒ Tβ) .

Πe :eq (mk-pair T µ) (mk-pair (Tβ ? ~β) (tcadd(~β) ◦ µβ ◦ tcadd(~α))) .

pair

eval([add-nus~β Tβ (cast e (−−−→x, xpf , x, xpf))/
−−−→x, xpf , x, xpf]JBK

~α,(µ;−−−→x,xpf ,x,xpf)
tm-tp)

(λ z . eval([add-nus~β Tβ (cast e (−−−→x, xpf , x, xpf))

/−−−→x, xpf , x, xpf]JBK
~α,(µ;−−−→x,xpf ,x,xpf)

pf-tp (z)))

142

in context Γ′, Tx, µx : ∅⇒ Tx,Γ
x
i , as required.

Case:

Σ; · ` ∇~α .Πx : (∇~β .Name) . B : Typei

∀i(Σ; ~α,Γα
i `Mi : ∇~β .Name) ∀i(Σ; ~α,Γα

i ` Ni : [Mi/x]B)

Σ; Γ ` nfun (~α) (ν ~β . ~M \ ~Γα → ~N) : ∇~α .Πx : (∇~β .Name) . B
t-nfun

...... Σ; Γ ` Q : ∇~β .Name

Σ; Γ ` nfun (~α) (ν ~β . ~M \ ~Γα → ~Q) 〈~α〉 Q : [Q/x]B

J(nfun (~α) (~M → ~N)) 〈~α〉 QK∆tm/pf =

λT . λ µ .

(fun (T2, µ2, x, xpf)

(name-matching~α,i1 Tx µx \ Tx, µx : (~α⇒ Tx) → JNα1K
~α,(µx;·)
tm/pf Tx eval

| . . .
| fresh-matching~α Tx µx \ Tx, µx : (~α, α⇒ Tx) → JNαK

~α,α,(µx;·)
tm/pf Tx eval)

) T (find-matching~α T (µ ◦∆(~α)) µ(JQK∆tm) µ(JQK∆pf))

The induction hypothesis yields

Γ′ `CIC +T µ(JQK∆tm/pf) : µ(J∇~β .NameK∆tm/pf)

and thus

Γ′ `CIC +T find-matching~α T (µ ◦∆(~α)) µ(JQK∆tm) µ(JQK∆pf)

: name-matching~α T (µ ◦∆(~α)) µ(JQK∆tm) µ(JQK∆pf)

143

The induction hypothesis also yields the following:

Γ′, Tx, µx : ~α⇒ Tx `CIC +T JNαi
K~α,(µx;·)
tm Tx eval

: eval(J[ν ~β . αi/x]BK
~α,(µx;·)
tm-tp)

∼= [eval(Jν ~β . αiK
~α,(µx;·)
tm/pf)/(x, xpf)]JBK

~α,(µx;x,xpf)
tm

Γ′, Tx, µx : ~α⇒ Tx `CIC +T JNβi
K~α,(µx;·)
tm Tx eval

: eval(J[ν ~β . βi/x]BK
~α,(µx;·)
tm-tp)

∼= [eval(Jν ~β . βiK
~α,(µx;·)
tm/pf)/(x, xpf)]JBK

~α,(µx;x,xpf)
tm

Γ′, Tx, µx : ~α, α⇒ Tx `CIC +T JNαi
K~α,α,(µx;·)
tm Tx eval

: eval(J[ν ~β . α/x]BK~α,α,(µx;·)
tm-tp)

∼= [(eval ◦ eval−1
µ◦add(α) ◦ eval)(Jν ~β . αK~α,(µx◦add(α);·)

tm/pf)

/(x, xpf)]JBK
~α,(µx◦add(α);x,xpf)
tm

Thus the pattern-matching function in J(nfun (~α) (ν ~β . ~M → ~N)) 〈~α〉 QK∆tm has

type

ΠT2 .Πµ2 .Πx :J∇~β .NameK~α,µ
tm-tp .Πxpf :J∇~β .NameK~α,µ

tm-tp .

name-matching~α T2 µ2 x xpf ⇒ JBK~α,(µ2;x,xpf)
tm

and the entire term has the desired type. The pf case is similar.

Translation typing already gives consistency of CNIC, since if there were a term

of type ΠA : Typei . A, proving that every type is inhabited, then there would be a

translated term of type

ΠT .Πµ .ΠA : (ΠT2 .Πµ2 .Typei) .ΠApf : (ΠT2 .Πµ2 .Πx :µ2(A) .Typei) . A T id

in CIC + T, from which it is then possible to construct a term of type ΠA :Typei . A.

It is useful independently, however, to have strong normaliztion hold, so that equality

is decidable in the theory.

To show strong normalization by a translation it is required that a step of reduction

in the source language induces at least one step of reduction in the target language.

144

This is not so here, however; Translation Reduction only guarantees that if M N in

CNIC then JMK∆tm ∼= JNK∆tm. Re-inspecting the proof of Translation Reduction, the

only case that does not result in a reduction in CIC + T is in reducing name-matching

functions, since this requires reducing a term of the form

find-name-case~α T (µ ◦∆(∅)) (µ ◦∆(α))

where µ is the variable for the argument to the term. Translation Reduction proceeds

from this case by a step of ∼, but this will not help us here as ∼ is not reduction.

What is needed is for µ itself to be ground so that find-name-case~α can reduce. This

can only be accomplished by passing a ground mapping to the term in question, which

in turn requires passing a ground mapping to every term in the translation. This,

however, would sacrifice Re-Translation and Translation Substitution.

It is possible, though, to keep two copies of the translation of a term, one that is passed

a ground mapping and one that satisfies Re-Translation and Translation Substitu-

tion. This is done with the function forget, defined by the trivial projection function

λx . λ y . y that forgets one of its arguments. We can thus form forget (M T µg) M

where µg is ground, and we have a term that is equal to M but that keeps a separate

copy of M that gets passed a ground mapping.

Note that forget here is similar to the R function in Hofmann’s dissertation [28]. This

is not surprising, as the R function there was used to map reductions in extensional

type theory, which are any provable equalities, to reductions in intensional type the-

ory. This is similar to the problem here, where we have ∼ steps that do not correlate

to actual intensional reductions.

Theorem 6.2.1 (Strong Normalization). The language CNIC is strongly nor-

malizing.

Proof. Let {|M |}∆
tm and {|M |}∆

tm be the set of all terms that can be got from JMK∆tm
and JMK∆pf , respectively, by recursively replacing every subterm of the form JNK∆tm
with a term of the form

λT . λ µ . forget (JNK∆tm Tg µg) (JN ′K∆tm T µ)

145

where N ′ is a CNIC term such that JN ′K∆tm T ′ µ′ reduces to JNK∆tm T ′ µ′ for any

ground T ′ and µ′. By Translation Reduction we immediately have that any element

of {|M |}∆
tm or {|M |}∆

pf is equal by reductions of forget and steps of ∼= to JMK∆tm or

JMK∆pf , respectively. Further, it is apparent by Translation Typing that every element

of {|M |}∆
tm and {|M |}∆

pf is well-typed.

Any reduction M N in CNIC induces an equivalent reduction from elements

of {|M |}∆
tm to {|N |}∆

tm and from elements of {|M |}∆
pf to {|N |}∆

pf . This is because the

only way a forget terms are only in the tm subterms, so they do not interfere with

reductions for pattern-matching and name-matching functions. Thus, any infinite

reduction sequence in CNIC would lead to an infinite reduction sequence in CIC +

T, which is impossible.

146

Chapter 7

Constructor Predicate Type

Theory

Constructor Predicate Type Theory, or CPTT, is a type theory for encoding and

manipulating name binding. Using the HOEC approach introduced above, CPTT

makes name binding a straightforward notion to define. This in turn makes program-

ming languages easier to define, implement, and prove correct.

As above, name binding is encoded with ν-abstractions. In contrast with CNIC,

however, CPTT allows ν-abstractions to bind constructors of any type. In this way,

CPTT supports typing, the fourth property of name binding discussed above. This

in turn makes it easy to encode typed programming languages, as the type associated

with a name can be encoded into its type. As in CNIC, names can be compared and

name bindings can be travesed by recursive functions. These features are not possible

with existing formalisms.

The fact that ν-abstractions can introduce constructors at arbitrary types leads to

a difficulty with totality of pattern-matching functions. Specifically, for a pattern-

matching function to be total it must have a pattern for each possible input. But,

if arbitrary constructors can be introduced then a pattern-matching function would

need infinitely many cases to remain total. This is not possible.

To alleviate this difficulty, CPTT introduces a concept called constructor predicates.

Constructor predicates specify what constructors could possibly be in a term. This

allows a pattern-matching function to specify what constructors it expects. It is then

an error to apply a function to a term with constructors it does not expect. Totality is

147

then regained, as a pattern-matching function need only be total on the constructors

that satisfy its predicate.

The remainder of this Chapter is organized as follows. Section 7.1 briefly introduces

CPTT through an example. Section 7.2 then formalizes the operational and static

semantics of CPTT.

7.1 Informal Introduction and Examples

In this section we introduce CPTT with some examples. One of the key benefits

of CPTT is that it enables name binding with typing. Thus we focus on a typed

programming language, the simply-typed λ-calculus, to make the most use of this

feature.

The types of the simply-typed λ-calculus include some set of base types, along with

the type A ⇒ B for any types A and B. We here just use one base type, b. The

λ-calculus types can then be encoded as follows:

tp : IndType0

b : tp

arrow : tp ⇒ tp ⇒ tp

Note that tp is not given type Type0. Instead, inductive types have type IndTypei

for some i. This is because, in CPTT, inductive types are not types by themselves.

Instead, they become types when paired with a constructor predicate, or CPs. Thus

the second declaration above does not give the type tp to the b constructor, as tp is

not a type. Instead, tp here is syntactic sugar for [>] tp. Similarly, arrow is actually

given the type [>] tp ⇒ [>] tp ⇒ [>] tp. This is type is abbreviated as in the above

to increase clarity.

The types given to constructors are actually type templates in CPTT. A constructor

thus does not have just one type but many types, one for each output CP. The type

template can be instantiated for any output type that the constructor satisfies. For

example, b can be given the type [>] tp, as > is the vacuously true CP that all

148

constructors satisfy. b can also be given the type [b] tp, specifying that b is the only

allowed constructor. b cannot be given the type [arrow] tp, as b is not the constructor

arrow. It can be given the type [arrow ∨ b] tp, however.

Given the λ-calculus types defined as the type tp, we now turn to defining the λ-

calculus terms. To incorporate typing into the definition, the inductive type for

terms is indexed by elements of tp. Specifically, term t is the type of (encodings of)

λ-terms with type t. The terms can be defined as follows:

term : tp ⇒ IndType0

app : Πt1 : tp .Πt2 : tp . term (arrow t1 t2) ⇒ term t1 ⇒ term t2

lam : Πt1 : tp .Πt2 : tp . (∇c : term t1 . term t2) ⇒ term (arrow t1 t2)

Again, term is an inductive type indexed by elements of tp. app takes any λ-calculus

types t1 and t2 and build an application from a λ-calculus term of type arrow t1 t2 and

one of type t1. The result type is t2. lam takes any t1 and t2 and builds a λ-abstraction

from a term of type ∇c : term t1 . term t2. This is the type of name bindings, where

the name has type term t1 and the body of the name binding has type term t2. Note

that there need be no constructor for variables, as variables are introduced by the

lam constructor with name bindings.

As a simple function over this type, we consider again a function for counting variable

occurrences. This is defined as follows:

fun countvars (ξ, t : tp)

(c \ c : term t→ succ zero |
app t1 t2 x y \ t1, t2, x : term (arrow t1 t2), y : term t1 →

add (countvars ξ (arrow t1 t2) x) (countvars ξ t1 y) |
lam t1 t2 x \ t1, t2, x : ∇c : term t1 . term t2 →

lift-nat (ν c : term t1 . countvars t2 x 〈c〉))

The first case is for variables. This case matches against any arbitrary constructor

of type term t, and returns succ zero. The second case matches an application and

recurses on the two arguments, adding the results. The third case recurses inside

the name binding for a λ-abstraction, by binding a new constructor, recursing on the

constructor replacement, and calling lift-nat. Note that we have not discussed the

149

first parameter, ξ. ξ is a CP variable specifying the CP for the arguments. The type

of countvars is

Πξ :CP .Πt :[ψterm ∧ ξ] tp .Πx :[ψterm ∧ ξ] . [ψnat] nat

where ψnat is the CP nat ∨ zero ∨ succ and ψterm is the CP

tp ∨ b ∨ arrow ∨ term ∨ app ∨ lam ∨ (term x \ x) ∨ (¬Π∗.term x \ x)

This CP matches any of the given constructors, along with any constructor of type

term x for some x and any constructor that does not have return type term x for some

x. The definition of countvars is thus total, as the type ensures that it will only “see”

constructors of the given forms.

Capture-avoiding substitution can be defined by the following function:

fun subst (ξ, tM , tN ,M)

(ν c : termtM . c \ · →M |
ν c : termtM . d \ d : term tN → d |
ν c : termtM . app (t1 〈c〉) (t2 〈c〉) (x 〈c〉) (y 〈c〉)

\ t1 : ∇c . tp, t2 : ∇c . tp, x : ∇c . term (arrow t1 〈c〉 t2 〈c〉),
y : ∇c . term t1 〈c〉 →

app(lift-tp t1) (lift-tp t2)

(subst ξ tM (ν c . arrow t1 〈c〉 t2 〈c〉) M x)

(subst ξ ν c . t1 tM M y) |
ν c : termtM . lam (t1 〈c〉) (t2 〈c〉) (x 〈c〉)

\ t1 :, t2, x : ∇c : (term tM) .∇d : (term t1 〈d〉) . term t2 〈d〉 →
lam (lift-tp t1) (lift-tp t2)

(ν d : (term (lift-tp t1)) . subst (ξ ∨ d) t2 ν c . x 〈c, d〉)
)

Note that lift-tp is the lifting function for tp, similar to lift-nat for nat. subst substitutes

the term M of type tM into the binding ν c .N . The body N has type tN , but, since

tN is associated with N , it is easier to write the function if we use a ν-abstraction for

150

tN as well. Thus we have the type

Πξ :CP .ΠtM :[ψterm ∧ ξ] tp .ΠtN :∇c : term tM . [(ψterm ∨ c) ∧ ξ] tp .

ΠM :[ψterm ∧ ξ] (term tM) .

ΠN :∇c : term tM . [(ψterm ∨ c) ∧ ξ] (term tN 〈c〉) .
[ψterm ∧ ξ] term (lift-tp tN)

for subst. This specifies that if all arguments satisfy ξ, then so does the output. Note

that the bodies of tN and N are allowed to contain the constructor c in addition to

satisfying ξ, as c will be removed in the output. This type demonstrates one way in

which CPs are useful. Consider the CP ψterm ∧ (¬(term t \ t)). This indicates that

there are no free constructors of type term t for some t. A term satisfying this CP

is thus the encoding of a closed λ-term, meaning it has no free variables. If this CP

is used as the input CP to subst, then the output type also is guaranteed to satisfy

this CP. Thus the type of subst states that it brings closed λ-terms to closed λ-terms.

This would be useful in writing an evaluator for λ-terms, as it guarantees such an

evaluator will never have to specify a value for free variables.

7.2 CPTT Formalized

The syntax of CPTT is given in Figure 7.1. This is primarily for the sake of precise-

ness, as most of these constructs have been introduced above or in a previous chapter.

The one new construct here is the CP φ⊕ φ which represents the exclusive-or of two

CPs. This will play an important role in the operational semantics below. Note that,

although the CPs are given as a separate syntactic category in this figure, they are

actually considered as terms here and in the below. We now state some conventions.

M , N , and Q are used for terms, A and B are used for terms meant to be types, and

I is used for terms meant to be inductive types. x, y, and z are used for variables, c,

d, e, and f are used for constructors, φ and ψ are used for terms meant to be CPs, Γ

is used for typing contexts, and σ is used for substitutions.

151

Terms M ::= Typei Πx :A .B ∇c :A .B [φ] I
IndTypei c x M 〈c〉 ν c :A .M
M M λx :A .M fun x (Γ) (~P \ ~Γ → ~M)

Constructor
Predicates

φ ::= > ⊥ c ξ A \ Γx Π∗.I \ Γx

φ ∧ φ φ ∨ φ φ⊕ φ ¬φ

Contexts Γ ::= Γ, c : A Γ, x : A ·
Substitutions σ ::= [M/x, σ] ·

Figure 7.1: Syntax of CPTT

(fun u (~c,Γx) (. . . | ν ~d . ci ~x 〈~d〉 \ ~x→Mi | . . .)) 〈~c〉 ~N ′ (ν ~d . ci ~N)

[fun u (~c,Γx) (. . . | ν ~d . ci ~x 〈~d〉 \ ~x→Mi | . . .)/u, (ν ~d . ~N)/~x]Mi

(λx :A .M) N [N/x]M
(ν c :A .M) 〈c〉 M

Figure 7.2: Operational Semantics of CPTT: Terms

7.2.1 Operational Semantics

The operational semantics of CPTT is given by two rewrite systems, one for the

terms and one for the CPs. For the terms, an HNRS is used. This is system is

defined in Figure 7.2, and is similar to the one given for CNIC in Chapter 5. It

is straightforward to see that this system, like the other, is orthogonal and thus

confluent.

To rewrite the CPs, note that the CPs form a boolean algebra. It is known that

a convergent rewrite system cannot be defined for boolean algebras [66]. However,

it is possible to define an AC-rewrite system for boolean rings, which are defined in

terms of conjunction and exclusive-or [31]. The ∧ and ⊕ operators are both defined

to be AC. Disjunction and negation are then rewritten to equivalent formulas that

use conjunction and exclusive-or.

The rewrite system for CPs, based on the standard AC-rewrite system for boolean

rings, is given in Figure 7.3. The first eight rules are the standard rewrite system of

Hsiang and Dershowitz [31]. These are known to be convergent. The remaining rules

in a sense define the meaning of the specific CPs of CPTT. In the CP φ1 ∧ φ2, if φ1

is a more specific CP than φ2, meaning φ1 matches the appropriate pattern for φ2,

152

x ∨ y (x ∧ y)⊕ x⊕ y
¬x x⊕>

x⊕⊥ x
x⊕ x ⊥
x ∧ > x
x ∧ x x
x ∧ ⊥ ⊥

x ∧ (y ⊕ z) (x ∧ y)⊕ (x ∧ z)
c ∧ d ⊥ if c 6= d

cA ∧B \ Γx cA if A = σB
cA ∧B \ Γx ⊥ if A B

cΠΓ . I ∧Π∗.I ′ \ Γx cΠΓ . I if I = σI ′

cΠΓ . I ∧Π∗.I ′ \ Γx ⊥ if I I ′

A \ Γx
A ∧B \ Γx

B A \ Γx
A if A = σB

A \ Γx
A ∧B \ Γx

B ⊥ if A B
ΠΓ . I1 \ Γx

1 ∧Π∗.I2 \ Γx
2 ΠΓ . I1 \ Γx

1 if I1 = σI2
ΠΓ . I1 \ Γx

1 ∧Π∗.I2 \ Γx
2 ⊥ if I1 I2

Π∗.I1 \ Γx
1 ∧Π∗.I2 \ Γx

2 Π∗.I1 \ Γx
1 if I1 = σI2

Π∗.I1 \ Γx
1 ∧Π∗.I2 \ Γx

2 ⊥ if I1 I2

Figure 7.3: Operational Semantics of CPTT: CPs

then φ1∧φ2 rewrites to φ1, the more specific CP. If these cannot be unified (specified

using the notation M1 M2) then φ1 ∧ φ2 rewrites to the false CP ⊥.

It is straightforward to see this rewrite system is terminating [61]. To see that it is

confluent requires checking that all the critical pairs are joinable, as per Section 2.3.3.

In fact, only critical pairs with the new rules need be checked, as the old rules are

already known to be convergent. Each new rule is either of the form φ1 ∧ φ2 φ1 or

φ1∧φ2 ⊥, so only critical pairs with such rules need be searched. It turns out that

all these critical pairs are in fact joinable, so we spare the reader the details here.

As a final point about the operational semantics, it was shown in Section 4.4 that both

termination and confluence are modular between a left-linear HNRS and an ACRS

such as the two rewrite systems here if the set of terms is restricted. This restriction

states that no term-redex should be a subterm of a CP-redex. To ensure this is the

case, the types in CPs are required to be normal forms. Given this, Section 4.4 shows

that the combined system is confluent, as each individual system is. This result also

shows that any strong normalization proof need only consider rewriting for terms, as

termination of that rewrite system will extend to the full operational semantics.

153

7.2.2 Static Semantics

The static semantics of CPTT is given in Figure 7.4. We note differences from CNIC.

The most notable difference is the addition of IndTypei. The IndTypei mirror the type

universes Typei as a chain of inductive types. We have IndTypei is a constructor for

the inductive type specified by IndTypei+1. Since inductive types do not become types

without the addition of a CP, we have IndTypei thus has type [φ] IndTypei+1. The

theory makes the IndTypei special, as they satisfy any CP. Thus φ in the type of

IndTypei can be any CP. This is the meaning of the rule t-indtype.

To form an inductive type requires an element of the type [φ] IndTypei for some φ.

Thus the inductive types themselves are elements of the inductive type defined by

IndTypei. This puts type constructors on the same level as term constructors, and

both of these can be introduced locally. The rule t-cp specifies that [φ] A is a Typei

is A is an element of the type [φ] IndTypei.

Constructors in CPTT have infinitely many types, one for each output CP. To form

these types, the operation reifyi
c(φ,A) is defined. This takes the type scheme A

associated with c and constructs the instance of this type scheme whose return type

uses the CP φ. i is the level of A, meaning that the return type of A has type Typei.

reifyi
c(φ,A) is defined as follows:

reifyi
c(φ, [>] I) = [φ ∨ c] I

reifyi
c(φ,Πx :A .B) = Πx :arg-reifyi

c(φ,A) . reifyi
c(φ,B)

arg-reifyi
c(φ, [ψ] I) = [φ ∧ ψ] I

arg-reifyi
c(φ,∇d :A .B) = ∇d :A . arg-reifyi

c(φ ∨ d,B)

arg-reifyi
c(φ,Πx :A .B) = Πx :neg-reifyi

c(φ,A) . arg-reifyi
c(φ,B)

arg-reifyi
c(φ,Typej) = Typej if j ≤ i

neg-reifyi
c(φ, [ψ] I) = [¬c ∧ ψ] I

neg-reifyi
c(φ,Πx :A .B) = Πx :neg-reifyi

c(φ,A) .neg-reifyi
c(φ,B)

neg-reifyi
c(φ,∇d :A .B) = ∇c :A .neg-reifyi

c(φ ∨ d,B)

arg-reifyi
c(φ,Typej) = Typej if j < i

We note a few points about this definition. First, the return type for c is ensured

to always use a CP that c satisfies. This is done by setting this CP to φ ∨ c. For

154

arguments, reifyi
c(φ,Πx :A .B) uses the operation arg-reifyi

c(φ,A) to reify argument

types. Any inductive types of the form [ψ] I in the argument types of A are reified

to use the CP φ∧ψ, specifying that ψ acts as an upper bound to the constructors in

allowed in the argument. This allows the type A to specify negative constraints about

constructors in arguments. Reification of Typej simply ensures that j is no greater

than the level of the whole of A. Reification of the argument type ∇d :A .B reifies B

in the new CP φ ∨ d, indicating that the body of a ν-abstraction of this type might

contain d. Function types are reified by reifying their return types and negatively

reifying their input types. Negative reification is done with neg-reifyi
c(φ,A), and

ensures that type universes in a non-positive position are below the level of A and

that no inductive types can possibly contain c.

The last typing rule to examine in Figure 7.4 is t-pmfun. This behaves similarly to

the corresponding rule in CNIC. Pattern-matching functions will in general take in

a sequence of constructors ~c, a CP ξ, a sequence of arguments Γx, and a scrutinee

x. The scrutinee have type ∇Γc
ν . for an arbitrary list of constructors and type

Γc
ν . This is expressed with the same raising operator as in CNIC. The input CP

ξ specifies the CP for the scrutinee. The scrutinee must also satisfy some CP φ

that includes all the patterns in the pattern-matching function. This is expressed by

Γ ` (Γ1, c1), . . . , (Γn, cn) covers [φ ∧ ξ] a.

155

Γ `M : A Γ ` B : Typei ` A . B
Γ `M : B t-subt Γ ` Typei : Typei+1

t-type

Γ ` A : Typei Γ, x : A ` B : Typei

Γ ` Πx :A .B : Typei

t-pi-p
Γ ` A : Typei Γ, x : A ` B : Type0

Γ ` Πx :A .B : Type0

t-pi-i

Γ, ξ : CP ` A : Typei

Γ ` Πξ :CP . A : Typei

t-pi-cp
Γ ` A : Typei Γ ` ctype(A) Γ, c : A ` B : Typei

Γ ` ∇c :A .B : Typei
t-nabla

Γ ` A : [φ] IndTypei

Γ ` [φ] A : Typei

t-cp
Γ ` IndTypei : [φ] IndTypei+1

t-indtype x : A ∈ Γ
Γ ` x : A t-var

c : A ∈ Γ level(A) = i

Γ ` c : reifyi
c(φ,A)

t-ctor
Γ ` c : A removec(Γ) `M : ∇c :A .B

Γ `M 〈c〉 : B
t-constrepl

Γ ` A : Typei Γ ` ctype(A) Γ, c : A `M : B
Γ ` νc : A.M : ∇c :A .B t-nu

Γ `M : Πx :A .B Γ ` N : A
Γ `M N : [N/x]B

t-app

Γ, x : A `M : B
Γ ` λx :A .M : Πx :A .B t-lambda

· ` ∇Γc .Πξ :CP .ΠΓx↑Γc
ν .Πx :[φ ∧ ξ] (a Γx)↑Γc

ν

∇ . B : Typei

∀i(Γ ` Γc,Γc
i : ciΠΓx

ci
. [φ ∧ ξ] a ~Mi)

∀i(Γc,Γc
i , ξ : CP, u : (∇Γc .ΠΓx↑Γc

ν .Πx : (a Γx)↑Γc
ν

∇ . B),Γx
i↑Γc

ν

` Ni : [(Mi)↑Γc
ν /Γx , (ci Γx

i)↑Γc
ν /x]B)

∀i(` app-checku(Γx
i ;Ni)) Γ ` (Γ1, c1), . . . , (Γn, cn) covers [φ ∧ ξ] a

Γ ` fun u (Γc, ξ,Γx↑Γc
ν) ((c Γx

c)↑Γc
ν \ ~Γc↑Γc

ν→ ~N)
: ∇Γc .Πφ ∧ ξ :CP .ΠΓx↑Γc

ν .Πx : ([φ ∧ ξ] (a Γx)↑Γc
ν

∇) . B

t-pmfun

Γ ` φ : CP Γ ` ψ : CP

Γ ` φ ∧ ψ : CP
tcp-and

Γ ` φ : CP Γ ` ψ : CP

Γ ` φ ∨ ψ : CP
tcp-or

Γ ` φ : CP Γ ` ψ : CP

Γ ` φ⊕ ψ : CP
tcp-xor

Γ ` φ : CP

Γ ` ¬φ : CP
tcp-neg c : A ∈ Γ

Γ ` c : CP
tcp-ctor

Γ′ ` A : Typei

Γ ` A \ Γ′ : CP
tcp-patt

Γ′ ` A : Typei

Γ ` Π∗.A \ Γ′ : CP
tcp-star-patt

Figure 7.4: Typing for CPTT

156

Chapter 8

Conclusion

This dissertation has presented a technique, called Higher-Order Encodings with Con-

structors or HOEC, for encoding name binding. The basic principle of HOEC is that

a special-purpose construct should be added to a language to encode name binding.

This special-purpose construct should intrinsically satisfy the required properties of

name binding, so that name binding can be got “for free” and need not be formal-

ized explicitly. This also coincides with standard mathematical practice, which is to

assume the properties of name binding without formalizing the concepts precisely.

The construct used here is called a ν-abstraction. ν-abstractions introduce fresh,

locally scoped constructors. The ν-abstractions can be used to encode name bindings,

while the locally scoped constructors are used to encode names themselves. The

benefit of this approach over others is that constructors can be easily examined and

compared for equality. This also leads to the fact that recursion can easily extend

inside ν-abstractions.

This dissertation brought HOEC to two different formalisms. First, the HOEC ap-

proach was brought to term rewriting. The resulting formalism is called Higher-Order

Name-Binding Rewriting. This formalism allows rewrite systems to be defined that

can encode name bindings and compute with them as data. It also allows the defini-

tion of programming languages which manipulate bindings.

The second formalism to which HOEC was applied is Intensional Constructive Type

Theory, or ICTT. ICTT is a mathematical theory that is also a programming lan-

guage. Thus programs can be written and properties of them proved, both in ICTT.

157

Adding HOEC facilities to ICTT means that data with name bindings can be rep-

resented. An important class of data with name bindings is programming languages

themselves. ICTT with HOEC is a convenient theory theory for defining, implement-

ing, and proving properties about programming languages.

8.1 Related Work

There has been much research into encoding name binding. Perhaps the most well-

known paradigm is Higher-Order Abstract Syntax, or HOAS [52]. Instead of using a

construct like a ν-abstraction, HOAS uses meta-language functions, where the meta-

language variables bound be these functions become the encodings of names and

variables. For example, in HOAS, the λ-term λx.λy.x y would be encoded as

lam (fun (x : lam (fun (y :app x y →)) →)).

HOAS achieves α-equivalence for free, as functions are generally equal modulo α-

equivalence.

HOAS has the benefit that functions are already present in most languages, and thus

special-purpose constructs like the ν-abstraction need not be added. There are several

drawbacks, however. First, only parametric functions represent variable binding. For

example, the term

lam (fun (lam F → F lam F | app x y → x, yx))

does not encode any valid λ-term. Thus languages with HOAS must have a separate

type for parametric functions, so that only these will be used in encodings. This

is the so-called “exotic terms” problem. Second, pattern-matching over functions is

notoriously complex [21, 74]. Both of these problems greatly increase the complexity

of any language that wishes to support HOAS.

The are languages in the literature that do support HOAS. The first such language

was Twelf [53]. Twelf is based on logic programming, however, a paradigm in which

programs themselves are not objects in the language. Thus it is impossible to prove

158

properties directly about programs in Twelf. Other more recent attempts [60, 56, 19]

define functional programming languages that operate on LF [27], a language of para-

metric functions. Though functional programming does allow programs as objects in

the language, these languages all enforce a strict separation between programs and

proofs, again disallowing proofs about programs.

Another interesting approach to reasoning about variable binding is that of Miller and

Tiu [44]. This work is the originator of the ∇-type used in Heifer. The work starts

from a sequent-style formulation of first-order logic and adds the quantifier ∇c :T . P .

This construct has the same meaning as the propositional reading in Heifer, that “if

new constructor c of type T were added, then P would be true.” Miller and Tiu also

add a form of logic programming, allowing the user to define programs in the theory.

As in Twelf, however, these programs are not themselves objects in the theory, so

proofs cannot be directly about programs.

The final approach to encoding variable binding considered here is Nominal Logic

[59, 23]. Nominal Logic, based on FM set theory (set theory with atoms), uses a set

of atoms to encode variables. It then defines an atom-abstraction operation to encode

variable binding. This operation is defined in such a way that the binding of x in a

set using x is equal to the binding of y in the same set that uses y instead. User-

defined types can then use atom-abstraction to encode variable binding, attaining

α-equivalence for free.

Nominal Logic, however, does not satisfy typing. Instead, all names are in a single

type of names. This is similar to the nominal calculus CNIC defined here. This makes

it harder to encode typed programming languages, as extra typing information must

be provided. Nominal Logic has also not been fully incorporated into Intensional

Constructive Type Theory. There are nominal datatype packages for the theorem

provers Isabelle [71] and Coq [5], but these require some complex machinery. In

addition, these implementations are not quite complete: both require the user to

define a complex induction scheme for any type that uses variable binding. Thus

variable binding is not quite for free, as the user must understand and be comfortable

with how the particular implementation works.

159

8.2 Future Work

The main direction for future work is in proving the consistency of CPTT. This

should be possible by a translation to CNIC, using the names and name binding of

that calculus to encode the locally bound constructors of CPTT. The main difficulty

is in modeling the action of the CPs. Specifically, if the user introduces a constructor

c of type a A for some term A of type Type0, it is impossible to determine the normal

form of the CP (a nat \ ·)∧ c in the theory, because this requires testing if A is equal

to nat.

There are two possible solutions to this problem. One is to somehow encode not just

the CPs themselves but also the reductions that occur on them in a typing derivation.

Given a proof that the CP (a nat \ ·) ∧ c reduces to c, then, it is possible to see that

A equals nat.

A different approach would be to restrict the free variables in constructors so that the

question of CP normalization is decidable in the the theory. For example, the types of

constructors could be restricted so that only free variables with an inductive type are

permitted. The above problem of determining the normal form of (a nat \ ·)∧ c then

goes away, because if c is introduced with type a A, then it must be known at the

time c is introduced whether A equals nat or not, as A can only have free variables of

inductive type. For any given CPTT term, a basis set could be formed of all atomic

CPs (without ∧ and ⊕) occurring in the term. This could then be encoded as an

inductive type itself in CNIC, along with functions for computing the ∧ and ⊕ of

any two elements of this type. More experience with CPTT is needed to know if

this restriction would be burdensome or if most useful programs in CPTT already

adhere to this restriction.

Other directions of research are opened up by the fact that unification on CPs is

decidable. This is because the CPs form a boolean algebra (actually, a boolean ring),

a problem which has been heavily studied. See Martin and Nipkow [39] for a summary

of results. This opens up the possibility of a type inference algorithm to infer the

CPs in a term. This would increase usability of CPTT, as CPs would essentially

go “behind the scenes” and a programmer writing in CPTT would not have to be

concerned directly with CPs at all. Another feature enabled by a decidable unification

160

problem on CPs is subtyping. Specifically, the type [φ] I could be made a subtype

of [φ ∨ ψ] I for any ψ. Deciding if [φ1] I is a subtype of [φ2] I thus would require

searching for a solution to the equation φ1 ∨X = φ2, a unification problem.

161

References

[1] Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Ex-
plicit substitutions. Journal of Functional Programming, 1(4):375–416, 1991.

[2] S. Abramsky, D. Gabbay, and T. Maibaum, editors. Handbook of Logic in Com-
puter Science. Oxford University Press, 1992.

[3] T. Altenkirch. Integrated verification in Type Theory. Lecture notes for a course
at ESSLLI 96, Prague, 1996. Available from the author’s website.

[4] B. Aydemir, A. Bohannon, M. Fairbairn, J. Foster, B. Pierce, P. Sewell, D. Vy-
tiniotis, G. Washburn, S. Weirich, and S. Zdancewic. Mechanized metatheory
for the masses: The POPLmark Challenge. In Proceedings of the Eighteenth
International Conference on Theorem Proving in Higher Order Logics (TPHOLs
2005), 2005.

[5] Brian Aydemir, Aaron Bohannon, and Stephanie Weirich. Nominal reasoning
techniques in Coq (extended abstract). In Alberto Momigliano and Brigitte Pien-
tka, editors, Proceedings of the First International Workshop on Logical Frame-
works and Meta-Languages: Theory and Practice (LFMTP 2006), pages 69–77.
Elsevier, 2007.

[6] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

[7] Franz Baader and Wayne Snyder. Unification theory. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, chapter 8. Elsevier
and MIT Press, 2001.

[8] Frédéric Blanqui, Jean-Pierre Jouannaud, and Pierre-Yves Strub. From formal
proofs to mathematical proofs: a safe, incremental way for building in first-order
decision procedures. In IFIP International Conference on Theoretical Computer
Science, 2008.

[9] C. Boyapati, Robert Lee, and Martin Rinard. Ownership types for safe pro-
gramming: Preventing data races and deadlocks. In ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications, 2002.

162

[10] James Cheney. Simple nominal type theory. In Proceedings of the International
Workshop on Logical Frameworks and Meta-Languages: Theory and Practice,
2008.

[11] T. Coquand. An analysis of Girard’s paradox. In 1st Symposium on Logic in
Computer Science, pages 227–236, 1986.

[12] Thierry Coquand and Jean Gallier. A proof of strong normalization for the
theory of constructions using a kripke-like interpretation. In Proceedings of the
Workshop on Logical Frameworks, 1990.

[13] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, 2 edition, 2001.

[14] Pierre-Louis Curien, Thérèse Hardin, and Jean-Jacques Lévy. Confluence prop-
erties of weak and strong calculi of explicit substitutions. Journal of the ACM,
43(2):362–397, 1996.

[15] N. Dershowitz and D.A. Plaisted. Rewriting. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, volume I, chapter 9, pages 535–610.
Elsevier Science, 2001.

[16] Nachum Dershowitz. Hierarchical termination. In Proceedings of the Interna-
tional Workshop on Conditional and Typed Rewriting Systems, pages 89–105,
1995.

[17] Nachum Dershowitz. Innocuous constructor-sharing combinations. In Proceed-
ings of the Eighth International Conference on Rewriting Techniques and Appli-
cations, pages 202–216, 1997.

[18] Nachum Dershowitz. When are two rewrite systems more than none? In Pro-
ceedings of the 22nd International Symposium on Mathematical Foundations of
Computer Science, pages 37–43, 1997.

[19] Kevin Donnelly and Hongwei Xi. Combining higher-order abstract syntax with
first-order abstract syntax in ATS. In Workshop on Mechanized Reasoning about
Languages with Variable Binding (MERλIN’05), Tallinn, Estonia, September
2005.

[20] Gilles Dowek. Higher-order unification and matching. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, chapter 16. Elsevier
and MIT Press, 2001.

[21] Leonidas Fegaras and Tim Sheard. Revisiting Catamorphisms Over Datatypes
with Embedded Functions (or, Programs from Outer Space). In Proceedings of
the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 284–294. ACM Press, 1996.

163

[22] Maribel Fernández, Murdoch J. Gabbay, and Ian Mackie. Nominal rewriting
systems. In PPDP ’04: Proceedings of the 6th ACM SIGPLAN international
conference on Principles and practice of declarative programming, pages 108–
119, 2004.

[23] Murdoch Gabbay and Andrew Pitts. A new approach to abstract syntax with
variable binding. Formal Aspects of Computing, 13:341–363, 2002.

[24] Jürgen Giesl, editor. 16th International Conference on Rewriting Techniques,
volume 3467 of Lecture Notes in Computer Science, Nara, Japan, April 2005.
Springer-Verlag.

[25] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University
Press, 1989.

[26] Bernhard Gramlich. Relating innermost, weak, uniform and modular termination
of term rewriting systems. In Proceedings of the International Conference on
Logic Programming and Automated Reasoning, pages 285–296, 1992.

[27] R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics. Journal
of the Association for Computing Machinery, 40(1):143–184, January 1993.

[28] M. Hofmann. Extensional concepts in intensional type theory. PhD thesis, Uni-
versity of Edinburgh, 1995.

[29] M. Hofmann and T. Streicher. The groupoid interpretation of type theory. In
G. Sambin, editor, Twenty-five years of constructive type theory, pages 83–111.
Oxford: Clarendon Press, 1998.

[30] W. Howard. The formulae-as-types notion of construction. In Seldin and Hindley
[64], pages 479–490.

[31] Jieh Hsiang and Nachum Dershowitz. Rewrite methods for clausal and non-
clausal theorem proving. In Proceedings of the 10th Colloquium on Automata,
Languages and Programming, pages 331–346, London, UK, 1983. Springer-
Verlag.

[32] G. Huet and G. Plotkin, editors. Logical Frameworks. Cambridge University
Press, 1991.

[33] S. Peyton Jones. The Implementation of Functional Programming Languages.
Prentice Hall, 1987.

[34] Jean-Pierre Jouannaud. Private correspondence, 2008.

[35] M. Kaufmann, P. Manolios, and J Moore, editors. Computer-Aided Reasoning:
ACL2 Case Studies. Kluwer Academic, 2000.

164

[36] Max Kelly and M. L. Laplaza. Coherence for compact closed categories. Journal
of Pure and Applied Algebra, 19:193–213, 1980.

[37] Z. Khasidashvili. Expression reduction systems. In Proceedings of I.Vekua Insti-
tute of Applied Mathematics, volume 36, pages 200–220, 1990.

[38] Jan Willem Klop, Vincent van Oostrom, and Femke van Raamsdonk. Combina-
tory reduction systems: introduction and survey. Theoretical Computer Science,
121(1-2):279–308, 1993.

[39] Ursula Martin and Tobias Nipkow. Boolean unification—the story so far. Journal
of Symbolic Computation, 7(3-4):275–293, 1989.

[40] Per Martin-Löf. An intuitionistic theory of types. In G Sambin and J Smith, ed-
itors, Twenty-Five Years of Constructive Type Theory. Oxford University Press,
1998.

[41] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their con-
fluence. Theoretical Computer Science, 192, 1998.

[42] Erik Meijer and Graham Hutton. Bananas in Space: Extending fold and unfold
to Exponential Types. In Proceedings of the 7th SIGPLAN-SIGARCH-WG2.8
International Conference on Functional Programming and Computer Architec-
ture. ACM Press, La Jolla, California, June 1995.

[43] Dale Miller. A logic programming language with lambda-abstraction, function
variables, and simple unification. Journal of Logic and Computation, 1(4):497–
536, 1991.

[44] Dale Miller and Alwen Tiu. A proof theory for generic judgments. ACM Trans.
Comput. Logic, 6(4):749–783, 2005.

[45] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
MIT Press, 1990.

[46] Alexandre Miquel and Benjamin Werner. The not so simple proof-irrelevant
model of cc. In Proceedings of the International Workshop of Types for Proofs
and Programs (TYPES ’03), 2003.

[47] J. Mitchell. Foundations for Programming Languages. The MIT Press, 1996.

[48] Tobias Nipkow. Higher-order critical pairs. In Proceedings of Sixth Annual IEEE
Symposium on Logic in Computer Science, pages 342–349, 1991.

[49] B. Nordström, K. Petersson, and J. Smith. Programming in Martin-Löf ’s Type
Theory. Oxford University Press, 1990.

165

[50] Christine Paulin-Mohring. Inductive definitions in the system coq - rules and
properties. In TLCA ’93: Proceedings of the International Conference on Typed
Lambda Calculi and Applications, pages 328–345, London, UK, 1993. Springer-
Verlag.

[51] Gerald E. Peterson and Mark E. Stickel. Complete sets of reductions for some
equational theories. Journal of the ACM, 28(2):233–264, 1981.

[52] F. Pfenning and C. Elliott. Higher-order abstract syntax. In ACM SIGPLAN
Symposium on Language Design and Implementation, 1988.

[53] F. Pfenning and C. Schürmann. System Description: Twelf — A Meta-Logical
Framework for Deductive Systems. In 16th International Conference on Auto-
mated Deduction, 1999.

[54] Brigitte Pientka. International workshop on logical frameworks and meta-
languages: Theory and practice (LFMTP’07). http://www.cs.mcgill.ca/

~{}bpientka/lfmtp07/.

[55] Brigitte Pientka. Functional programming with higher-order abstract syntax
and explicit substitutions. In PLPV ’06: Proceedings of the First Workshop on
Programming Languages meets Program Verification, 2006.

[56] Brigitte Pientka. Functional programming with higher-order abstract syntax and
explicit substitutions. In Programming Languages meets Program Verification
(PLPV ’06), Seattle, WA, USA, August 2006.

[57] Brigitte Pientka. A type-theoretic foundation for programming with higher-
order abstract syntax and first-class substitutions. In Proceedings of the 35th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
2008.

[58] Benjamin Pierce. Basic Category Theory for Computer Scientists. MIT Press,
1991.

[59] A. M. Pitts. Nominal logic: A first order theory of names and binding. In
N. Kobayashi and B. C. Pierce, editors, Theoretical Aspects of Computer Soft-
ware, 4th International Symposium, TACS 2001, Sendai, Japan, October 29-31,
2001. Proceedings, volume 2215 of Lecture Notes in Computer Science, pages
219–242. Springer-Verlag, Berlin, 2001.

[60] Adam Poswolsky and Carsten Schürmann. Extended report on delphin: A func-
tional programming language with higher-order encodings and dependent types.
Technical Report YALEU/DCS/TR-1375, Yale University, 2007.

[61] Albert Rubio. A fully syntactic ac-rpo. In Information and Computation, pages
133–147, 1999.

166

http://www.cs.mcgill.ca/~{}bpientka/lfmtp07/
http://www.cs.mcgill.ca/~{}bpientka/lfmtp07/

[62] C. Schurmann, J. Despeyroux, and F. Pfenning. Primitive recursion for higher-
order abstract syntax. Theoretical Computer Science, 266(1-2):1–57, 2001.

[63] C. Schürmann, A. Poswolsky, and J. Sarnat. The ∇-Calculus. Functional Pro-
gramming with Higher-Order Encodings. In Proceedings of the 7th International
Conference on Typed Lambda Calculi and Applications, pages 339–353. Springer-
Verlag, 2005.

[64] J. Seldin and J. Hindley, editors. To H.B. Curry: Essays on Combinatory Logic,
Lambda Calculus, and Formalism. Academic Press, 1980.

[65] Masaru Shirahata. A sequent calculus for compact closed categories, 1996.

[66] Rolf Socher-Ambrosius. Boolean algebra admits no convergent term rewriting
system. In Proceedings of the Fourth International Conference on Rewriting
Techniques and Applications (RTA ’91), pages 264–274, Como, Italy, 1991.

[67] TeReSe, editor. Term Rewriting Systems, volume 55 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 2003.

[68] The Coq Development Team. The Coq Proof Assistant Reference Manual, Ver-
sion V8.0, 2004. http://coq.inria.fr.

[69] The GHC Team. The Glorious Glasgow Haskell Compilation System User’s
Guide, Version 6.6.1, 2007. http://www.haskell.org/ghc/docs/latest/

html/users_guide/.

[70] A. Troelstra. A history of constructivism in the twentieth century. Technical
Report ITLI Prepublication Series ML-91-05, University of Amsterdam, 1991.

[71] C. Urban and C. Tasson. Nominal Techniques in Isabelle/HOL. In Proc. of the
20th International Conference on Automated Deduction (CADE), volume 3632
of LNCS, pages 38–53, 2005.

[72] Vincent van Oostrom. Counterexamples to higher-order modularity. Available
at http://www.phil.uu.nl/ oostrom/publication/rewriting.html, 2005.

[73] Vincent van Oostrom and Femke van Raamsdonk. Comparing combinatory re-
duction systems and higher-order rewrite systems. In Proceedings of the First
International Workshop on Higher-Order Algebra, Logic, and Term Rewriting,
pages 276–304, 1993.

[74] Geoffrey Washburn and Stephanie Weirich. Boxes go bananas: encoding higher-
order abstract syntax with parametric polymorphism. In ICFP ’03: Proceedings
of the eighth ACM SIGPLAN international conference on Functional program-
ming, pages 249–262. ACM Press, September 2003.

167

http://www.haskell.org/ghc/docs/latest/html/users_guide/
http://www.haskell.org/ghc/docs/latest/html/users_guide/

[75] Stephanie Weirich. Second Informal ACM SIGPLAN Workshop on Mechanizing
Metatheory. http://www.cis.upenn.edu/~{}sweirich/wmm/.

168

http://www.cis.upenn.edu/~{}sweirich/wmm/

Vita

Edwin M. Westbrook

Date of Birth November 9, 1979

Place of Birth Chicago, IL

Degrees B.S. Computer Science, May 2001

University of California, Berkeley, Berkeley, California

Honors National Merit Scholar, 1997

University of California, Berkeley

Publications Ian Wehrman, Aaron Stump and Edwin Westbrook. Slothrop:

Knuth-Bendix Completion with a Modern Termination Checker.

17th International Conference on Rewriting Techniques and Ap-

plications.

Edwin Westbrook. Pattern Solutions to Higher-Order Unification

Problems. 20th International Workshop on Unification (UNIF

06)

Edwin Westbrook. Free Variable Types. Seventh Symposium on

Trends in Functional Programming (TFP 06)

Edwin Westbrook, Aaron Stump and Ian Wehrman. A Language-

based Approach to Functionally Correct Imperative Programming.

10th ACM SIGPLAN International Conference on Functional

Programming, pp. 268-279.

Technical

Reports

Edwin Westbrook, Aaron Stump and Ian Wehrman. A Language-

based Approach to Functionally Correct Imperative Programming.

WUCSE-2005-32. July, 2005.

169

Professional

Activities

Reviewer for Rewriting Techniques and Applications (RTA ’08),

2008

Reviewer for Transactions on Programming Languages and Sys-

tems (TOPLAS), 2007

Reviewer for Rewriting Techniques and Applications (RTA ’07),

2007

Reviewer for Programming Languages Meets Program Verification

(PLPV ’06), 2006

Reviewer for Principles of Programming Languages (POPL ’06),

2006

Departmental

Service

Doctoral Student Seminar co-coordinator, 2007 – 2008

Hot Topics Seminar coordinator, 2007 – 2008

Work

Experience

Engineer/Scientist II, 2001 – 2003

Apple Computer, Cupertino, California

December 2008

170

Higher-Order Encodings with Constructors, Westbrook, Ph.D. 2008

	Abstract
	Acknowledgments
	List of Figures
	Introduction
	Higher-Order Encodings with Constructors
	Algebraic Datatypes
	Encoding Name Binding
	Operations on HOEC Data

	Background and Technical Preliminaries
	General Concepts
	Graphs
	Term Rewriting
	Term Rewrite Systems
	Associative-Commutative Rewrite Systems
	Confluence Results

	A Brief Introduction to Intensional Constructive Type Theory
	Constructivism and the Curry-Howard Isomorphism
	Informal Calculus of Inductive Constructions
	Example Datatypes
	Example Functions
	Type Universes and Impredicativity

	Higher-Order Name-Binding Rewriting
	The Lambda-Nu-Calculus
	Types and Terms
	Typing
	Equality in the Lambda-Nu-Calculus

	HNRSs Defined
	Orthogonality
	Modularity of Convergence on a Restricted Set

	The Calculus of Nominal Inductive Constructions
	Examples
	CNIC Formalized
	Metatheory of CNIC

	Consistency of CNIC
	A Category of Worlds
	Path Disjoint Graphs
	The Category T
	Tree Mappings in Type Theory

	Translating CNIC to CIC + T
	Translation Contexts
	The Translation

	Constructor Predicate Type Theory
	Informal Introduction and Examples
	CPTT Formalized
	Operational Semantics
	Static Semantics

	Conclusion
	Related Work
	Future Work

	References
	Vita

