
Design and Results of the 2nd Annual
Satisfiability Modulo Theories Competition

(SMT-COMP 2006)

Clark Barrett
Department of Computer Science

New York University

Leonardo de Moura
Microsoft Research

Aaron Stump
Department of Computer Science and Engineering

Washington University in St. Louis

Abstract

The Satisfiability Modulo Theories Competition (SMT-COMP)arose from the
SMT-LIB initiative to spur adoption of common, community-designed formats,
and to spark further advances in satisfiability modulo theories (SMT). The first
SMT-COMP was held in 2005 as a satellite event of CAV 2005. SMT-COMP
2006 was held August 17 - 19, 2006, as a satellite event of CAV 2006. This paper
describes the rules and competition format for SMT-COMP 2006, the benchmarks
used, the participants, and the results.

1 Introduction

Decision procedures for satisfiability modulo theories (SMT) are of continuing interest
for many verification applications (e.g., [1, 3, 5, 7, 8, 9]).SMT solvers are typically
used for verification as backends: a verification problem or subproblem is translated
into an SMT formula and submitted to the SMT solver. The solver then attempts to
report satisfiability or unsatisfiability of the formula. The advantage SMT solvers are
usually considered to have over pure SAT solvers, which are also often used as ver-
ification backends (e.g., for bounded model checking [4]), is the higher level of ab-
straction at which they can operate. By implementing theories like arithmetic, arrays,
and uninterpreted functions directly, SMT solvers have thepromise to provide higher
performance than SAT solvers working on encodings of such structures to the bit level.

The additional promise of SMT over pure SAT is balanced by additional challenges.
Since SMT deals with first-order (most commonly quantifier-free) formulas instead
of purely propositional ones, creation and widespread adoption of a common input
language is more difficult than for SAT. It is at the same time more important, since the
more expressive setting of SMT potentially allows more roomfor variation in the exact

1

details of the logic (e.g., sorted or unsorted, total or partial functions, etc.). Hence,
translations between input formats of different tools are more complex, and in some
cases it may not even be clear what such a translation should be. This makes the issue
of input format critical. For combination with other tools like skeptical proof assistants
(requiring a proof of every theorem validated by an externaltool), common output
formats for objects like proofs and models are also necessary for the adoption of SMT.

The Satisfiability Modulo Theories Competition (SMT-COMP)arose from the SMT-
LIB (“Satisfiability Modulo Theories Library”) initiativeto spur adoption of common,
community-designed SMT-LIB formats, and to spark further advances in SMT, espe-
cially for verification. Seehttp://www.smtlib.org/ for more information on
SMT-LIB. The first SMT-COMP was held in 2005 as a satellite event of the 17th Inter-
national Conference on Computer-Aided Verification (CAV),in Edinburgh, Scotland.
The experience with SMT-COMP 2005 confirmed the community’sexpectations that a
public competition would indeed motivate implementors of SMT solvers to adopt the
common SMT-LIB input format [2]. The second SMT-COMP, described in the present
report, provides further evidence that such a competition can stimulate improvement
in solver implementations: solvers entered in SMT-COMP 2006 were significantly im-
proved over the winning implementations of SMT-COMP 2005.

SMT-COMP 2006 had two additional goals beyond the original ones of encourag-
ing adoption of SMT-LIB input format and sparking implementation improvements.
First, in his invited talk at the 3rd International Workshopon Pragmatics of Decision
Procedures in Automated Reasoning (PDPAR ’05), Eli Singerman of Intel called for
SMT solvers to add support for logics like the combination ofEUF (“equality with
uninterpreted functions”) and fixed-width bitvectors. Specifying this and related logics
with bitvectors, and collecting suitable benchmarks in SMT-LIB format, was an impor-
tant goal for SMT-COMP 2006, which the SMT community succeeded in achieving.
Second, SMT-COMP 2005 did not provide a setting for exchangeof technical and
engineering ideas among solver implementors. So SMT-COMP 2006 included a spe-
cial evening session where implementors had the opportunity to give brief (10 minute)
presentations about their tools, and discuss implementation issues.

SMT-COMP 2006 was held August 17 - 19, 2006, as a satellite event of CAV 2006.
The competition ran while CAV 2006 was meeting, in the style of the CADE ATP Sys-
tem Competition (CASC) for general first-order theorem provers [10]. Intermediate re-
sults were posted periodically on the SMT-COMP website, with final results announced
in a special session on the last day of CAV. Solvers were run ona cluster of computers
at SRI International. As discussed below, great efforts were made to make the running
of the competition as transparent and repeatable as possible. So all scripts, solvers, and
benchmark formulas were made available on the web before thecompetition began, and
so anyone could (and some did) compute the results of the competition independently.
The web site for SMT-COMP 2006 ishttp://www.smtcomp.org/2006/.

The rest of this paper describes the rules and competition format for SMT-COMP
2006 (Section 2), the new benchmarks collected (Section 3),the participants (Sec-
tion 4), the scripts and execution of the solvers (Section 5), and the final results (Sec-
tion 6).

2

2 Rules and Competition Format

This Section explains the rules and competition format for SMT-COMP. These draw
substantially on ideas from the design and organization of CASC [10].

2.1 Entrants

SMT solvers were submitted to SMT-COMP via the EasyChair conference manage-
ment system in either source code or binary format. The submission deadline was
August 8, as close as the organizers could allow to the competition start date while still
leaving enough time to ensure that all solvers interoperated correctly with the compe-
tition scripts. Submitted source code was kept private, butbinary executables for all
solvers were made available on the SMT-COMP website. SMT-COMP 2006 partici-
pants were not required to attend the sponsoring conference, although most did so, and
most made presentations at the SMT-COMP evening session. Entrants to SMT-COMP
were also required to include a short (1-2 pages) system description, stating, among
other things, in whichproblem divisions(see Section 2.4 below) the entrant should
participate.

2.2 Solver Interface

As for SMT-COMP 2005, each SMT-COMP 2006 entrant was executed by presenting
a single SMT-LIB benchmark file to its standard input channel. These benchmark files
were given in the concrete syntax of the SMT-LIB format, version 1.1 [11]. This format
states thelogic of the benchmark (a background theory together with any syntactic re-
strictions on formulas), declares the sorts of any uninterpreted symbols, and then gives
the formula in a prefix syntax. The competition explicitly included only well-sorted
formulas. SMT-COMP entrants were then expected to attempt to determine satisfia-
bility or unsatisfiability of the input formula, and report either “sat” or “unsat” via
their standard output channel. Solvers could also report “unknown”, which is useful
for solvers that are known to be, for example, incomplete on some subset of the for-
mulas of a given problem division. Aborts, timeouts, other output, and exhaustion of
memory were all treated as if the tool had reported “unknown”.

2.3 Judging and Scoring

Scoring was done using the scoring system of Figure 1. Unlikefor SMT-COMP 2005,
SMT-COMP 2006 tolerated at most three wrong answers in any division. More than
three wrong answers in any division resulted in disqualification from the entire com-
petition. There were occasional wrong answers in several divisions, although many
fewer than in SMT-COMP 2005. There were two disqualifications: the ExtSat tool in
the QFLIA division, with 5 wrong answers out of around 100 formulas; and the Jat
tool in the QFRDL division, with 59 wrong answers out of around 100 formulas. For
comparison, the largest number of wrong answers in SMT-COMP2005 was 22 out of
around 50 formulas (the SBT solver in the QFIDL division).

3

Reported Correct? Point/penalty
unsat yes +1
unsat no -8
sat yes +1
sat no -8
unknown n.a. 0
timeout n.a. 0

Figure 1: Points and Penalties

The organizers took responsibility for determining in advance whether formulas
are satisfiable or not, using existing tools. Mature solversall agreed on the competition
benchmarks, and no incorrect classifications were reportedbefore or after the competi-
tion. In the event of a tie in total number of points, the solver with the lower total CPU
time on formulas for which it did not timeout was considered the winner.

2.4 Problem Divisions

Definitions of the following SMT-LIB logics and their corresponding theories were
made publicly available in advance of the competition on theSMT-LIB web page. The
prefix “QF ” below means the formulas in the logic are quantifier-free.

• QF UF: uninterpreted functions

• QF RDL: real difference logic

• QF IDL: integer difference logic

• QF UFIDL: integer difference logic with uninterpreted functions

• QF LRA: linear real arithmetic

• QF LIA: linear integer arithmetic

• QF UFLIA: linear integer arithmetic with uninterpreted functions

• QF AUFLIA: linear integer arithmetic with uninterpreted functions and arrays

• QF UFBV32: 32-bit fixed-width bitvectors with uninterpreted functions

• AUFLIA: quantified linear integer arithmetic with uninterpreted functions and
arrays

• AUFLIRA: quantified linear mixed integer/real arithmetic with uninterpreted
functions and arrays

4

3 Benchmarks

One of the main reasons for creating SMT-COMP was to provide aconcrete incentive
for collecting benchmarks in the SMT-LIB format. The collection of 1352 benchmarks
for the 2005 competition represented an important milestone for the SMT-LIB initia-
tive. For the 2006 competition, 40782 new benchmarks were collected for a total of
42134 benchmarks. The benchmark collection effort for the second SMT-COMP built
upon the first effort in two natural ways: collecting additional benchmarks for exist-
ing divisions and creating new divisions. An encouraging sign was that many of the
new benchmarks were provided in SMT-LIB format directly (whereas in 2005, most of
the benchmarks had to be translated into SMT-LIB format by the organizers). This is
further evidence that SMT-COMP is successfully promoting the adoption of the SMT-
LIB standard format. After a few remarks on benchmark organization, we describe the
new benchmarks collected in existing divisions, and then wedescribe the benchmarks
collected in new divisions.

3.1 Organization of Benchmarks

In 2005, the number of benchmarks was small enough that a simple organization by
division was sufficient. However, with the addition of many new benchmarks, we de-
termined to further organize the benchmarks in three concrete ways. First, benchmarks
were organized according tofamilies. A benchmark family contains problems that are
similar in some significant way. Typically they come from thesame source or appli-
cation, or are all output by the same tool. The rationale is that family information can
be used to help ensure a sufficiently diverse set of competition benchmarks by limiting
the number of benchmarks chosen from the same family (see Section 3.4 below).

Second, each benchmark was assigned adifficulty: an integer between 0 and 5
inclusive. The difficulty for a particular benchmark was assigned by running several
SMT solvers from the 2005 competition on it and using the formula:

difficulty = 5(1 −

solved

total
),

wheresolved is the number of SMT solvers that could solve the problem in 10minutes
andtotal is the total number of SMT solvers tried. The following solvers from the
2005 competition (whichever ones were applicable for each benchmark) were used to
compute this attribute: Ario 1.1, Barcelogic, CVC, CVC Lite2.0, MathSAT 3.3.1,
Sateen, Simplics, and Yices. Two of the new divisions, QFUFBV32 and AUFLIRA,
were not supported by any of the 2005 solvers, so the difficulty in these divisions was
computed using prototype implementations available to theorganizers. In addition,
some benchmarks in the quantifier divisions were identified as being unusually trivial
and were marked with difficulty−1.

Finally, each benchmark was assigned acategory. There are four possible cate-
gories:

• check.These benchmarks are hand-crafted to test whether solvers support spe-
cific features of each division. In particular, there are checks for integer com-
pleteness (i.e. benchmarks that are satisfiable under the reals but not under the

5

integers) and big number support (i.e. benchmarks that are likely to fail if in-
tegers cannot be represented beyond some maximum value, such as231

− 1).
The rationale for these checks is that the divisions as defined in the SMT-LIB
standard do include these as legal benchmarks. In order to encourage everyone
to offer truly complete solvers for each division, it seemedreasonable to enforce
that every solver be capable of solving these corner cases ofthe logic.

• industrial. These benchmarks come from some real application and are pro-
duced by tools such as bounded model checkers, static analyzers, extended static
checkers, etc.

• random.These benchmarks are randomly generated.

• crafted. This category is for all other benchmarks. Usually, benchmarks in this
category are designed to be particularly difficult or to testa specific feature of
the logic.

The family information is stored implicitly in the SMT-LIB directory structure (all
benchmarks from the same family are in the same sub-directory). The difficulty and
category attributes are stored as special user-defined attributes in the benchmarks them-
selves. Section 3.4 describes how this information was usedduring the benchmark
selection process.

3.2 New Benchmarks for Existing Divisions

New benchmarks were obtained in every division except the QFUF division. The
new benchmarks came from a variety of sources, primarily verification applications.
Other benchmarks were crafted in various ways: either by hand, or from known hard
problems. Figure 2 lists the new benchmark sets collected for each existing division (a
benchmark set comes from a single source and contains one or more families), together
with the number of benchmarks in the set and the category of the benchmark set. For
comparison, the previous number of benchmarks (from 2005) is also given for each
division. The sum gives the total number of benchmarks for 2006. Note that in the
QF UFIDL division, one benchmark was deleted from the uclid benchmark set. This is
because it was simpler than the others–in fact it belonged tothe simpler QFIDL logic.
Rather than create a benchmark set containing a single benchmark in that division, we
opted to just remove the benchmark.

3.3 New Divisions

Four new benchmark divisions were added for SMT-COMP 2006: QF UFLIA, QF UFBV32,
AUFLIA, and AUFLIRA. As has been our custom, the added divisions were based on
available benchmarks and the expectation that more than onesolver would support each
new division. In fact, there were some additional benchmarks offered, in particular a
set in the AUFNIRA logic that includes some non-linear arithmetic, that we did not in-
clude because it seemed unlikely that more than one solver would support this division.
Figure 3 lists the new benchmark sets collected for these newdivisions together with
the number of benchmarks in the set and the category of the benchmark set.

6

Division Benchmark Set Number of Benchmarks Benchmark Category
QF AUFLIA check 2 check
QF AUFLIA ios 30 crafted
QF AUFLIA piVC 21 industrial
QF AUFLIA qlock2 52 industrial
QF AUFLIA storecomm 2030 crafted
QF AUFLIA storeinv 172 crafted
QF AUFLIA swap 1368 crafted
QF AUFLIA 2005 Benchmarks 54 check, industrial
QF AUFLIA Total 3729
QF IDL Averest 252 industrial
QF IDL cellar 14 industrial
QF IDL check 2 check
QF IDL job shop 120 crafted
QF IDL planning 45 industrial
QF IDL qlock 72 industrial
QF IDL queensbench 297 crafted
QF IDL 2005 Benchmarks 343 check, industrial, random, crafted
QF IDL Total 1145
QF LIA Averest 19 industrial
QF LIA check 3 check
QF LIA 2005 Benchmarks 182 check, industrial
QF LIA Total 204
QF LRA check 2 check
QF LRA clock synchro 36 industrial
QF LRA sc 144 industrial
QF LRA tta startup 72 industrial
QF LRA uart 73 industrial
QF LRA 2005 Benchmarks 174 industrial
QF LRA Total 501
QF RDL check 2 check
QF RDL skdmxa2 32 industrial
QF RDL 2005 Benchmarks 170 industrial, crafted
QF RDL Total 204
QF UF 2005 Benchmarks 152 crafted
QF UF Total 152
QF UFIDL check 2 check
QF UFIDL RDS 28 industrial
QF UFIDL uclid -1 industrial
QF UFIDL pete3 6 industrial
QF UFIDL UCLID-pred 79 industrial
QF UFIDL 2005 Benchmarks 170 check, industrial
QF UFIDL Total 399

All Existing Total 6334

Figure 2: New Benchmarks in Existing Divisions

7

Division Benchmark Set Number of Benchmarks Benchmark Category
AUFLIA Burns 14 industrial
AUFLIA check 1 check
AUFLIA misc 28 industrial, crafted
AUFLIA piVC 42 industrial
AUFLIA RicartAgrawala 14 industrial
AUFLIA simplify 833 industrial
AUFLIA Total 932
AUFLIRA misc 7 crafted
AUFLIRA nasa 26504 industrial
AUFLIRA Total 26511
QF UFBV32 bencha 343 industrial
QF UFBV32 crafted 22 crafted
QF UFBV32 egt 7882 industrial
QF UFBV32 Total 8247
QF UFLIA check 2 check
QF UFLIA wisas 108 industrial
QF UFLIA Total 110

All New Total 35800

Figure 3: New Benchmarks in New Divisions

3.4 Selection of Competition Benchmarks

For each division, the following algorithm was used to select benchmarks.

1. First, all benchmarks in thecheckcategory are automatically included.

2. The remaining benchmarks are put into a selection pool as follows: for each
family, if the family contains more than 200 benchmarks, then 200 randomly
selected benchmarks are put into the pool. Otherwise all of the benchmarks
from the family are put into the pool.

3. Slots are allocated for 100 benchmarks to be selected as follows: 85 slots are for
industrial benchmarks; 10 are for crafted; and 5 are for random. If there are not
enough crafted or random benchmarks, then more industrial slots are allocated.
If, on the other hand, there are not enough industrial benchmarks, then more
crafted slots are allocated (all divisions had sufficient numbers of either industrial
or crafted benchmarks).

4. In order to fill the allocated slots, the pool of benchmarkscreated in step 2 is
consulted and partitioned according to category (i.e. industrial, random, crafted).
Within each category, the benchmarks are further partitioned into four sub-categories:
easy-sat, easy-unsat, hard-sat, and hard-unsat. A benchmark is easy if it has dif-
ficulty 0, 1, or 2 (benchmarks with difficulty -1 are ignored) and hard if it has
difficulty 3, 4, or 5. A benchmark is “sat” or “unsat” based on itsstatusattribute.

8

An attempt is made to randomly fill the allocated slots for each category with
the same number of benchmarks from each sub-category (i.e. if there are 85
industrial slots, then there should be roughly 21 in each sub-category). If there
are not enough in a sub-category, then its allotment is divided among the other
sub-categories.

The main purpose of the algorithm above is to have a balanced and complete set of
benchmarks. The one built-in bias is towards industrial rather than crafted or random
benchmarks. This reflects a desire by the organizers and agreed upon by the SMT
community to emphasize problems that come from real applications.

It should be noted that when applying the above algorithm to select the competi-
tion benchmarks, we used a random seed obtained by computingthe sum of “magic
numbers” provided by the contestants. This random seed was fed into a script which
automatically ran the above algorithm. The script was made available on the SMT-
COMP website prior to the submission of the magic numbers. Inthis way, we hoped
to ensure that the benchmark selection process was as transparent as possible.

4 Participants

There were twelve entries in SMT-COMP 2006. This is, coincidentally, the same num-
ber as for SMT-COMP 2005, although only eight of these entrants also participated
in SMT-COMP 2005. Four tools from SMT-COMP 2005 did not run inSMT-COMP
2006 (Sammy, SBT, Simplics, and SVC), and four new tools ran in SMT-COMP 2006
that did not run in SMT-COMP 2005 (ExtSat, Jat, NuSMV, and STP). The following
gives brief descriptions of the SMT-COMP 2006 participants, drawn from their sys-
tem descriptions. For more information, including, in manycases, references to papers
with detailed descriptions of novel algorithms employed bythe solvers, the interested
reader is referred to the system descriptions, available onthe SMT-COMP web site.

Ario 1.2. Ario 1.2 was submitted by Hossein M. Sheini and Karem A. Sakallah from
the University of Michigan. Ario 1.2 is implemented in C++ and implements a hybrid
online/offline approach to combining theory solvers with a CNF SAT solver. Problem
divisions: QFUF, QF RDL, QF IDL, QF UFIDL, QF LRA, QF LIA, QF UFLIA.

Barcelogic 1.1. Barcelogic 1.1 was submitted by Miquel Bofill, Robert Nieuwenhuis,
Albert Oliveras, Enric Rodrı́guez-Carbonell, and Albert Rubio from the Technical Uni-
versity of Catalonia. Barcelogic 1.1 is a C++ implementation of the DPLL(T) frame-
work [6]. Problem divisions: QFUF, QF IDL, QF RDL, and QFUFIDL, QF AUFLIA.

CVC. CVC is a legacy system developed at Stanford University by Aaron Stump,
Clark Barrett, and David Dill, and submitted to SMT-COMP 2006 by Aaron Stump.
This version is essentially the same as the version from SMT-COMP 2005. Problem
divisions: QFLRA, QF UF, QF AUFLIA.

9

CVC3. CVC3 was submitted by Clark Barrett from New York University, with de-
velopment credits also going to Yeting Ge at New York University; Cesare Tinelli,
Alexander Fuchs, and George Hagan at University of Iowa; andthe implementors of
CVC Lite, a predecessor system. CVC3 is implemented in C++ and is based on Clark
Barrett’s framework for cooperating decision procedures.CVC3 competed in all prob-
lem divisions.

ExtSAT 1.1. ExtSat 1.1 was submitted by Paulo Matos of the Instituto Superior
Técnico, Portgual. ExtSat is implemented in C++, and combines a boolean enumera-
tor based on MiniSAT with arithmetic solvers. Problem divisions: QFRDL, QF IDL,
QF LRA, QF LIA.

HTP (Heuristic Theorem Prover). HTP was developed by Kenneth Roe. HTP im-
plements novel preprocessing algorithms before handing formulas off either Yices or
Barcelogic from SMT-COMP 2005, or MinSat. Problem divisions: QFUF, QF IDL,
QF RDL, QF LRA, QF LIA, QF UFLIA.

Jat Jat was submitted by Scott Cotton from Verimag, and developed by the submitter
under the supervision of Oded Maler. Jat is written entirelyin Java, and employs novel
techniques for exhaustive theory propagation for difference logic. Problem divisions:
QF RDL.

MathSAT 3.4. MathSAT 3.4 was submitted by Roberto Bruttomesso, Alessandro
Cimatti, Anders Franzen, Alberto Griggio, and Roberto Sebastiani from ITC-IRST and
Università di Trento, Italy. MathSAT is written in C++, andcombines a propositional
reasoner based on MiniSAT with theory solvers, using the Delayed Theory Combina-
tion scheme or Ackermann’s reduction. Problem divisions: QF UF, QF RDL, QF IDL,
QF UFIDL, QF LRA, QF LIA, QF UFLIA, QF UFBV32.

NuSMV. NuSMV was submitted by R. Bruttomesso, R. Cavada, A. Cimatti, A.
Franzen, S. Semprini, M. Roveri, and A. Tchaltsev, from ITC-IRST, Italy. NuSMV is
written in C, and uses a pre-processing step to reduce input problems in the QFUFBV32
division to problems that can be solved using routines from the NuSMV symbolic
model checker. Problem divisions: QFUFBV32.

Sateen. Sateen was submitted by Hyondeuk Kim, HoonSang Jin, and Fabio Somenzi
from the University of Colorado at Boulder. Sateen is written in C and combines All
SAT Enumeration with a layered theory solver. Problem divisions: QFIDL.

STP. STP was submitted by Vijay Ganesh and David Dill from Stanford University.
STP preprocess and then translates input formulas into purely propositional formulas,
which are then dispatched to MiniSAT. An abstraction-refinement technique is used for
handling array read expressions. Problem divisions: QFUFBV32.

10

Yices 1.0. Yices was submitted by Bruno Dutertre and Leonardo de Moura from SRI
International. Yices is implemented in C++, and features a novel architecture where a
SAT solver is integrated with a core theory solver, as well assatellite solvers. Yices
competed in all problem divisions.

5 Scripts and Execution

SMT-COMP used 19 identical machines at SRI International with 3.0Ghz Pentium 4
processor 2Mb of cache and 2Gb of RAM, running GNU/Linux version 2.6.14. Solvers
submitted in source code format were compiled using GCC version 4.0.2.

In order to ensure that no system received an advantage or disadvantage due to spe-
cific presentation of the benchmarks in the SMT-LIB format, abenchmark scrambler
was used. This tool renames all predicate and function symbols, removes comments,
and randomly reorders the arguments of AC operators. The scrambler is available for
download on the competition website.

A controller (load balancer) was used to distribute tasks between the many com-
puters used in the competition, and to consolidate the results produced by the solvers.
Each task is a small set of benchmarks that is executed by all solvers in the same ma-
chine. This approach had two advantages with respect to the one used in SMT-COMP
2005, where each solver was assigned to a different machine.First, it minimizes un-
fairness due to potential differences among the benchmarking machines. Second, it is
more effective in balancing the workload. In SMT-COMP 2005,machines executing
fast solvers remained idle for long periods of time.

The execution of each solver was monitored by a program calledTreeLimitedRun.
This program, developed for the CASC competition [10], watches the CPU usage of a
process and its subprocesses, and kills them if they exceed the defined limits for CPU
time (1200 seconds), or memory usage (1.5Gb). Theulimit command was not used
to enforce these limits because it does not take into consideration the time and memory
consumed by subprocesses. Although the physical amount of memory of each machine
is 2.0Gb, the limit 1.5Gb was used to minimize the number of page faults.

SMT-COMP results were stored in a textual database. From time to time, a script
used the textual database to update the competition websitewith partial results.

6 Results

The results for each division are summarized in the figures following the bibliogra-
phy. More detailed results are available on the SMT-COMP website,http://www.
smtcomp.org/2006/. The curves are used to show the behavior of the solvers
in each division, they show how many problems (in abscissa) were solved when time
(in ordinate) is increasing. Wrong answers and timeouts arenot considered in these
curves. The columnTimehas the accumulated time, in seconds, used by each solver.
This column does not include the time spent in instances where the solver produced
theunknownresult. A solver is considered to have produced theunknownresult when
it times out, crashes, or outputs a result different fromsat or unsat. The column

11

Unknowncontains the number ofunknownresults, and the columnWrongthe number
of wrong answers (due to unsoundness or incompleteness) produced by each solver.

7 Acknowledgements

SMT-COMP would not have been possible without the invaluable support, feedback,
and participation of the entire SMT community, with specialthanks to Cesare Tinelli
and Silvio Ranise, the leaders of the SMT-LIB initiative. The organizers would also
like to thank SRI International for use of the cluster on which the competition was run.
Thanks also to Thomas Ball and Robert Jones, the program chairs of CAV 2006, for
their support of SMT-COMP 2006 as a satellite event. Finally, the organizers wish
to acknowledge the support of the U.S. National Science Foundation, under contract
CNS-0551697, for SMT-COMP 2007 and (anticipated) 2008.

References

[1] M. Barnett, B.-Y. Chang, R. DeLine, B. Jacobs, and K. Leino. Boogie: A Modular
Reusable Verifier for Object-Oriented Programs. In F. de Boer, M. Bonsangue,
S. Graf, and W.-P. de Roever, editors,Fourth International Symposium on Formal
Methods for Components and Objects (FMCO’05), Post-Proceedings, 2006.

[2] C. Barrett, L. de Moura, and A. Stump. Design and Results of the 1st Satisfia-
bility Modulo Theories Competition (SMT-COMP 2005).Journal of Automated
Reasoning, 35(4):373–390, 2005.

[3] Clark Barrett, Yi Fang, Ben Goldberg, Ying Hu, Amir Pnueli, and Lenore Zuck.
TVOC: A translation validator for optimizing compilers. InKousha Etessami
and Sriram K. Rajamani, editors,Proceedings of the17th International Confer-
ence on Computer Aided Verification (CAV ’05), volume 3576 ofLecture Notes
in Computer Science, pages 291–295. Springer-Verlag, July 2005. Edinburgh,
Scotland.

[4] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded Model Checking Using
Satisfiability Solving.Formal Methods in System Design, 19(1), 2001.

[5] Satyaki Das and David L. Dill. Counter-example based predicate discovery in
predicate abstraction. In M. Aagaard and J. O’Leary, editors, 4th International
Conference on Formal Methods in Computer-Aided Design. Springer-Verlag,
2002.

[6] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and Ce-
sare Tinelli. DPLL(T): Fast decision procedures. InProceedings of the 16th In-
ternational Conference on Computer Aided Verification (CAV’04), volume 3114
of Lecture Notes in Computer Science, pages 175–188. Springer-Verlag, 2004.

12

[7] S. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT Techniques for Fast Predicate
Abstraction. In18th International Conference on Computer-Aided Verification,
pages 424–437. Springer-Verlag, 2006.

[8] S. Lerner, T. Millstein, and C. Chambers. AutomaticallyProving the Correctness
of Compiler Optimizations. In R. Gupta, editor,In ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2003. received best paper
award.

[9] S. McPeak and G. Necula. Data Structure Specifications via Local Equality Ax-
ioms. In K. Etessami and S. Rajamani, editors,17th International Conference on
Computer-Aided Verification, pages 476–490. Springer-Verlag, 2005.

[10] F.J. Pelletier, G. Sutcliffe, and C.B. Suttner. The Development of CASC. AI
Communications, 15(2-3):79–90, 2002.

[11] Silvio Ranise and Cesare Tinelli. The SMT-LIB standard, ver-
sion 1.1, 2005. Available from the ”Documents” section of
http://combination.cs.uiowa.edu/smtlib.

13

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 10 20 30 40 50 60 70 80 90 100

C
P

U
-T

im
e

ne
ed

ed
 (

s)

Number of Solved Benchmarks

Yices 1.0
Barcelogic 1.1

HTP patched (hors-concours)
Barcelogic 1.0 (2005 winner)

HTP
MathSAT 3.4

Ario 1.2
CVC3
CVC

Solver Score Time Unsat Sat Unknown Timeout Wrong
Yices 1.0 88 6937.1 76 12 0 12 0
Barcelogic 1.1 81 9035.2 69 12 0 19 0
HTP patched (hors-concours) 80 10104.3 68 12 2 18 0
Barcelogic 1.0 (2005 winner) 80 12050.5 68 12 0 20 0
HTP 69 5444.4 57 12 2 29 0
MathSAT 3.4 69 6216.8 58 11 0 31 0
Ario 1.2 66 7208.5 54 12 0 34 0
CVC3 47 3586.8 36 11 51 2 0
CVC 43 6805.2 32 11 14 43 0

Figure 4: Results of QFUF

14

 0

 2000

 4000

 6000

 8000

 10000

 12000

 20 40 60 80 100

C
P

U
-T

im
e

ne
ed

ed
 (

s)

Number of Solved Benchmarks

Yices 1.0
Barcelogic 1.1

Barcelogic 1.0 (2005 winner)
MathSAT 3.4

HTP patched (hors-concours)
Ario 1.2

HTP
CVC3

ExtSAT 1.1
Jat

Solver Score Time Unsat Sat Unknown Timeout Wrong
Yices 1.0 99 6761.8 76 23 0 3 0
Barcelogic 1.1 95 8332.3 72 23 0 7 0
Barcelogic 1.0 (2005 winner) 70 10624.1 56 14 2 30 0
MathSAT 3.4 53 3451.2 49 4 0 49 0
HTP patched (hors-concours) 50 6321.1 53 5 35 8 1
Ario 1.2 46 6164 43 3 2 54 0
HTP 35 2489.5 40 3 35 23 1
CVC3 27 800.8 26 1 75 0 0
ExtSAT 1.1 19 1502.2 19 0 2 81 0
Jat -466 28.9 2 4 14 23 59

Figure 5: Results of QFRDL

15

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 20 40 60 80 100

C
P

U
-T

im
e

ne
ed

ed
 (

s)

Number of Solved Benchmarks

Yices 1.0
Barcelogic 1.1
MathSAT 3.4

Sateen
Barcelogic 1.0 (2005 winner)

HTP patched (hors-concours)
HTP

Ario 1.2
CVC3

ExtSAT 1.1

Solver Score Time Unsat Sat Unknown Timeout Wrong
Yices 1.0 97 1841.1 45 52 0 6 0
Barcelogic 1.1 96 2033.2 44 52 0 7 0
MathSAT 3.4 95 2530.9 44 51 0 8 0
Sateen 90 2629.9 42 48 0 13 0
Barcelogic 1.0 (2005 winner) 89 3716 40 49 2 12 0
HTP patched (hors-concours) 83 3770 40 43 13 7 0
HTP 80 3099.9 39 41 13 10 0
Ario 1.2 74 3202.8 29 45 9 20 0
CVC3 70 509.9 32 38 31 2 0
ExtSAT 1.1 6 1148.2 30 0 2 68 3

Figure 6: Results of QFIDL

16

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 20 40 60 80 100

C
P

U
-T

im
e

ne
ed

ed
 (

s)

Number of Solved Benchmarks

Yices 1.0
Barcelogic 1.1
MathSAT 3.4

Ario 1.2
CVC3

Barcelogic 1.0 (2005 winner)

Solver Score Time Unsat Sat Unknown Timeout Wrong
Yices 1.0 102 522.3 67 35 0 0 0
Barcelogic 1.1 102 2524 67 35 0 0 0
MathSAT 3.4 100 8905.8 65 35 0 2 0
Ario 1.2 97 991.9 62 35 2 3 0
CVC3 58 872.2 24 34 44 0 0
Barcelogic 1.0 (2005 winner) 54 506.6 59 35 2 1 5

Figure 7: Results of QFUFIDL

17

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 20 40 60 80 100

C
P

U
-T

im
e

ne
ed

ed
 (

s)

Number of Solved Benchmarks

Yices 1.0
Simplics (2005 winner)

HTP
MathSAT 3.4

CVC
CVC3

ExtSAT 1.1

Solver Score Time Unsat Sat Unknown Timeout Wrong
Yices 1.0 101 2475.5 50 51 0 1 0
Simplics (2005 winner) 84 5852.4 38 46 0 18 0
HTP 82 13034.5 38 44 1 19 0
MathSAT 3.4 48 5290.1 29 19 0 54 0
CVC 39 2122.3 22 17 54 9 0
CVC3 29 264.9 21 8 73 0 0
ExtSAT 1.1 2 0.9 2 0 67 33 0

Figure 8: Results of QFLRA

18

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 20 40 60 80 100

C
P

U
-T

im
e

ne
ed

ed
 (

s)

Number of Solved Benchmarks

Yices 1.0
MathSAT 3.4

Yices 0.1 (2005 winner)
Ario 1.2

HTP
CVC3

ExtSAT 1.1

Solver Score Time Unsat Sat Unknown Timeout Wrong
Yices 1.0 92 214.4 48 44 0 13 0
MathSAT 3.4 85 2080.8 46 39 0 20 0
Yices 0.1 (2005 winner) 77 3291.1 45 40 0 19 1
Ario 1.2 53 2888.3 29 24 22 30 0
HTP 53 3220.2 44 33 7 18 3
CVC3 43 703.7 33 26 43 1 2
ExtSAT 1.1 -34 2.5 6 0 58 36 5

Figure 9: Results of QFLIA

19

 0

 2000

 4000

 6000

 8000

 10000

 12000

 20 40 60 80 100

C
P

U
-T

im
e

ne
ed

ed
 (

s)

Number of Solved Benchmarks

Yices 1.0
MathSAT 3.4

Ario 1.2
HTP

CVC3

Solver Score Time Unsat Sat Unknown Timeout Wrong
Yices 1.0 102 159.8 27 75 0 0 0
MathSAT 3.4 96 4185.1 22 74 0 6 0
Ario 1.2 95 4284.7 22 73 1 6 0
HTP 71 10400.6 21 50 0 31 0
CVC3 63 2197 18 45 39 0 0

Figure 10: Results of QFUFLIA

20

 0

 50

 100

 150

 200

 250

 300

 350

 10 20 30 40 50 60 70 80 90 100

C
P

U
-T

im
e

ne
ed

ed
 (

s)

Number of Solved Benchmarks

STP
Yices 1.0

NuSMV
MathSAT 3.4

CVC3
Bat (hors-concours)

Solver Score Time Unsat Sat Unknown Timeout Wrong
STP 100 0 51 49 0 0 0
Yices 1.0 100 0 51 49 0 0 0
NuSMV 100 13.7 51 49 0 0 0
MathSAT 3.4 100 322.4 51 49 0 0 0
CVC3 98 78.7 49 49 2 0 0
Bat (hors-concours) 82 228.9 50 48 0 0 2

Figure 11: Results of QFUFBV[32]

21

 0

 500

 1000

 1500

 2000

 2500

 20 40 60 80 100

C
P

U
-T

im
e

ne
ed

ed
 (

s)

Number of Solved Benchmarks

Yices 1.0
Barcelogic 1.1

Yices 0.1 (2005 winner)
CVC3
CVC

Solver Score Time Unsat Sat Unknown Timeout Wrong
Yices 1.0 106 1263.8 50 56 0 0 0
Barcelogic 1.1 94 2308.7 48 54 0 3 1
Yices 0.1 (2005 winner) 93 692.6 45 56 0 4 1
CVC3 60 802.9 36 24 46 0 0
CVC 36 1354.6 36 0 51 19 0

Figure 12: Results of QFAUFLIA

22

 0

 50

 100

 150

 200

 250

 300

 20 40 60 80 100

C
P

U
-T

im
e

ne
ed

ed
 (

s)

Number of Solved Benchmarks

Yices 1.0
CVC3

Solver Score Time Unsat Sat Unknown Timeout Wrong
Yices 1.0 96 104.7 96 0 2 3 0
CVC3 50 296.3 50 0 51 0 0

Figure 13: Results of AUFLIA

23

-1

-0.5

 0

 0.5

 1

 20 40 60 80 100

C
P

U
-T

im
e

ne
ed

ed
 (

s)

Number of Solved Benchmarks

CVC3
Yices 1.0

Solver Score Time Unsat Sat Unknown Timeout Wrong
CVC3 96 0 96 0 11 0 0
Yices 1.0 96 0 96 0 7 4 0

Figure 14: Results of AUFLIRA

24

