
Property Types: Semantic Programming for Java

Aaron Stump Ian Wehrman
Washington University in St. Louis

{stump,iwehrman}@cse.wustl.edu
http://cl.cse.wustl.edu/

Abstract
Dependent types have been proposed for functional programming
languages as a means of expressing semantically rich properties as
types. In this paper, we consider the problem of bringing semantic
programming based on dependent types to an object-oriented lan-
guage. A type-theoretically light extension to Java (with generics)
is proposed, called property types. These are types indexed not by
other types (as in Java with generics) but by immutable expressions.
We consider programming with two examples of property types: a
property type HasFactors〈long x, Set a〉, expressing that the ele-
ments of a are the multiplicative prime factors of x; and a property
type Sorted〈List l〉, expressing that l is sorted.

Keywords dependent types, Java, program verification, semantic
programming

1. Introduction
Correct programming is one of the oldest problems of Computer
Science. It also one of the most practically important: a 2002 report
issued by the National Institute of Standards and Technology esti-
mates that software errors cost the United States’ economy $59.5
billion annually [20]. A vast body of work in several different fields
has been devoted to the technical problems of correct program-
ming. On one end of the spectrum, techniques like theorem proving
are able to achieve full correctness of software, hardware, and other
systems, but at tremendous cost. Formalizing a system and proving
it correct in a theorem prover is highly labor-intensive and requires
extensive special training. Full program verification based on this
approach is applied only for truly critical applications [12, 10, 22].
Weaker deductive techniques like model checking are automatic,
but generally work only for finite state systems, and are compu-
tationally expensive [6]. On the other end of the spectrum, static
analyses such as abstract interpretation and even simple compile-
time type checking provide relatively efficient approaches to code
validation, albeit for less general problems [18, 16]. Impressive
progress has been made towards more correct software using static
bug finding techniques (e.g., [28, 14, 2, 8]). Testing and runtime
monitoring, even though they cannot demonstrate the complete ab-
sence of bugs, remain mainstays of correct program development
in practice (e.g., [1, 19, 21]).

[copyright notice will appear here]

In the functional programming community, there is renewed in-
terest in alternative language-based approaches to developing cor-
rect programs, developed originally in systems like Martin-Löf type
theory [17]. Proofs are reified as data in the programming language,
just like ints or strings. The type of a proof is the theorem it proves.
To express that a function has precondition φ, one requires the func-
tion to take a proof of φ as an additional argument. Postconditions
ψ are expressed similarly, by having the function return a proof of
ψ as an additional output. The programmer constructs such proofs
by hand; in principle, techniques from automated deduction could
be used to help. The benefits of this approach over traditional ap-
proaches based on proving extracted verification conditions in a
proof assistant include:

• proofs and programs are intertwined in a single artifact;

• constructing a proof has a computational, rather than mathemat-
ical, feel, since proofs are data; and

• proofs are available at run-time, which is potentially valuable
for applications like proof-carrying code [15]. Note that some
systems may allow (computationally irrelevant) proofs to be
removed during compilation, so as to avoid incurring runtime
costs.

The hope is for these benefits to lead to verification with the ex-
pressive power of traditional theorem-proving approaches, but with
a much lower burden on the developer. The first author proposes
“semantic programming” as a catch phrase for these ideas. They
are the main focus of languages like ATS, RSP1, Epigram, and
Ωmega [5, 27, 13, 24]. They are also supported in some proof assis-
tants (e.g., Coq) [25]. Ideas related to language-based approaches to
program verification will be explored further in an upcoming FLoC
workshop, PLPV 2006 (“Programming Languages meets Program
Verification”), organized by the first author and Hongwei Xi.

In this paper, we seek to explore possible answers to the follow-
ing question: what is a minimal, type-theoretically light extension
to a mainstream object-oriented programming language like Java
that captures the spirit of semantic programming? This paper pro-
poses property types as such an extension. Property types are a re-
stricted form of (one version of) dependent types. They are declared
like generic classes, but instead of being parametrized by type vari-
ables, they are parametrized by expression variables. Property types
are type-theoretically light because we severely restrict the form
of expressions which can index property types (thus avoiding dif-
ficult meta-theoretic issues like strong normalization of compile-
time evaluation, which cause great complexity for the meta-theory
of other type systems).

Despite the restrictions, property types still enable useful pro-
gram verification. We demonstrate this with two examples. The first
uses a property type HasFactors〈long x, Set a〉 to express that the
elements of a are the prime multiplicative factors of x (Section 4).
We write code to perform exponentiation by successive squaring

FOOL/WOOD 2005 submission draft 1 2005/12/19

for which we statically verify, using property types, that the set
of factors of xy is equal to the set of factors of x. The second
example uses a property type Sorted〈List l〉, expressing that l is
sorted (Section 5). We implement a routine for merging two non-
null sorted lists for which we statically verify that the resulting list
is also sorted. We begin by showing how to adapt dependent types
from functional programming (Section 2) to obtain property types
(Section 3). Note that the work is in progress, due to the lack of an
implementation and formal meta-theory.

2. Dependent Types
Suppose we are writing in a functional programming language, and
have code which requires or guarantees that one natural number be
less than or equal to another. Dependently typed programming lan-
guages (e.g., RSP1 [27]) can express the “less than or equal to”
relation on natural numbers using a datatype indexed by expres-
sions (more specifically, by terms). Suppose we have a datatype of
natural numbers:

nat : type.
z : nat.
succ : nat => nat.

We represent the mathematical statement x ≤ y as a type, leq
x y. We may declare the following datatype for this term-indexed
type:

leq : nat => nat => type.
leqax : x:nat => leq x x.
leqs : x:nat => y:nat => leq x y => leq x (s y).

The first declaration states that leq is indexed by the two natural
numbers in question. The declaration of leqax can be read as an
axiom stating that for any natural number x, x is less than or equal
to itself. Note the use of the dependent function space, in general of
the form x:A => B(x), to give a name (x) to the argument to leqax.
This name is then used to index the return type of leqax. Finally,
the declaration of leqs is an axiom stating that if x and y are natural
numbers, and if x is less than or equal to y, then x is less than
or equal to the successor of y. This defines the datatype of proofs
that one natural number is less than or equal to another. Note that
the datatype is not connected to built-in numeric types or built-in
arithmetic operations of the programming language. Instead, these
proofs are about data in the user-declared datatype nat. Functions
which have preconditions or postconditions stating that one number
is less than or equal to another can now require proofs of the
appropriate “less than or equal to” statement (we skip examples
of this here; the reader may find several examples, e.g., in [27]).

Type systems like those for ownership types (e.g., [4]) also
use indexed types in an object-oriented setting. Such systems are
designed to implement special-purpose static analyses, and have
had promising results conservatively verifying important (but re-
stricted) properties of code. Dependent types of the kind we wish to
bring to Java are, in contrast, used for expressing quite general data
properties. The price we pay is that it is difficult if not practically
impossible to provide a similar level of automation for checking
that the expressed properties hold.

3. Property Types
Adding dependent types as just described to a mainstream object-
oriented language requires some non-trivial adaptations. Our basic
starting idea is to allow class types to be indexed by terms, possibly
from some restricted class. So we may simply extend the Java 1.5
syntax for parametrized classes to allow variable declarations in
parameter lists. For example, if we wish to represent the property

that int i is less than or equal to int j, we can declare a class like
this:

public class Leq<int i, int j> {
...
}

Subsequently, we might have variables, fields, or function param-
eters with types like Leq〈3, 4〉. We call parametrized classes like
Leq property classes, and their instantiations, like Leq〈3, 4〉, prop-
erty types.

The reader may immediately wonder why it is necessary to
index a class like Leq at all. Why not just have an unindexed class
Leq whose constructor takes in the ints i and j, and asserts that i
is less than or equal to j? With this approach, no instance of Leq
could be successfully created without the corresponding less-than
property holding. Whenever one has a non-null instance of Leq
with fields i and j, one knows that i must be less than or equal to
j. For purposes of static verification, this approach is not sufficient.
In general, pre- and post-conditions of functions express relations
between inputs and between inputs and outputs. For verification
in the style we are exploring, it is not sufficient for a function
to require an argument of type Leq to record that, say, the first
argument is less than the second. This is because the type Leq does
not record which two numbers are in the less-than relation. Adding
indexes to the type makes that information available to the type
checker for static verification.

Once we decide to index types like Leq by terms, several issues
are immediately raised. First, how do we represent proof rules?
Since in dependently typed functional languages proof rules are
written as functions, we naturally think to write them as methods
in an object-oriented language. But this presses the issue of what
expressions are allowed to index types. For example, in the return
type of leqs in the previous Section, we have s y as an index. Would
this be modeled as a constructor or other method call in Java? It
can be problematic to index types by arbitrary code, so this sounds
worrisome.

Even more distressing are the problems caused by mutable state.
Suppose we have local variables x and y, and we obtain an object
of type Leq〈x,y〉. Now suppose we assign to x (or y). The property
might only hold for the value of x before the assignment, and hence
might be violated by a later assignment. We could imagine having
our type checker try to track (conservatively) the values of variables
and invalidate proof terms if variables might change. But this places
a rather heavy requirement on the type system, of the kind we are
trying to avoid. We instead adopt the seemingly severe restriction
that class types can be indexed only by expressions whose value
cannot change in different memory contexts at run-time. To express
this restriction, we can take advantage of the final keyword in
Java, and require that classes only be indexed by literal values or
final expressions. It turns out to be practically necessary to allow
indexing by more than just final local variables, final fields, and
final method parameters. We must take final expressions to be
these, or final fields of final expressions. So if x is a final variable,
field, or method parameter of type A, where A has a final field f ,
we allow types to be indexed by x.f .

We are still left with the possibility that while a reference index-
ing a type cannot be changed, the object pointed to by the reference
might be modified. We propose that for now, property types be used
just to express properties of immutable objects. The type checker
certainly could help by allowing classes to be declared immutable.
Note that this is quite different, and seemingly simpler than, adding
support to allow references to be declared readonly [26, 3]. Im-
mutability of a class simply means that all fields must be final ref-
erences to immutable objects. But we emphasize that we do not re-
quire the type checker to support this. It is not entirely unreasonable

FOOL/WOOD 2005 submission draft 2 2005/12/19

to leave immutability up to the programmer to enforce. Naturally,
this would only be appropriate when guarantees conditional on un-
verified properties (like immutability in this case) are still valuable.

Let us return to the issue of proof rules. We propose that infer-
ences not be modeled in a one-to-one way by objects (so, a complex
proof is not modeled as a complex object of some kind). Instead,
we propose that trusted code, which we call an authority, simply
give out instances of the property type itself to assert that the prop-
erty holds. We call such instances proofs, even though they do not
directly correspond to mathematical proofs. For example, the au-
thority for Leq is a class called LeqAuthority, with static methods
like this one corresponding to the function leqax we had above:

public static Leq<i,i> leqAx(final int i) {
return new Leq<i,i>();

}

This approach requires organizing the code so that only the trusted
parts can instantiate property types. Fortunately, this can easily be
done in Java either by making the property class a static inner class
of the authority class and making the property class’s constructor
private; or by putting the authority class and the property class in
the same trusted package, and making the property class’s construc-
tor have package-level access protection.

Note that runtime checks can always be performed by an author-
ity. For example, LeqAuthority could supply a method assertLeq
which takes in ints x and y and if x ≤ y, returns a proof of
Leq〈x,y〉; and otherwise assert-fails. For the program verification
examples below, we will write untrusted code in such a way that it
never needs to call such possibly failing methods.

Another point to consider is whether or not to allow null to
have a property type. Since allowing null to be supplied where
a proof is required fundamentally undermines the requirement to
supply a proof, we wish to disallow null at property types. This
requires an extension to the type checker, but one which has already
been studied by others [7]. The only change here is that it is
preferable to allow a class to be declared as not tolerating null
instances, instead of just allowing a reference be declared to be
non-null. This could be implemented using the techniques in the
cited work by viewing a declaration of a class as non-nullable as
implicitly marking every variable of that class type as non-null.

A related issue is whether or not to allow property types to be
indexed by expressions which could evaluate to null. We adopt the
position that this is acceptable, since non-nullness could be en-
forced by a separate mechanism. Also, developers have more flex-
ibility with this approach to declare that properties hold of expres-
sions, without worrying about whether or not related expressions
are null. Insisting on non-nullness here would impose additional
burdens on programmers, which we choose to let them take on at
their own discretion.

Now we can return to the issue of how to model the constructor
term s y in the return type of the functional leqs constructor. The
proposal is that whenever a return type’s index is the result of
computation, that index and the proof about it must be passed
around explicitly in an bundling object. For the case of leqs, we
can declare a class Helper to hold a value y and a proof that x is
less than or equal to y:

public class Helper<int x> {
public final int y;
public final Leq<x,y> p;
public Helper(final int y, Leq<x,y> p) {

this.y = y;
this.p = p;

}
}

Expression-indexed helper classes like this one may be distin-
guished informally from property classes by noting that they need
not be trusted (since they do not need to instantiate property types),
and they need not be required to be non-nullable. But note here that
we do need a modest bit of help from the type checker. To type
check the second assignment in Helper’s constructor, we need p to
have type Leq〈x, this.y〉. But it has inequivalent type Leq〈x,y〉. In
this one situation of assignment of final expressions to final fields
in constructors, we need the type checker to take into account the
assignment this.y = y. We do not need the type checker to take
such assignments into account elsewhere in code, which is good,
since that would require a static analysis (which we are trying to
avoid wherever possible).

Now we can write the leqs proof rule as a method of the Leq
authority class LeqAuthority:

public static Helper<x> LeqS(final int x,
final int y,
Leq<x,y> p) {

return new Helper<x>(y+1,p);
}

Requirements on Type Checking. In summary, to implement
property types as informally described above, a Java type checker
would need to be extended in the following ways:

• Allow class declarations to be parametrized not just by type
variables but also by expression variables (and type check the
bodies of those declarations appropriately).

• Restrict the kind of expressions allowed to index types to just
literal values and final expressions.

• Take into account assignments of final expressions to final fields
in a constructor when type checking the rest of the constructor.

• Allow classes to be declared as non-nullable (null cannot
inhabit them).

• When type checking method calls, the dependencies between
inputs and outputs must be checked.

Support for immutable classes (not to be confused with support
for readonly references, which appears to be more complex [3, 26])
would be useful, but is not crucial for reasonable usage of property
types.

4. Example: Exponentiation by Successive
Squaring

Our first example is exponentiation by successive squaring. The
property statically verified is that the set of prime factors of the base
x is equal to the set of prime factors of the result, xy, for a positive
integral exponent y. Trusted code provides basic functionality for
factoring and multiplication and untrusted client code provides a
proof-producing exponentiation method. Declarations for the prop-
erty classes and method signatures are shown in Fig. 1 and Fig. 2.

There are two trusted classes in this example. The first is the
SetAuthority class, which manages properties about equality be-
tween sets. The property type Eq〈Set a,Set b〉 expresses equality
between sets a and b. The property IsUnion〈Set a,Set b, Set c〉
states that the set c is union of sets a and b. These properties are
internal to the SetAuthority class, which has exclusive ability to
construct them and is trusted to do so in a safe way.

For example, the method symm(Set a, Set b,Eq〈a, b〉 p) re-
turns a proof object of type Eq〈b, a〉. Similarly, the methods
refl(Set a) and trans(Set a,Set b, Set c,Eq〈a, b〉 p1,Eq〈b, c〉 p2)
produce objects of type Eq〈a, a〉 resp. Eq〈a, c〉.

FOOL/WOOD 2005 submission draft 3 2005/12/19

The method union(Set a, Set b) returns a helper object1 con-
sisting of a new set c (the union of a and b) and an object of type
IsUnion〈a, b, c〉. The SetAuthority class also provides a method
unionEqSets1() which returns a proof that the union of sets a and
b is equal to the set a, provided a = b. Another required method
(not shown) returns a proof that the union of any set a with the
empty set ∅ is equal to a.

The second trusted class is FactorAuthority, shown in Fig. 3,
which manages the property HasFactors〈long x, Set a〉, denot-
ing that integer x has as prime factors the set of integers a. The
method factor(long x) returns a helper object whose only mem-
bers are a set a and an object of type HasFactors〈x, a〉. The
method multiply() returns a helper object containing an integer
y (the result of multiplying some x1 and x2), a set b, a proof of
IsUnion〈a1, a2, b〉 (with a1, a2 the factors of x1 resp. x2) and a
proof of HasFactors〈y, b〉. While the factor() method is in gen-
eral quite slow (viz. pseudo-polynomial time), the time required
for the multiply() method to update the HasFactors〈〉 proof is fast
— it is dominated by the linear-time union operation on the two
incoming sets.

In this example, an untrusted ExpClient class provides an ex-
ponentiation method that returns correctness proofs along with
the result of the main computation. Specifically, the method
exp(long x, int y), shown in Figure 5, returns a helper object with
the result of the exponentiation z, a set a of prime factors of the
output z, a set b of prime factors of the base x, and finally a proof
that the sets are equal (an object of type Eq〈a, b〉.

The correctness of exponentiation by successive squaring is
more difficult to show than that of a naı̈ve implementation that
requires time linear in the size of the exponent. This is because
as computation proceeds the value of the base x changes — if
x = 2m, then we continue in the next step with x := m and y :=
y/2. Consequently, a recursive helper method expRec(), shown in
Figure 4, is defined that requires extra proofs as preconditions (i.e.,
with a strengthened inductive hypothesis); specifically a proof that
the factors of the original base x are equal to the those of the current
base x′, and a proof that the factors of the previous computation are
equal to those of the current base x′.

There are two cases2 to expRec(): either the exponent is exactly
1 or the exponent is at least 2. In the first case, we simply return the
result of the previous computation and a proof that its factors are
equal to those of the original base (by transitivity of the precondi-
tion equality proofs, the factors of the original base are equal to the
factors of the new base, and the factors of the new base are equal to
the factors of the previous computation).

In the second case, we start by computing the current step of
exponentiation by multiplying the previous result with the current
base. We then handle two subcases based on whether or not the
exponent is odd or even. In the odd subcase, we decrement the
exponent and recurse with the current exponentiation value just
computed. In the even subcase, we want to recurse with a new base
x′′ that is the square of the previous base x′. Before we do that,
though, we must supply a proof to the recursive call that the factors
of the new base are equal to those of the original base and to the
factors of the current exponentiation. To do so, we use transitivity
of the incoming proofs (the inductive hypothesis) as well as the
judgment provided by SetManager that the union of two equal
sets is itself equal to each of the individual sets. Note that when
expRec() is called in the top-level definition of exp(long x, int y)

1 Definitions of Helper classes are not given here, but are entirely straight-
forward.
2 Note that we do not handle the case when the exponent is 0, for then it
would not be true that the prime factors of the exponentiation are equal to
those of the base.

public static final class Eq<Set,Set> {}

public static Eq<a,a>
refl(final Set a) { /* ... */ }

public static Eq<b,a>
symm(final Set a,

final Set b,
Eq<a,b> proof) { /* ... */ }

public static Eq<a,c>
trans(final Set a,

final Set b,
final Set c,
Eq<a,b> abProof,
Eq<b,c> bcProof) { /* ... */ }

Figure 1. Exponentiation: SetAuthority methods for equality.

public static final class IsUnion<Set,Set,Set> {}

public static UnionHelper<a,b>
union(final Set a, final Set b) { /* ... */ }

public static Eq<a,c>
unionEqSets1(final Set a, final Set b,

final Set c,
IsUnion unionProof<a,b,c>,
Eq eqProof<a,b>) { /* ... */ }

Figure 2. Exponentiation: SetAuthority methods for union.

(Fig. 5), the arguments denoting the current base x′ and the current
computation are just the same as the original base x.

5. Example: Merging Sort Lists
For a second example, we consider code which merges sorted im-
mutable lists of ints (for simplicity, implemented as a class List
with public final fields data and next) to obtain a sorted result list.
We do not seek to verify that the result list stores all and only the
elements of the input lists, but merely that it is indeed sorted. Thus
we see that property types, like some other approaches to program
verification, can be used to verify properties on a continuum be-
tween very weak properties like type correctness (for example) and
very strong ones like the full specification of the code. We also re-
strict our attention to non-null lists. We express this by taking in
proofs of property type NonNull〈x〉, which has little force unless
the type checker enforces non-nullability of such proofs for us (as
described in Section 3 above). The method signature we want (in
an untrusted class holding the merge routine) is the following:

public static MergeInv<l1,l2>
MergeNonNull(final List l1,

final List l2,
Sorted<l1> p1,
Sorted<l2> p2,
NonNull<l1> p3,
NonNull<l2> p4);

Here, MergeInv is the following helper class, expressing the crucial
invariant of MergeNonNull for our purposes, that the first element
of the resulting list is the minimum of the first elements of the input
lists:

FOOL/WOOD 2005 submission draft 4 2005/12/19

public static final class HasFactors<long,Set> {}

public static FactorHelper
factor(final long n) { /* ... */ }

public static FactorHelper
multiply(final long n1, final Set f1,

final HasFactors<n1,f1> p1,
final long n2, final Set f2,
final HasFactors<n2,f2> p2) {

if (1 == n1) {
return new FactorHelper(n2, f2,

union(NIL, f2), p2);
} else if (1 == n2) {

return new FactorHelper(n1, f1,
union(f1, NIL), p1);

} else {
final long n = n1 * n2;
final UnionHelper<f1,f2>

ub = union(f1, f2);
return new FactorHelper(n, ub.c, ub,

new HasFactors(n, ub.c)); } }

Figure 3. Exponentiation: FactorAuthority methods.

public static
class MergeInv<List l1, List l2> {
public final List l;
public final Sorted<l> p1;
public final Min<l.data, l1.data, l2.data> p2;

public MergeInv(...) { ... }
}

Here, Min〈x,y,z〉 is an additional property type (supported by its
own authority class) expressing that int x is the minimum of ints y
and z.

One problem that immediately comes up in writing our merge
method is that we take different actions depending on whether
l1.data is less than or equal to l2.data, or vice versa. In either
case, we will certainly need a proof of the corresponding Leq
type. We could compare those ints and then call a method like
LeqAuthority.assertLeq, mentioned above. But this requires a run-
time check. How can we get the proofs we need without run-
time checks? Intuitively, LeqAuthority should provide a method
compare, which given ints x and y returns the appropriate Leq
proof depending on whether x ≤ y or y < x. To handle this dis-
junctive situation we need a digression on implementing something
analogous to the sum types of functional programming in Java.

Expressing Disjunction in Java. Functional programming uses
sum types to express that a piece of data has either one given type
or another given type. When expressing specifications as types,
some languages rely on the Curry-Howard isomorphism to express
logical disjunctions as sum types [11]. So the question becomes,
how does the Curry-Howard isomorphism for disjunction work in
Java? Certainly, we could simply add sum types to Java, but this
would be another modification to the language, of which we are
trying to make as few as possible. It turns out that we can meet our
verification needs without sum types. It is natural to think instead
of having a base class or interface Or〈X,Y 〉, with a subclass
Or1〈X,Y 〉 for when we have X , and another subclass Or2〈X,Y 〉
for when we have Y . This is fine, but the question then becomes,
how do we implement a case construct (logically, or-elimination)
in Java? The cute answer is to use the visitor design pattern, as
follows (cf. [9]).

private static ExpHelper
expRec(final FactorHelper base0,

final FactorHelper base1,
final Eq<base0.factors,

base1.factors> eq01,
final FactorHelper prev,
final Eq<base1.factors,

prev.factors> eq1p,
int power) {

if (power == 1) {
final Eq<base0.factors,

prev.factors> eq0p =
trans(base0.factors, base1.factors,

prev.factors, eq01, eq1p);
return new ExpHelper(base0, prev, eq0p);

} else { /* power > 1 */
final FactorHelper current =

multiply(base1.n, base1.factors,
base1.proof,
prev.n, prev.factors,
prev.proof);

final Eq<base1.factors,
current.factors> eq1c =

unionEqSets1(base1.factors,
prev.factors,
current.union.c,
current.union.proof,
eq1p);

if ((power % 2) == 1) {
return expRec(base0, base1, eq01,

current, eq1c,
--power);

} else { /* power is even */
final FactorHelper

base2 = square(base1.n,
base1.factors,
base1.proof);

final Eq<base1.factors,
base2.union.c> eq12 =

unionEqSets1(base1.factors,
base1.factors,
base2.union.c,
base2.union.proof,
refl(base1.factors);

final Eq<base0.factors,
base1.factors> eq02 =

trans(base0.factors,
base1.factors,
base2.factors,
eq01, eq12);

final Eq<base2.factors,
current.factors> eq2c =

trans(base2.factors,
base1.factors,
current.factors,
symm(base1.factors,

base2.factors, eq12),
eq1c);

return expRec(base0, base2,
eq02, current,
eq2c, power/2); } }

Figure 4. Exponentiation: recursive helper method.

FOOL/WOOD 2005 submission draft 5 2005/12/19

public static ExpHelper
exp(final long base,

final int power) {
if (1 > power) {

throw new IllegalArgumentException
("Non-positive exponent");

} else {
final FactorHelper<base>

fb0 = factor(base);
final Eq<fb0.factors,

fb0.factors>
f0eqf1 = refl(fb0.factors);

return expRec(fb0, fb0, f0eqf1, fb0,
f0eqfl, power); } }

Figure 5. Exponentiation: top-level method.

public interface Or<X,Y> {
public <C> C visit(OrVisitor<X,Y,C> v);

}
public interface OrVisitor<X,Y,C> {

public C visitOr1(X x);
public C visitOr2(Y y);

}

Figure 6. Interfaces for disjunctions and visitors of disjunctions.

public class Or1<X,Y> implements Or<X,Y> {
X x;
public Or1(X x) {

this.x = x;
}
public <C> C visit(OrVisitor<X,Y,C> v) {

return v.visitOr1(x);
}

}

public class Or2<X,Y> implements Or<X,Y> {
Y y;
public Or2(Y y) {

this.y = y;
}
public <C> C visit(OrVisitor<X,Y,C> v) {

return v.visitOr2(y);
}

}

Figure 7. The classes implementing Or.

We make the declarations of Figures 6 and 7 for disjunctions.
Suppose we want to perform a case analysis on an object p of type
Or〈Leq〈x, y〉, Leq〈y, x〉〉, returning an object of type C in both
cases. We simply call p.visit with a class implementing the interface
OrVisitor〈X,Y,C〉, whose visitOr1 and visitOr2 methods handle
the cases Leq〈x, y〉 and Leq〈y, x〉 respectively.

We now return to our MergeNonNull example. We equip our
trusted LeqAuthority class with the following method for compar-
ing ints:

public static Or<Leq<i,j>,Leq<j,i>>
compare(final int i, final int j) {
if (i <= j)

return new Or1<Leq<i,j>,Leq<j,i>>

(new Leq<i,j>());
return new Or2<Leq<i,j>,Leq<j,i>>

(new Leq<j,i>());
}

Then the body of MergeNonNull just compares the first ele-
ments of the two sorted input lists, and returns the result of us-
ing an (anonymous) OrVisitor to handle whichever situation of
l1.data ≤ l2.data or l2.data ≤ l1.data occurs:

return
LeqAuthority.compare(l1.data, l2.data).visit
(new OrVisitor<Leq<i,j>,Leq<j,i>,

MergeInv<l1,l2>>()
{ ... });

That OrVisitor works as follows. For the second case, it takes the
following shortcut, where MinAuthority.minSymm takes a proof
that x = min(y, z) and returns a proof that x = min(z, y):

public MergeInv<l1,l2> visitOr2(Leq<j,i> c) {
MergeInv<l2,l1> r =

MergeNonNull(l2,l1,p2,p1,p4,p3);
return new MergeInv(r.l, r.p1,

MinAuthority.minSymm(r.l.data,
l2.data,
l1.data,
r.p2));

}

So the main action of MergeNonNull happens in the case where
l1.data ≤ l2.data. Code for the visitor method for this case is
shown in Figure 8. The basic idea is that first, if we know that
non-null List l1 is sorted, then surely we know that the immedi-
ate sublist l1.next is sorted. Our trusted SortedAuthority provides
a method sublistSorted implementing this fact. Using the proof
obtained from that method, we can call a helper method called
Merge2NonNull, which is just like MergeNonNull, except that it
insists only that the second input list is NonNull. The first input
list must still be sorted, but it might be null (we treat null Lists as
sorted). The method Merge2NonNull returns a proof that l1.next
is Null in the latter case. In the former, it returns an object of type
MergeInv〈l1.next, l2〉. We explain how the code of Figure 8 han-
dles these two situations next, starting with the second, slightly
easier case.

5.1 Case: l1.next is null

When l1.next is Null, the visitOr2 method in Figure 8 is called
(listed beneath the comment saying “SECOND CASE”). This
method just prepends l1.data to l2 using a method buildSorted1
of SortedAuthority, of the following type:

public static Helper<i>
buildSorted1(int i, List l,

Sorted<l> p1, Leq<i,l.data> p2);

Here, Helper is the following helper class:

public static class Helper<int i> {
public final List l;
public final Sorted<l> p1;
public final IntEq<l.data,i> p2; ... }

This relies on a property class IntEq expressing that two ints are
equal. For simplicity, we do not pursue here the natural idea of hav-
ing a single property class Eq parametrized by the type of the equal
terms as well as the terms themselves. The idea with buildSorted1
is that Helper returns the result l of prepending l1.data onto l2, a
proof that l is sorted, and a proof that its first element is equal to i.

FOOL/WOOD 2005 submission draft 6 2005/12/19

5.2 Case: l1.next is non-null

The case listed beneath the comment saying “FIRST CASE” of
Figure 8 is for when l1.next is non-null, and we have a proof of
MergeInv〈l1.next, l2〉. It is easy to extend this to to a proof of
MergeInv〈l1, l2〉. To do so, we rely on additional trusted helper
methods, given in Figure 9. For example, MinAuthority.minEq
implements a congruence principle: if i = i′ and i is the minimum
of j and k, then i′ is the minimum of j and k. The method
SortedAuthority.step says that if l is sorted, then the first element
in l is less than or equal to the second. Nothing here enforces that
l has a first or second element. So we are making use here of the
principle, described in Section 3 above, that property types can be
indexed by expressions which would not evaluate if a mentioned
reference (here l or l.next) were null.

5.3 Finishing

The code of Figure 8 finishes by using additional helper methods
to build the required proof of MergeInv〈l1, l2〉. The only code left
to give is that for Merge2NonNull, which allows the first sorted
input list to be possibly null. The code for this method is given in
Figure 10, which relies on a trusted helper method to distinguish
between the case where l1 is Null and where it is NonNull. The
actions in either case are simple, and we omit further explanation.

6. Runtime Verification
Even in the absence of support for property types, the above ideas
can support more correct programming via runtime verification. To
illustrate this, we recast the property class IsUnion〈Set, Set, Set〉
as a simple Java class, as shown in Fig. 11. Here, IsUnion is a public
static final inner class (of SetAuthority) with a private constructor
that takes in the three sets to which it refers. The method check()
is then used at run-time to verify the validity of the proof object.
This runtime check may be called in any context that requires valid
proofs about data, whether in trusted or untrusted code.

The proof is valid with respect to some data if the data objects
are pointer-equal to those contained within the proof itself. Check-
ing the pointer-equality of the objects is sufficient here because we
trust the SetAuthority to perform the union operation correctly,
only it can create new IsUnion objects, and we require that the
objects to which the proof refers be immutable. This is important
because, in this scheme, each runtime check requires only constant
time. This is clearly preferable to asserting the correctness of the
data at crucial steps, which in this case, would amount to asserting,
for each element γ ∈ c, that either γ ∈ a or γ ∈ b; for each α ∈ a
that α ∈ c; and for each β ∈ b that β ∈ c. This would require linear
time for each check. Note that if we choose not to completely trust
the authority classes, or if we simply wish to provide further assur-
ance of their correctness, a full (expensive) check of the property
fits neatly in the check() method with the other runtime assertions.

Using these ideas, we implemented the exponentiation and list
merging examples given above in Java 1.5 (without our proposed
extensions), and ran some small tests without assert failures. This
gives some confirmation, in the absence of a type checker for Java
with property types, that the above examples work as intended.

7. Conclusion
We have proposed type-theoretically light extensions to the Java
language that allow programmers to express semantically rich
properties of their programs as types, and then verify those prop-
erties with respect to trusted authority code. Using dependent
types and other facilities to ensure that objects are not null (or
immutable), proofs are built and manipulated by trusted code as
objects with term-indexed property types. Type correctness of such

public MergeInv<l1,l2>
visitOr1(final Leq<l1.data,l2.data> c) {

Merge2NonNull
(l1.next,
l2,
SortedAuthority.sublistSorted(l1,p1),
p2, p4).visit

final SortedAuthority.Helper<l1.data> n =
(new OrVisitor<MergeInv<l1.next,l2>,

Null<l1.next>,
MergeInv<l1,l2>>() {

//
// FIRST CASE: l1.next is non-null.
//
public MergeInv<l1,l2>
visitOr1(MergeInv<l1.next,l2> I) {
Leq<l1.data,I.l.data> pp =

LeqAuthority.leqMin
(l1.data,
I.l.data,
l1.next.data,
l2.data,
SortedAuthority.step(l1,p1),
c,I.p2);

return SortedAuthority.buildSorted1
(l1.data, I.l, I.p1, pp);

}

//
// SECOND CASE: l1.next is null.
//
public MergeInv<l1,l2>
visitOr2(Null<l1.next> p) {
return

SortedAuthority.buildSorted1
(l1.data, l2, p2, c);

}

});

return new MergeInv<l1,l2>
(n.l, n.p1,
MinAuthority.minEq
(l1.data,
l1.data,
l2.data,
n.l.data,
MinAuthority.min(l1.data,

l2.data, c),
n.p2));

}

Figure 8. Visitor code used to handle the main case in
MergeNonNull.

FOOL/WOOD 2005 submission draft 7 2005/12/19

public static Min<ip,j,k>
MinAuthority.minEq(final int i,

final int j,
final int k,
final int ip,
Min<i,j,k> p1,
IntEq<i,ip> p2);

public static Min<i,j>
MinAuthority.min(int i, int j, Leq<i,j> p);

public static Leq<pi,qi>
LeqAuthority.leqMin(final int pi,

final int qi,
final int qj,
final int qk,
Leq<pi,qj> p1,
Leq<pi,qk> p2,
Min<qi,qj,qk> q);

public static Leq<l.data, l.next.data>
SortedAuthority.step(List l, Sorted<l> p1);

Figure 9. Signatures for trusted helper methods used in the code
for MergeNonNull (other signatures discussed in the text).

protected static Or<MergeInv<l1,l2>,Null<l1>>
Merge2NonNull(final List l1, final List l2,

final Sorted<l1> p1,
final Sorted<l2> p2,
final NonNull<l2> p3) {

return NullA.isNull(l1).visit
(new OrVisitor<Null<l1>,NonNull<l1>,

Or<MergeInv<l1,l2>,
Null<l1>>>()

{
public Or<MergeInv<l1,l2>,Null<l1>>
visitOr1(Null<l1> p) {

return new Or2<MergeInv<l1,l2>,
Null<l1>>(p);

}
public Or<MergeInv<l1,l2>,Null<l1>>
visitOr2(NonNull<l1> p) {

MergeInv<l1,l2> r =
MergeNonNull(l1,l2,p1,p2,p,p3);

return new Or1<MergeInv<l1,l2>,
Null<l1>>(r);

}
});

}

Figure 10. Helper method Merge2NonNull, allowing the first in-
put list to be Null.

public static final class IsUnion {
final Set a, b, c;
private IsUnion(Set a, Set b, Set aub) {

this.a = a; this.b = b;
this.c = aub;

}
public void check(Set a, Set b, Set c) {

if (this.a != a || this.b != b ||
this.c != c) {
throw new RuntimeException

("proof-object mismatch");
} } }

Figure 11. Runtime verification of union.

manipulations is statically verified by the type checker. Our pro-
posed method is capable of verifying non-trivial properties of pro-
grams, as demonstrated by two examples. Finally, we have dis-
cussed a pattern for runtime verification that emerged as a result of
combining the programming-with-proofs paradigm with Java.

Future work includes a formal presentation of Java with prop-
erty types, and its meta-theory. We also wish to augment a Java im-
plementation to support property types, and to continue to develop
and verify correct programs in this setting.

Acknowledgments
Thanks to the four anonymous reviewers for helpful feedback on
an earlier version of this paper. This work is partially supported
by NSF grant CCF-0448275 titled “CAREER: Semantic Program-
ming”.

References
[1] J. Andrews. General Test Result Checking with Log File Analysis.

IEEE Transactions on Software Engineering, 29(7), July 2003.

[2] K. Ashcraft and D. Engler. Using programmer-written compiler
extensions to catch security holes. In IEEE Symposium on Security
and Privacy, 2002.

[3] Adrian Birka and Michael D. Ernst. A practical type system
and language for reference immutability. In Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA
2004), pages 35–49, Vancouver, BC, Canada, October 26–28, 2004.

[4] C. Boyapati, B. Liskov, and L. Shrira. Ownership Types for Object
Encapsulation. In G. Morrisett, editor, ACM Symposium on Principles
of Programming Languages, 2003.

[5] Chiyan Chen and Hongwei Xi. Combining Programming with
Theorem Proving. In Proceedings of the 10th International
Conference on Functional Programming (ICFP05), Tallinn, Estonia,
September 2005.

[6] E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT
Press, 1999.

[7] M. Fahndrich, K. Rustan, and M. Leino. Declaring and checking
non-null types in an object-oriented language, 2003.

[8] C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. Saxe, and
R. Stata. Extended Static Checking for Java. SIGPLAN Notices,
37, 2002.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[10] J. Harrison. Formal Verification of IA-64 Division Algorithms. In
13th International Conference on Theorem Proving in Higher Order
Logics, 2000.

FOOL/WOOD 2005 submission draft 8 2005/12/19

[11] W. Howard. The formulae-as-types notion of construction, pages
479–490. In Seldin and Hindley [23], 1980.

[12] G. Klein and T. Nipkow. Verified Bytecode Verifiers. Theoretical
Computer Science, 298(3):583–626, 2003.

[13] C. McBride and J. McKinna. The View from the Left. Journal of
Functional Programming, 14(1), 2004.

[14] M. Musuvathi, D. Park, A. Chou, D. Engler, and D. Dill. CMC:
A Pragmatic Approach to Model Checking Real Code. In 5th
Symposium on Operating Systems Design and Implementation,
December 2002.

[15] G. Necula. Proof-Carrying Code. In 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 106–
119, January 1997.

[16] F. Nielson, H. Nielson, and C. Hankin. Principles of Program
Analysis. Springer, 1999.

[17] B. Nordström, K. Petersson, and J. Smith. Programming in Martin-
Löf’s Type Theory. Oxford University Press, 1990.

[18] B. Pierce. Types and Programming Languages. The MIT Press, 2002.

[19] M. Pol, R. Teunissen, and E. van Veenendaal. Software Testing : a
Guide to the TMap Approach. Addison-Wesley, 2002.

[20] Research Triangle Institute. The Economic Impacts of Inadequate
Infrastructure for Software Testing, 2002. Sponsored by the
Department of Commerce’s National Institute of Standards and
Technology.

[21] D. Rosenblum. A Practical Approach to Programming With
Assertions. IEEE Transactions on Software Engineering, 21(1),
January 1995.

[22] H. Rueß N. Shankar, and M. Srivas. Modular Verification of SRT
Division. Formal Methods in System Design, 14(1), 1999.

[23] J. Seldin and J. Hindley, editors. To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus, and Formalism. Academic
Press, 1980.

[24] T. Sheard. Languages of the future. In D. Schmidt, editor, Pro-
ceedings of 19th ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications, 2004.

[25] The Coq Development Team. The Coq Proof Assistant Reference
Manual, Version V8.0, 2004. http://coq.inria.fr.

[26] Matthew S. Tschantz and Michael D. Ernst. Javari: Adding reference
immutability to Java. In Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA 2005), San Diego, CA, USA,
October 16–20, 2005.

[27] E. Westbrook, A. Stump, and I. Wehrman. A Language-based
Approach to Functionally Correct Imperative Programming. In
Proceedings of the 10th International Conference on Functional
Programming (ICFP05), 2005.

[28] Y. Xie and A. Aiken. Scalable Error Detection using Boolean
Satisfiability. In M. Abadi, editor, Proceedings of the 32nd ACM
Symposium on Principles of Programming Languages, 2005.

FOOL/WOOD 2005 submission draft 9 2005/12/19

