
Design and Results of the 1st Satisfiability Modulo Theories
Competition (SMT-COMP 2005)

Clark Barrett
Department of Computer Science
New York University

Leonardo de Moura
Computer Science Laboratory
SRI International

Aaron Stump
Department of Computer Science and Engineering
Washington University in St. Louis

Abstract. The Satisfiability Modulo Theories Competition (SMT-COMP) is intended to spark
further advances in the decision procedures field, especially for applications in hardware and
software verification. Public competitions are a well-known means of stimulating advance-
ment in automated reasoning. Evaluation of SMT solvers entered in SMT-COMP took place
while CAV 2005 was meeting. Twelve solvers were entered, 1352 benchmarks were collected
in seven different divisions.

Keywords: satisfiability modulo theories, decision procedures, competition

1. Introduction

Decision procedures for checking satisfiability of logical formulas are crucial
for many verification applications (e.g., [35, 32, 19, 13, 29, 16, 12, 11]).
Of particular recent interest are solvers for Satisfiability Modulo Theories
(SMT). SMT solvers decide logical satisfiability (or dually, validity) of for-
mulas in classical multi-sorted first-order logic with equality, with respect
to a background theory. The success of SMT for verification applications
is largely due to the suitability of supported background theories for ex-
pressing verification conditions. These theories include: the empty theory,
which gives rise to the so-called logic of equality and uninterpreted func-
tions (EUF) [18, 25]; real or integer arithmetic; and theories of program or
hardware structures such as bitvectors [22] and arrays [3, 33]. It is usually
necessary to adopt some syntactic restriction on the input formulas to be
checked in order to ensure efficient decidability. For example, formulas are
often required to be quantifier-free. For arithmetic, more efficient algorithms
are known for difference formulas, where atomic formulas consist of differ-
ence constraints of the form x − y ≤ c, with x and y variables and c a
numeric constant [28, 2]. Many solvers further increase expressivity by taking

c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

paper.tex; 12/10/2005; 17:36; p.1

2 Barrett, de Moura, Stump

the background theory to be a combination of several individual theories,
and some solvers include limited support for quantified formulas, further
increasing expressive power.

The Satisfiability Modulo Theories Competition (SMT-COMP) is intended
to spark further advances in the SMT field, especially for applications in veri-
fication. Public competitions are a well-known means of stimulating advance-
ment in automated reasoning. Examples include the CASC Competition [24]
for first-order reasoning, the SAT Competition for propositional reasoning,
and the Termination Competition for checking termination of term rewrit-
ing systems [24, 10]. Participants report that competitions fuel significant
improvements in tool capabilities from year to year.

The idea of holding SMT-COMP came out of discussions of the SMT-
LIB initiative at the 2nd International Workshop on Pragmatics of Decision
Procedures in Automated Reasoning (PDPAR) at IJCAR 2004. SMT-LIB
is an initiative of the SMT community to build a library of SMT bench-
marks in a proposed standard format. SMT-COMP aims to serve this goal
by contributing collected benchmark formulas used for the competition to the
library, and by providing an incentive for implementors of SMT solvers to
support the SMT-LIB format. See http://combination.cs.uiowa.
edu/smtlib/ for more information on SMT-LIB.

The 1st SMT-COMP was held July 6 - 8, 2005, as a satellite event of the
17th International Conference on Computer-Aided Verification (CAV). The
primary goals of SMT-COMP at CAV 2005 were:

− To collect benchmarks in a common format, namely the SMT-LIB for-
mat [26].

− To jump-start definition of SMT theories, again using the proposed SMT-
LIB format.

− To spur development of SMT solver implementations, in particular, sup-
port for SMT-LIB format.

− To connect implementors of SMT solvers with potential users in the
verification community.

Evaluation of SMT solvers entered in SMT-COMP took place while CAV
2005 was meeting, in the style of CASC. Intermediate results were posted
periodically on the SMT-COMP website, http://www.csl.sri.com/
users/demoura/smt-comp/, as SMT-COMP proceeded. Final results
were announced in a special session on the last day of CAV. The CAV orga-
nizers arranged for SMT-COMP to have exclusive access to a group of GNU
Linux machines (detailed in Section 5 below), which were used to run the
competition.

paper.tex; 12/10/2005; 17:36; p.2

SMT-COMP 2005 3

Even before evaluation began, SMT-COMP was already a success. Six
months before the competition, there were no solvers parsing SMT-LIB for-
mat, and there were no benchmarks collected. 1352 benchmarks in SMT-LIB
format were collected for SMT-COMP, in seven different divisions (called
logics in SMT-LIB terminology). Twelve solvers were entered supporting the
SMT-LIB format. Comments from some of the participants, particularly of
less mature systems, suggest that the competition was a significant motivator
to make progress on their implementations.

The rest of this paper describes the rules and competition format for SMT-
COMP, which were designed by the authors (Section 2); the benchmarks col-
lected (Section 3); the scripts and actual execution of the solvers (Section 5);
and of course, the final results (Section 6).

2. Rules and Competition Format

The rules and competition format for SMT-COMP draw substantially on ideas
from the design and organization of CASC.

2.1. ENTRANTS

Participants were allowed to enter SMT solvers into SMT-COMP in either
source code or binary format. The organizers reserved the right to submit
their own systems, and indeed did so in the form of CVC, CVC Lite, and
Yices; as well as systems SVC and Simplics, of which organizers were co-
implementors. For solvers submitted in source code form, the organizers stated
they would take reasonable precautions to ensure that the source code was not
viewed by anyone other than the organizers. No solver was entered, however,
where concerns over intellectual property were an issue. Participants were
encouraged to be physically present at SMT-COMP, but were not required to
be so to participate or win. The organizers committed to making reasonable
efforts to install each system, but reserved the right to reject an entrant if its
installation process was overly difficult. In several cases, solvers as submitted
did not quite conform to some of the requirements below. Fortunately, with
some extra effort by the submitters and the organizers, these conformance
problems were repaired before the competition began. Finally, each entrant to
SMT-COMP was required to include a short (1-2 pages) system description
which can be found on the SMT-COMP web page.

2.2. SOLVER INTERFACE

Each SMT-COMP entrant, when executed, was required to read a single
SMT-LIB benchmark file presented on its standard input channel. These bench-
mark files were given in the concrete syntax of the SMT-LIB format, version

paper.tex; 12/10/2005; 17:36; p.3

4 Barrett, de Moura, Stump

(benchmark int_incompleteness2.smt
:source { Leonardo de Moura }
:notes "Check completeness of the integer DP."
:status unsat
:logic QF_LIA
:extrafuns ((x1 Int) (x2 Int) (x3 Int) (x4 Int))
:formula
(and (> (+ x1 x2) 0)

(< (+ x1 x2) 3)
(= x1 (* 3 x3))
(= x2 (* 6 x4))))

Figure 1. Example Benchmark in SMT-LIB Format

1.1 [26]. An example SMT-LIB benchmark is shown in Figure 1. The format
requires the name of the SMT-LIB logic (a restriction on the set of formulas
considered, together with a background theory) for the formula. It contains
the status of the formula; for the competition, the status was, of course, always
listed as “unknown”. Extra function and predicate symbols beyond those
provided by the logic can be declared. A single formula is then given, in a
LISP-like prefix syntax. In standard mathematical notation, the formula in
the Figure is:

(x1 + x2 > 0) ∧ (x1 + x2 < 3) ∧ (x1 = 3 ∗ x3) ∧ (x2 = 6 ∗ x4)

The SMT-LIB format also includes a simple sort system. SMT-COMP
entrants were allowed to operate under the assumption that they would be
given only well-sorted formulas. For a given input formula, each SMT-COMP
entrant was then expected to report on its standard output channel whether the
formula is satisfiable or unsatisfiable. An entrant could also report “unknown”
to indicate that it could not determine satisfiability of the formula. Aborts,
timeouts, other output, and exhaustion of memory were all treated as if the
tool had reported “unknown”.

2.3. JUDGING AND SCORING

Scoring was done using the system of points and penalties in Figure 2. Un-
sound or incomplete solvers were penalized, but not disqualified. The mo-
tivation for this requires some explanation. First, benchmarks in SMT-LIB
format did not exist prior to the competition. The authors were able to make
some benchmarks available in early April, 2005, but many more were being
collected (and made available) into June. Hence, implementors did not have
a long time to stress test their tools on the competition’s benchmarks. Fur-
thermore, it is relatively difficult to achieve a mature, bug-free SMT solver

paper.tex; 12/10/2005; 17:36; p.4

SMT-COMP 2005 5

Reported Points for correct response Penalty for incorrect response

unsat +1 -8

sat +1 -4

unknown 0 0

timeout 0 0

Figure 2. Points and Penalties

implementation. This is due to the fact that the reasoning required is more
specialized (and thus, more logically elaborate) than for more universal auto-
mated reasoning domains (e.g., first-order theorem proving). Those domains
can certainly have implementations that are at least as complex, but their com-
plexity is due to sophisticated implementation of relatively simple inference
rules. Finally, smaller penalties were assessed for incompleteness than for
unsoundness, due to the belief that achieving completeness is more difficult
for SMT solving than soundness. These rules were not uncontroversial, and
they are likely to be modified for SMT-COMP 2006. But indeed, the orga-
nizers concerns proved to be justified: fully a third of the competition’s field
reported a wrong answer on at least one benchmark.

The organizers took responsibility for determining in advance whether for-
mulas are satisfiable or unsatisfiable. This was done either using knowledge
about how the benchmarks were generated, or by running several reasonably
trusted existing solvers (with no time or memory limits) to get an answer.
Although this is not as strong a guarantee as one might like, it appears no
further validation mechanism was necessary: mature solvers all agreed on
the competition benchmarks, and no incorrect classifications were reported
before or after the competition. In the event of a tie in total number of points,
the solver with the lower total CPU time on formulas for which it did not
report “unknown” was considered the winner.

2.4. PROBLEM DIVISIONS

Definitions of the following SMT-LIB logics and their corresponding theories
were made publicly available in advance of the competition on the SMT-
LIB web page. The prefix “QF ” below means the formulas in the logic are
quantifier-free.

− QF UF: uninterpreted functions

− QF RDL: real difference logic

paper.tex; 12/10/2005; 17:36; p.5

6 Barrett, de Moura, Stump

− QF IDL: integer difference logic

− QF UFIDL: uninterpreted functions and integer difference logic.

− QF LRA: linear real arithmetic

− QF LIA: linear integer arithmetic

− QF AUFLIA: arrays, uninterpreted functions and linear integer arith-
metic.

3. Benchmarks

3.1. COLLECTING BENCHMARKS

One of the primary challenges for the first SMT-COMP was the collection of
benchmarks in the SMT-LIB format. After the format had stabilized, a call for
benchmarks was sent to the SMT community. The response was encouraging,
but none of the benchmarks initially received were in the SMT-LIB format.
Fortunately, many groups had benchmarks in CVC format [9]. Because its ar-
chitecture can easily accommodate new input and output languages, the CVC
Lite [7] system was chosen as a platform to support translation from CVC
format to SMT-LIB format. This turned out to be fairly straightforward. A
more challenging task was to automatically identify which division a bench-
mark belongs to. CVC Lite was instrumented to accomplish this task as well.
Arithmetic posed a particular challenge because CVC Lite had to identify
not just whether arithmetic symbols were used, but whether the use fell into
the difference logic category or the more general linear arithmetic category.
Most of the benchmarks collected for the first SMT-COMP were translated
using the CVC Lite translator. The rest were translated and provided by Albert
Oliveras. Each benchmark contains an attribute indicating its source. Most are
from real applications. The benchmarks can be found on the SMT-LIB and
SMT-COMP web pages.

In order to verify the syntactic and type correctness of the translated bench-
marks, a separate parser and syntax checker was written in OCaml. The
syntax checker checked that each benchmark was well-formed and well-
typed. It also parsed the theory and logic SMT-LIB files and checked that
the sorts and symbols used in the benchmarks were defined there. Finally, the
CVC Lite translator, which can also accept input in SMT-LIB format, was
re-run on each generated SMT-LIB benchmark to check that reprocessing it
would return the same (SMT-LIB) benchmark. This turned up several subtle
problems in the benchmark suite.

paper.tex; 12/10/2005; 17:36; p.6

SMT-COMP 2005 7

Both the CVC Lite translator and the OCaml syntax checker were made
available on the SMT-COMP web page. The strategy of careful translation
and checking of the benchmarks paid off as there were no problems with
benchmark syntax during the competition. There were some complaints that
the benchmarks were not in their most natural representation, but as far as
known, the syntax and categorization was correct in all instances. The excel-
lent work done by Cesare Tinelli and Silvio Ranise to define an expressive
yet precise format for SMT-LIB was also very conducive to a clean set of
benchmarks.

3.2. SELECTION OF COMPETITION BENCHMARKS

There was not enough time during the competition to run all the solvers on
all the benchmarks. This was not necessarily desirable anyway because using
all the benchmarks in a division might result in a suboptimal distribution in
terms of satisfiable versus unsatisfiable and difficult versus easy.

It was decided that the competition benchmarks would consist of 50 bench-
marks from each division. The criteria for selection were as follows. There
should be a spectrum of difficulty ranging from easy to difficult. As much as
possible, each benchmark source should be equally represented. Since most
of the benchmarks collected are unsatisfiable, it was not possible to put an
equal number of satisfiable and unsatisfiable benchmarks in each division,
subject to the other constraints. Each division had approximately 42 unsat-
isfiable benchmarks and 8 satisfiable benchmarks in each division. Together
with the scoring system, this distribution at least ensured that there was no
expected benefit to guessing: with 8 satisfiable benchmarks and a score of -8
for each incorrect answer on those benchmarks, guessing unsatisfiable would
be expected to result in a negative score. Nevertheless, if there were any
solvers that were much stronger on satisfiable than unsatisfiable benchmarks,
they were at a significant disadvantage with this distribution. Collecting more
satisfiable benchmarks is an important priority for next year’s competition.

The benchmark selection strategy worked fairly well, but could be im-
proved in the future. The fact that there was a wide distribution of scores and
no solver was able to solve every benchmark in any division shows that there
was a reasonable diversity of difficulties. However, some solvers got near-
perfect scores in some divisions, indicating that more difficult benchmarks
will be needed in the future. Adopting a rating system such as that used by
CASC or the SAT competition, where problems are deemed harder if fewer
systems can solve them, would help improve the selection of benchmarks.

The strategy for mixing satisfiable and unsatisfiable benchmarks worked
well except in the QF UFIDL division where only two satisfiable benchmarks
were available. As a result, a tool which guessed “unsatisfiable” for every

paper.tex; 12/10/2005; 17:36; p.7

8 Barrett, de Moura, Stump

benchmark in this division would have placed third. Indeed, one tool which
answered incorrectly on both of the satisfiable benchmarks still did quite well.

For divisions based on the theory of integers, it was also included at least
one hand-crafted benchmark which was unsatisfiable over the integers but
satisfiable over the reals. The rationale for this was that many benchmarks are
equisatisfiable over the reals and the integers, but integer reasoning is much
more challenging. The idea was to make sure that some effort was made to test
this integer reasoning. It is significant to note that this “integer completeness”
benchmark did trip up one solver in the QF LIA division. More than anything,
this reveals the need for better benchmarks for exercising integer reasoning.
In the future, it would be preferable to have more realistic benchmarks for
debugging integer reasoning and for differentiating the ability of solvers to
handle integers versus reals.

4. Participants

There were twelve entries in the inaugural SMT-COMP. Here, a brief descrip-
tion of each of these systems is provided.

ARIO. ARIO was submitted by Hossein M. Sheini and Karem A. Sakallah
from the University of Michigan. ARIO is implemented in C++ and combines
an advanced Boolean SAT solver with special-purpose modules for reason-
ing about arithmetic. Ackermann’s method is used to eliminate uninterpreted
function symbols. ARIO competed in every division except for QF AUFLIA.
More information can be found in [31, 30] and at:

http://www.eecs.umich.edu/˜ario.
BarcelogicTools. BarcelogicTools was submitted by Robert Nieuwenhuis

and Albert Oliveras from the Technical University of Catalonia, Barcelona.
BarcelogicTools is a C implementation of SMT for uninterpreted functions
and difference logic based on the DPLL(T) framework for SMT [17]. Barce-
logicTools uses heuristics to determine whether to use Ackermann’s method
or congruence closure for reasoning about uninterpreted functions. Barcelog-
icTools competed in the following divisions: QF UF, QF IDL, QF RDL, and
QF UFIDL. More information can be found in [23] and at:

http://www.lsi.upc.edu/˜oliveras/bclt-main.html.
CVC. CVC [34] is a legacy system developed at Stanford University by

Aaron Stump, Clark Barrett, and David Dill. An updated version capable
of parsing SMT-LIB format was submitted by Aaron Stump. CVC is im-
plemented in C++ and implements a general framework for combining first
order theories based on the Nelson-Oppen method [4]. CVC uses the Chaff
SAT solver for Boolean reasoning [5]. CVC competed in all divisions. More
information can be found at:

http://cl.cse.wustl.edu/CVC/.

paper.tex; 12/10/2005; 17:36; p.8

SMT-COMP 2005 9

CVC Lite. CVC Lite [7] is a new implementation of CVC developed
primarily by Clark Barrett at New York University and Sergey Berezin at
Stanford University. CVC Lite is implemented in C++ and is based on the
framework for cooperating decision procedures found in Clark Barrett’s PhD
thesis [6]. CVC Lite has a custom SAT solver and is capable of producing
independently-checkable proofs for valid queries. CVC Lite competed in all
divisions. More information can be found at:

http://verify.stanford.edu/CVCL/.
HTP (Heuristic Theorem Prover). HTP was developed by Kenneth Roe.

It is based on similar systems like SVC and CVC but incorporates new deci-
sion heuristics. HTP competed in all divisions.

MathSAT. A version of MathSAT 3 capable of parsing SMT-LIB was con-
tributed by the MathSAT team (see http://mathsat.itc.it). Math-
SAT uses the MiniSAT solver for Boolean reasoning [14]. Uninterpreted func-
tions are handled by either the Ackermann reduction or congruence closure.
Support for arithmetic is layered with faster, less general solvers run first, fol-
lowed by slower, more complete solvers. MathSAT competed in all divisions
except for QF AUFLIA. More information can be found in [21] and at:

http://mathsat.itc.it/.
Sammy. Sammy was submitted by Michael DeCoster, George Hagen,

Cesare Tinelli, and Hantao Zhang from the University of Iowa. Sammy is
written in OCaml and C and is based on the DPLL(T) framework for SMT
[17]. Sammy uses a tool derived from SATO [36] for propositional reasoning
and CVC Lite [7] for theory reasoning. Sammy competed in all divisions.
More information can be found at:

http://goedel.cs.uiowa.edu/Sammy/.
Sateen. Sateen was submitted by Hyondeuk Kim, HoonSang Jin, and

Fabio Somenzi from the University of Colorado at Boulder. Sateen is written
in C and combines efficient Boolean reasoning with a layered approach to
arithmetic. Sateen competed only in the division QF IDL.

SBT. SBT (SatBox with Theories) was submitted by Hantao Zhang, Haiou
Shen, and John Wheeler from the University of Iowa. SBT is written in C
and is built on top of the SatBox toolbox for propositional reasoning (see
http://www.cs.uiowa.edu/˜hzhang/satbox/). It also incorpo-
rates some code from Albert Oliveras (one of the authors of the Barcelogic-
Tools system). SBT competed in the following divisions: QF UF, QF IDL,
QF UFIDL, QF LIA.

Simplics. Simplics was submitted by Bruno Dutertre and Leonardo de
Moura from the Computer Science Laboratory at SRI International. Simplics
is a recent successor to ICS [15], written mostly in OCaml. Simplics uses a
core real-linear arithmetic solver based on an enhanced version of the sim-
plex algorithm [27]. Simplics competed in the following divisions: QF RDL,

paper.tex; 12/10/2005; 17:36; p.9

10 Barrett, de Moura, Stump

QF LRA. More information can be found at:
http://fm.csl.sri.com/simplics/.

SVC. SVC [8] is a legacy system developed at Stanford University by
Clark Barrett, Jeremy Levitt, and David Dill. An updated version capable
of parsing SMT-LIB format was submitted by Clark Barrett. SVC is imple-
mented in C++ and implements a framework for combining decision pro-
cedures described in Jeremy Levitt’s PhD thesis [20]. SVC competed in all
divisions. More information can be found at:

http://verify.stanford.edu/SVC/.
Yices. Yices was submitted by Leonardo de Moura from the Computer

Science Laboratory at SRI International. Yices is implemented in C++ and is
based on the Nelson-Oppen method for combining decision procedures. Yices
can produce proof objects for valid queries. Yices competed in all divisions.
More information can be found at:

http://fm.csl.sri.com/yices/.

5. Scripts and Execution

SMT-COMP used 14 identical machines with 2.6Ghz Pentium 4 processors,
512Kb of cache and 512Mb of RAM, running GNU/Linux version 2.4.20.
Solvers submitted in source code format were compiled using GCC version
3.2.2.

The program TreeLimitedRun, developed for the CASC competition,
was used to monitor the execution of each solver. It watches the CPU usage
of a process and its subprocesses, and kills them if they exceed the defined
limits for CPU time (600 seconds), wall clock time (800 seconds), or memory
usage (450Mb). The ulimit command was not used to enforce these limits
because it does not take in consideration the time and memory consumed
by subprocesses. The difference between CPU time and wall clock time was
motivated by the fact that, despite our best efforts, the machines generously
provided by University of Edinburgh Department of Informatics, but outside
our total control, had some other processes running on the background. It was
observed a difference of up to 20% between the actual CPU time and wall
clock time reported for solving a formula. Although the physical amount of
memory of each machine is 512Mb, the limit 450Mb was used to minimize
the number of page faults.

Each solver was assigned to a different machine. A controller program
was responsible for executing the solver on all formulas in a given division.
The controller used TreeLimitedRun to monitor the execution, and the
results were stored in a local log file and sent by email to a special account
at SRI. At SRI, procmail was configured to filter the messages containing
SMT-COMP results, and store them in a textual database. From time to time,

paper.tex; 12/10/2005; 17:36; p.10

SMT-COMP 2005 11

a script used the textual database to update on the fly the competition website
with partial results. The local log file had two purposes. First, it was a backup
for SMT-COMP results, just in case an email message with results was lost or
corrupted. Second, and more importantly, it allowed the execution of a solver
in a given division to be resumed when a machine crashed or was accidentally
rebooted. This was useful as several crashes occurred.

Several solvers did not conform with the output format specified by the
competition. These solvers basically were displaying extra information in the
standard output besides sat, unsat, and unknown. Therefore, a wrapper
script was used to execute each solver. This script filtered the standard output,
and redirected the standard error to /dev/null.

6. Results

Figure 3 contains the number of problems in each division, the total number
of solved problems by sound solvers, and the maximum number of solved
problems by a single sound solver. The results for each division are summa-
rized in Figures 4, 5, 6, 7, 8, 9, and 10. The first-place tools are Barcelogic
Tools, Simplics, and Yices. Other tools placing second are CVC and Math-
SAT. Other tools placing third are Ario and CVC Lite. More detailed results
are available on the SMT-COMP web site. The curves are used to show the
behavior of the solvers in each division; they show how many problems (in
abscissa) were solved when time (in ordinate) is increasing. Wrong answers
and timeouts are not shown in these curves. In the tables, the column Time has
the accumulated time, in seconds, used by each solver. This column does not
include the time spent in problems where the solver produced the unknown
result. The column Unknown contains the number of unknown results, and
the column Wrong the number of wrong answers, due to unsoundness and
incompleteness produced by each solver.

7. Observations on the State of the Art

The results described in Section 6 measure mainly implementations of SMT
solvers. Nevertheless, some general observations are formulated from these
results and system descriptions submitted by the participants, which should
be helpful in studying and improving SMT solvers.

Tightly integrated SAT solvers. Most participants used the lazy integra-
tion approach [5] where a SAT solver is combined with a decision procedure
for some theory T (DPT). Modern SAT solving techniques must be used in
the implementation of a competitive SMT solver, but it does not appear to be
essential to incorporate a true state of the art (SOTA) SAT solver, since this is

paper.tex; 12/10/2005; 17:36; p.11

12 Barrett, de Moura, Stump

Division Num. of problems Solved Max. by a single solver

QF UF 50 40 39

QF IDL 51 49 47

QF RDL 50 42 41

QF UFIDL 49 46 45

QF LIA 54 45 41

QF LRA 50 49 49

QF AUFLIA 52 50 49

Figure 3. Number of solved problems in each division

not the case for the best performing solvers. It seems is more important to use
a tightly integrated SAT solver than a loosely integrated SOTA SAT solver.

Eager theory notification. In the lazy integration approach, a solver is
said to implement lazy theory notification when the decision procedure DPT is
only notified after the SAT solver produces a complete boolean assignment
for the input formula. In contrast, an eager notification [5] policy would no-
tify DPT immediately of every decision made by the SAT solver. All best
performing solvers used eager theory notification.

Theory propagation. It is said a solver implements theory propagation
when it detects literals of the input formula that are consequences of the
partial model that is being explored. Suppose a hypothetical problem which
contains the atoms {x = y, y = z, x = z}, and during the search the atoms
x = y and y = z are assigned to true, then the atom x = z is a consequence
of this partial assignment, and can be assigned to true by theory propagation
(transitivity). All best performing solvers implemented some form of theory
propagation.

Minimizing “explanations” of conflicts. In the lazy integration approach,
when a decision procedure for some theory T detects a conflict, it must pro-
vide an “explanation”, that is, an inconsistent subset of the asserted literals
in the branch being explored. The “explanation” is used to build a (learned)
clause that will prevent the conflict from occurring again. The set of all literals
asserted in the current branch is a valid but imprecise explanation. The main
difficulty with this naı̈ve approach is that the clauses added can be highly
redundant. All best performing solvers used techniques to minimize the size
of explanations. The main idea is to keep track of which facts were used to
derive an inconsistency.

Difference logic. For arithmetic, more efficient algorithms are known for
difference formulas. The SMT-COMP results provide empirical evidence that

paper.tex; 12/10/2005; 17:36; p.12

SMT-COMP 2005 13

general purpose linear arithmetic procedures are not competitive in this frag-
ment. Simplex and Fourier-Motzkin are examples of general purpose linear
arithmetic procedures. All the best performing solvers in the difference logic
divisions (QF RDL, QF IDL, and QF UFIDL) used specialized algorithms
and/or data-structures for this fragment.

Ackermann’s reduction. Ackermann’s reduction [1] is a well known tech-
nique used to eliminate uninterpreted function symbols. This approach is
generally considered inefficient in practice. Surprisingly, three good perform-
ing solvers (Ario, BarcelogicTools, and MathSat) made use of this technique,
at least in some special situations.

Producing proofs and models. In recognition of the importance of ex-
porting the results of SMT solvers for the benefit of systems such as proof
assistants or applications such as proof-carrying code, SMT-COMP tried to
stimulate entrants to produce suitable evidence for the results they report.
Unfortunately, few participants were capable of producing proofs and models.

8. SMT-COMP 2006

SMT-COMP 2006 will be held as a satellite event of CAV 2006 as part of the
Federated Logic Conference (FLoC) 2006. The intention is for SMT-COMP
2006 to continue its work of encouraging adoption of the SMT-LIB format
and the collection of benchmarks. Several specific new goals have also been
proposed:

− New theories. In his invited talk at the 3rd International Workshop on
Pragmatics of Decision Procedures in Automated Reasoning (PDPAR
2005), Eli Singerman of Intel called for SMT solvers to add support for
logics like the combination of EUF and fixed-width bitvectors. Spec-
ifying this and related logics with bitvectors, and collecting suitable
benchmarks in SMT-LIB format, is an important goal for SMT-COMP
2006.

− More exchange among implementors. One minor disappointment of
the first SMT-COMP (almost lost in the very positive overall response
to the competition) was that not enough discussions on technical and
engineering matters among SMT solver implementors seemed to take
place. To improve this, SMT-COMP 2006 participants will be invited
to give short presentations on their solvers, followed by discussion, in
a short FLoC workshop session. The intention is for this addition to
improve on SMT-COMP 2005 by providing a formal mechanism for
exchange of ideas among SMT solver implementors.

paper.tex; 12/10/2005; 17:36; p.13

14 Barrett, de Moura, Stump

9. Acknowledgements

SMT-COMP is the result of the hard work and support of the entire SMT
community, for which the authors would like to express their sincere thanks.
Thanks are due to Kousha Etessami and Sriram Rajamani, the program chairs
for CAV 2005, for helping make SMT-COMP at CAV possible. For their
contributions to effort to collect benchmarks for SMT-COMP, thanks are also
due first especially to Albert Oliveras, who helped translate many benchmarks
into SMT-LIB format; and also Bruno Dutertre, Pete Monolios, Lee Pike,
Jiae Shin, Sudarshan Srinivasan, Ofer Strichman; as well as members of the
TSAT++ team, the MathSAT team, the SAL group at SRI, the UCLID project,
and the Wisconsin Safety Analyzer project. Thanks also to Mike Decoster and
Michael Schidlowsky for making available an SMT-LIB parser in OCaml. A
special debt of gratitude is owed to Cesare Tinelli and Silvio Ranise for their
work on the specification of the SMT-LIB format and the descriptions of the
SMT-LIB theories and logics used by the competition. The authors wish to
thank the anonymous reviewers of this paper for helpful criticisms. Finally,
thanks go to all the people who entered solvers in SMT-COMP, whose hard
work implementing solvers and adding support for the SMT-LIB format is
greatly appreciated.

References

1. W. Ackermann. Solvable cases of the decision problem. Studies in Logic and the
Foundation of Mathematics, 1954.

2. A. Armando, C. Castellini, E. Giunchiglia, and M. Maratea. A SAT-based Decision Pro-
cedure for the Boolean Combination of Difference Constraints. In The 7th International
Conference on Theory and Applications of Satisfiability Testing, 2004.

3. A. Armando, S. Ranise, and M. Rusinowitch. A Rewriting Approach to Satisfiability
Procedeures. Information and Computation, 183(2):140–164, June 2003. Special Issue
on the 12th International Conference on Rewriting Techniques and Applications (RTA
2001).

4. C. Barrett, D. Dill, and A. Stump. A Framework for Cooperating Decision Procedures.
In D. McAllester, editor, 17th International Conference on Automated Deduction, pages
79–97. Springer-Verlag, 2000.

5. C. Barrett, D. Dill, and A. Stump. Checking Satisfiability of First-Order Formulas by
Incremental Translation to SAT. In 14th International Conference on Computer-Aided
Verification, 2002.

6. Clark Barrett. Checking Validity of Quantifier-Free Formulas in Combinations of First-
Order Theories. PhD thesis, Stanford University, 2003.

7. Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of the cooperating
validity checker. In Rajeev Alur and Doron A. Peled, editors, Proceedings of the 16

th

International Conference on Computer Aided Verification (CAV ’04), volume 3114 of
Lecture Notes in Computer Science, pages 515–518. Springer-Verlag, July 2004. Boston,
Massachusetts.

paper.tex; 12/10/2005; 17:36; p.14

SMT-COMP 2005 15

8. Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. Validity checking for combi-
nations of theories with equality. In Mandayam Srivas and Albert Camilleri, editors,
Proceedings of the 1

st International Conference on Formal Methods In Computer-
Aided Design (FMCAD ’96), volume 1166 of Lecture Notes in Computer Science, pages
187–201. Springer-Verlag, November 1996. Palo Alto, California.

9. CVC Lite website. http://verify.stanford.edu/CVCL.
10. D. Le Berre and L. Simon. The essentials of the SAT 2003 competition. In Sixth

International Conference on Theory and Applications of Satisfiability Testing, volume
2919 of LNCS, pages 452–467. Springer-Verlag, 2003.

11. P. Bjesse, T. Leonard, and A. Mokkedem. Finding Bugs in an Alpha Microprocessor Us-
ing Satisfiability Solvers. In G. Berry, H. Comon, and A. Finkel, editors, 13th Conference
on Computer-Aided Verification. Springer-Verlag, 2001.

12. E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded Model Checking Using Satisfiability
Solving. Formal Methods in System Design, 19(1), 2001.

13. Satyaki Das and David L. Dill. Counter-example based predicate discovery in predicate
abstraction. In Formal Methods in Computer-Aided Design. Springer-Verlag, November
2002.

14. Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Proceedings of the
Sixth International Conference on Theory and Applications of Satisfiability Testing (SAT
2003), volume 2919 of Lecture Notes in Computer Science, pages 502–518. Springer-
Verlag, May 2003.

15. J. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: integrated canonizer and solver. In
G. Berry, H. Comon, and A. Finkel, editors, 13th International Conference on Computer-
Aided Verification, 2001.

16. C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. Saxe, and R. Stata. Extended Static
Checking for Java. SIGPLAN Notices, 37, 2002.

17. Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and Cesare
Tinelli. DPLL(T): Fast decision procedures. In Proceedings of the 16th International
Conference on Computer Aided Verification (CAV’04), volume 3114 of Lecture Notes in
Computer Science, pages 175–188. Springer, 2004.

18. S. Lahiri, R. Bryant, A. Goel, and M. Talupur. Revisiting Positive Equality. In Tools and
Algorithms for the Construction and Analysis of Systems, volume 2988 of LNCS, pages
1–15. Springer-Verlag, 2004.

19. S. Lerner, T. Millstein, and C. Chambers. Automatically Proving the Correctness
of Compiler Optimizations. In R. Gupta, editor, In ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2003. received best paper award.

20. Jeremy Levitt. Formal Verification Techniques for Digital Systems. PhD thesis, Stanford
University, 1999.

21. M.Bozzano, R.Bruttomesso, A.Cimatti, T.Junttila, P.v.Rossum, S.Schulz, and
R.Sebastiani. The MathSAT 3 system. In Proceedings of the 20

th International
Conference on Automated Deduction, July 2005.

22. M. Möller and H. Rueß. Solving Bit-Vector Equations. In Formal Methods in Computer-
Aided Design, pages 36–48, 1998.

23. Robert Nieuwenhuis and Albert Oliveras. DPLL(T) with exhaustive theory propagation
and its application to difference logic. In Proceedings of the 17th International Con-
ference on Computer Aided Verification (CAV’05), Lecture Notes in Computer Science.
Springer, 2005.

24. F.J. Pelletier, G. Sutcliffe, and C.B. Suttner. The Development of CASC. AI
Communications, 15(2-3):79–90, 2002.

paper.tex; 12/10/2005; 17:36; p.15

16 Barrett, de Moura, Stump

25. A. Pnueli, Y. Rodeh, and O. Strichman. Range allocation for equivalence logic. In 21st
Conference on Foundations of Software Technology and Theoretical Computer Science,
volume 2245 of LNCS, pages 317–333. Springer-Verlag, 2001.

26. Silvio Ranise and Cesare Tinelli. The SMT-LIB standard, version 1.1, 2005. Available
from the ”Documents” section of http://combination.cs.uiowa.edu/smtlib.

27. Harald Rueß and Natarajan Shankar. Solving linear arithmetic constraints. Technical
Report SRI-CSL-04-01, SRI International, 2004.

28. S. Seshia and R. Bryant. Deciding Quantifier-Free Presburger Formulas Using Parame-
terized Solution Bounds. In Logic in Computer Science. IEEE, 2004.

29. N. Shankar. Little Engines of Proof. In Invited Paper at Formal Methods Europe, 2002.
30. Hossein M. Sheini and Karem A. Sakallah. A sat-based decision procedure for mixed

logical/integer linear problems. In Roman Barták and Michela Milano, editors, CPAIOR,
volume 3524 of Lecture Notes in Computer Science, pages 320–335. Springer, 2005.

31. Hossein M. Sheini and Karem A. Sakallah. A scalable method for solving satisfiability
of integer linear arithmetic logic. In Fahiem Bacchus and Toby Walsh, editors, SAT,
volume 3569 of Lecture Notes in Computer Science, pages 241–256. Springer, 2005.

32. I. Shlyakhter, R. Seater, D. Jackson, M. Sridharan, and M. Taghdiri. Debugging Over-
constrained Declarative Models Using Unsatisfiable Cores. In 18th IEEE International
Conference on Automated Software Engineering, 2003. received best paper award.

33. A. Stump, C. Barrett, D. Dill, and J. Levitt. A Decision Procedure for an Extensional
Theory of Arrays. In 16th IEEE Symposium on Logic in Computer Science, pages 29–37.
IEEE Computer Society, 2001.

34. Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: A cooperating validity checker.
In Ed Brinksma and Kim Guldstrand Larsen, editors, Proceedings of the 14

th Interna-
tional Conference on Computer Aided Verification (CAV ’02), volume 2404 of Lecture
Notes in Computer Science, pages 500–504. Springer-Verlag, July 2002. Copenhagen,
Denmark.

35. M. Velev and R. Bryant. Effective Use of Boolean Satisfiability Procedures in the
Formal Verification of Superscalar and VLIW Microprocessors. Journal of Symbolic
Computation, 35(2):73–106, February 2003.

36. H. Zhang. SATO: An efficient propositional prover. In William McCune, editor, Pro-
ceedings of the 14th International Conference on Automated deduction, volume 1249 of
Lecture Notes in Artificial Intelligence, pages 272–275. Springer, July 1997.

paper.tex; 12/10/2005; 17:36; p.16

SMT-COMP 2005 17

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 10 20 30 40 50

C
P

U
-T

im
e

ne
ed

ed
 (

s)

Number of Solved Benchmarks

BarcelogicTools
Yices

MathSat
CVC Lite

CVC
SVC
Ario

Sammy
SBT
HTP

Solver Score Time Unsat Sat Unknown Wrong

BarcelogicTools 39 1758.2 31 8 11 0

Yices 37 1801.4 29 8 13 0

MathSat 33 2186.2 26 7 17 0

CVC Lite 23 3779.3 16 7 27 0

CVC 21 1108.8 16 5 29 0

SVC 14 1297.0 11 3 36 0

Ario 11 792.5 10 1 39 0

Sammy 1 0.3 1 0 49 0

SBT -22 10.7 50 0 0 8

HTP -43 567.5 0 12 38 11

Figure 4. Results for QF UF

paper.tex; 12/10/2005; 17:36; p.17

18 Barrett, de Moura, Stump

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50

C
P

U
-T

im
e

ne
ed

ed
 (

s)

Number of Solved Benchmarks

BarcelogicTools
Yices

MathSat
Simplics

Ario
Sammy

CVC
CVC Lite

SVC
HTP

Solver Score Time Unsat Sat Unknown Wrong

BarcelogicTools 41 940.8 36 5 9 0

Yices 37 1868.0 32 5 13 0

MathSat 37 2608.0 32 5 13 0

Simplics 33 2267.0 30 3 17 0

Ario 26 2487.5 22 4 24 0

Sammy 9 1295.6 9 0 41 0

CVC 6 115.3 6 0 44 0

CVC Lite 6 697.6 6 0 44 0

SVC 1 0.3 1 0 49 0

HTP -5 1390.4 25 3 22 5

Figure 5. Results for QF RDL

paper.tex; 12/10/2005; 17:36; p.18

SMT-COMP 2005 19

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50

C
P

U
-T

im
e

ne
ed

ed
 (

s)

Number of Solved Benchmarks

BarcelogicTools
Yices

MathSat
Ario

Sateen
CVC Lite

CVC
Sammy

SVC
HTP
SBT

Solver Score Time Unsat Sat Unknown Wrong

BarcelogicTools 47 1131.2 38 9 4 0

Yices 47 1883.2 38 9 4 0

MathSat 46 1295.4 35 11 5 0

Ario 43 2513.0 34 9 8 0

Sateen 39 586.2 33 6 12 0

CVC Lite 14 665.4 12 2 37 0

CVC 13 519.9 13 0 38 0

Sammy 13 631.2 13 0 38 0

SVC 4 102.0 4 0 47 0

HTP -43 1655.8 6 16 29 13

SBT -90 109.6 19 21 11 22

Figure 6. Results for QF IDL

paper.tex; 12/10/2005; 17:36; p.19

20 Barrett, de Moura, Stump

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 10 20 30 40 50

C
P

U
-T

im
e

ne
ed

ed
 (

s)

Number of Solved Benchmarks

BarcelogicTools
Yices

MathSat
Ario
CVC
SBT
SVC

CVC Lite
Sammy

HTP

Solver Score Time Unsat Sat Unknown Wrong

BarcelogicTools 45 305.2 43 2 4 0

Yices 36 1989.8 34 2 13 0

MathSat 22 1055.5 20 2 27 0

Ario 20 1036.3 18 2 29 0

CVC 20 1454.0 20 0 29 0

SBT 18 104.9 36 0 13 2

SVC 17 869.5 17 0 32 0

CVC Lite 10 571.9 10 0 39 0

Sammy -1 21.6 3 1 45 1

HTP -42 519.8 5 13 31 12

Figure 7. Results for QF UFIDL

paper.tex; 12/10/2005; 17:36; p.20

SMT-COMP 2005 21

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10 20 30 40 50

C
P

U
-T

im
e

ne
ed

ed
 (

s)

Number of Solved Benchmarks

Simplics
Yices

MathSat
HTP
Ario
CVC

CVC Lite
Sammy

Solver Score Time Unsat Sat Unknown Wrong

Simplics 49 361.8 42 7 1 0

Yices 47 310.6 42 5 3 0

MathSat 42 208.3 41 1 8 0

HTP 35 51.9 42 2 6 1

Ario 30 955.7 27 3 20 0

CVC 28 391.2 25 3 22 0

CVC Lite 22 278.7 22 0 28 0

Sammy 6 824.8 12 8 30 2

SVC 0 0.0 0 0 50 0

Figure 8. Results for QF LRA

paper.tex; 12/10/2005; 17:36; p.21

22 Barrett, de Moura, Stump

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50

C
P

U
-T

im
e

ne
ed

ed
 (

s)

Number of Solved Benchmarks

Yices
MathSat

Ario
CVC Lite

CVC
Sammy

SVC
HTP
SBT

Solver Score Time Unsat Sat Unknown Wrong

Yices 41 1873.0 28 13 13 0

MathSat 32 1887.2 23 14 17 1

Ario 30 2402.4 18 12 24 0

CVC Lite 22 585.6 15 7 32 0

CVC 13 359.2 13 0 41 0

Sammy 11 123.1 11 0 43 0

SVC 5 20.1 5 0 49 0

HTP -31 325.2 10 5 39 6

SBT -77 524.6 5 20 29 18

Figure 9. Results for QF LIA

paper.tex; 12/10/2005; 17:36; p.22

SMT-COMP 2005 23

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50

C
P

U
-T

im
e

ne
ed

ed
 (

s)

Number of Solved Benchmarks

Yices
CVC

CVC Lite
SVC
HTP

Sammy

Solver Score Time Unsat Sat Unknown Wrong

Yices 49 46.8 35 14 3 0

CVC 34 243.0 34 0 18 0

CVC Lite 34 769.3 28 6 18 0

SVC 30 84.3 30 0 22 0

HTP 21 132.0 25 1 26 1

Sammy -38 344.6 10 3 39 7

Figure 10. Results for QF AUFLIA

paper.tex; 12/10/2005; 17:36; p.23

paper.tex; 12/10/2005; 17:36; p.24

