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Abstract. A Knuth-Bendix completion procedure is parametrized by a
reduction ordering used to ensure termination of intermediate and result-
ing rewriting systems. While in principle any reduction ordering can be
used, modern completion tools typically implement only Knuth-Bendix
and path orderings. Consequently, the theories for which completion can
possibly yield a decision procedure are limited to those that can be ori-
ented with a single path order.

In this paper, we present a variant on the Knuth-Bendix completion
procedure in which no ordering is assumed. Instead we rely on a mod-
ern termination checker to verify termination of rewriting systems. The
new method is correct if it terminates; the resulting rewrite system is
convergent and equivalent to the input theory. Completions are also not
just ground-convergent, but fully convergent. We present an implementa-
tion of the new procedure, Slothrop, which automatically obtains such
completions for theories that do not admit path orderings.

1 Introduction

A Knuth-Bendix completion procedure is a technique for solving the word prob-
lem for a finite set of identities. In this procedure, the user provides the set of
identities as well as a reduction order on terms.

Using unfailing completion [3], ground-convergent completions can be dis-
covered even when no compatible reduction order exists. However, successful
completions may contain unoriented equations along with oriented rewrite rules.
The resulting system is convergent only for ground terms and often contains
more rules than a fully convergent completion.

Nonetheless, many theories are easily oriented by a few useful classes of re-
duction orderings, such as Knuth-Bendix and recursive path orderings (KBO
and RPO, respectively). The wide applicability of KBO and RPO has led to the
success of completion procedures. While in principle any reduction ordering can
be used, modern completion tools like Waldmeister [9] typically implement
only these two classes of orderings. (However, the tool CiME also implements
polynomial orderings [4].) Consequently, the theories for which completion can
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possibly yield a decision procedure in the form of a convergent rewrite system
are limited to those with completions that admit such a path order.

In this paper, we present a new variant on the standard Knuth-Bendix comple-
tion procedure in which no ordering is explicitly provided. Instead a constraint
rewriting system is constructed during execution, and its reduction relation is
used for an ordering. Termination of the constraint system then implies termi-
nation of the intermediate rewrite systems. In the implementation, we rely on
modern termination-checking methods to verify the termination of the constraint
systems.

The new method is correct if it terminates; the resulting rewrite system is
convergent and equivalent to the input theory. In addition, the completions are
not just ground-convergent, but fully convergent. The method is also complete
for finite executions in that if there exists a successful, finite execution of a
standard Knuth-Bendix completion procedure with some reduction ordering,
then an equivalent execution in the modified system exists.

We begin in Sect. 2 with a presentation of standard Knuth-Bendix completion
and statements of correctness. In Sect. 3 we introduce our new completion variant
in which the reduction order is left implicit and prove its correctness. In Sect. 4,
we present an implementation of the new procedure called Slothrop, and in
Sect. 5 we discuss its performance and results, including convergent completions
automatically obtained for the first time. Finally in Sect. 6, we discuss areas of
future interest with respect to the new technique.

2 Knuth-Bendix Completion

In this section, we review the basic definition and properties of completion pro-
cedures. We use standard notation for terms and term rewriting systems, as
presented in [1].

A Knuth-Bendix completion procedure [8] is an algorithm that takes as input
a reduction ordering > and a finite set of equations E and attempts to produce a
decision procedure for the word problem for E in the form of a rewriting system.
Completion algorithms attempt to construct a convergent rewriting system R
that is equivalent to E (i.e., with the same equational theory, ∗↔E= ∗↔R) by
generating a possibly infinite sequence of intermediate rewriting systems which
yield approximations of the equational theory of E.

Bachmair formulated Knuth-Bendix completion as an equational inference
system [2]. We refer to this standard system as C because it serves as the basis
of a correctness condition for our refinement of the procedure. The rules of the
inference system C are shown in Fig. 1. A deduction of C, written (E, R) �C
(E′, R′), consists of finite sets of identities E, E′ and rewrite systems R, R′. A
finite execution γ of the system C is the pair (E0, ∅) followed by a finite sequence
of deductions

(E0, ∅) �C (E1, R1) · · · �C (En, Rn),

where E0 is the input theory provided by the user, and each deduction results
from an application of one of the inference rules of C. (We consider only finite
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orient:
(E ∪ {s

.= t}, R)
(E, R ∪ {s → t}) if s > t

deduce:
(E, R)

(E ∪ {s = t}, R) if s ←R u →R t

delete:
(E ∪ {s = s}, R)

(E, R)

simplify:

(E ∪ {s
.= t}, R)

(E ∪ {u
.= t}, R) if s →R u

compose:
(E, R ∪ {s → t})
(E, R ∪ {s → u}) if t →R u

collapse:
(E, R ∪ {s → t})
(E ∪ {v = t}, R) if s

�→R v

Fig. 1. Standard Knuth-Bendix Completion (C)

executions of C in this paper; the infinite case is discussed briefly in Sect. 6.)
The length of γ, written |γ|, is the number of deductions in γ. A finite execution
γ of C succeeds if E|γ| = ∅ and R|γ| is a convergent rewrite system equivalent to
E as described above; otherwise it fails. Elsewhere ([2], [1]), C is proved correct
in that any successful, finite execution γ results in a convergent rewrite system
R|γ| equivalent to the input identities E.

The main difficulty with the standard completion procedure is in finding an
appropriate reduction order. Choosing a suitable RPO, KBO or polynomial in-
terpretation (the only options available in known tools) is difficult even for ex-
perienced users, and for many theories no such path ordering exists. In the next
section, we solve this problem with a variant on the standard completion pro-
cedure which discovers a suitable reduction ordering without input from the
user.

3 Completion with Termination Checking

We now present a modification of the standard Knuth-Bendix completion pro-
cedure. The primary difference is that no reduction order is explicitly provided
as input, only a finite set of identities. Lacking any specific reduction order to
guide the search, we preserve termination of each intermediate rewrite system
Ri by ensuring that some reduction order �i compatible with Ri exists. The
orders �i are constructed using terminating rewrite systems Ci, specifically as
the transitive closure of the reduction relation on Ci, written +→Ci . This rela-
tion is a well-founded order exactly when the system Ci is terminating. While
in the standard system C a rule s → t is added by orient to Ri only if s > t
with the user-specified reduction order, in the modified system the rule is added
only if the addition of s → t to Ci preserves termination. Of course, deciding
termination is not possible in general. In Sect. 4, we discuss how this test is
accomplished in practice.
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Figure 2 provides the inference rules for a modification of the standard com-
pletion procedure, which we refer to as system A. A deduction of A, written
(E, R, C) �A (E′, R′, C′), consists of identities E, E′ and rewrite systems R, R′

as in standard completion, and finite constraint rewriting systems C, C′ new to
A. A finite execution α of the system A is the triple (E0, ∅, ∅) followed by a finite
sequence of deductions

(E0, ∅, ∅) �A (E1, R1, C1) · · · �A (En, Rn, Cn),

with E0 the set of input identities and where each deduction results from an
application of one inference rule from A. We consider only finite executions of
A; infinite executions are discussed in Sect. 6. We write |α| to denote the length
of the sequence. An execution α of A is equivalent to an execution γ of C when
the intermediate equations and rewrite systems are the same at each step. A
finite execution α of system A succeeds when E|α| = ∅ and R|α| is a convergent
rewrite system equivalent to E. Because we only consider finite executions, every
execution that does not succeed fails.

orient:
(E ∪ {s

.= t}, R, C)
(E, R ∪ {s → t}, C ∪ {s → t}) if C ∪ {s → t} terminates

deduce:
(E, R, C)

(E ∪ {s = t}, R, C) if s ←R u →R t

delete:
(E ∪ {s = s}, R, C)

(E, R, C)

simplify:

(E ∪ {s
.= t}, R, C)

(E ∪ {u
.= t}, R, C) if s →R u

compose:
(E, R ∪ {s → t}, C)
(E, R ∪ {s → u}, C) if t →R u

collapse:
(E, R ∪ {s → t}, C)
(E ∪ {v = t}, R,C) if s

�→R v

Fig. 2. Modified Knuth-Bendix Completion (A)

The rules deduce, delete, simplify, compose and collapse of A are
identical to those of C, except for the presence of the constraint system C which
is carried unmodified from antecedent to consequent. The critical difference be-
tween A and C is in the definition of the orient rule. In the standard system
C, an identity s

.= t of E is added to R as rule s → t only when s > t for the
given reduction order. In the modified system A, we add the rule s → t to R
only when the augmented constraint system C ∪ {s → t} is terminating. The
system A accepts as input only the finite set of identities E; no reduction order
is explicitly provided.

We now state correctness of A for finite executions (partial correctness). The
proof proceeds by showing that A simulates a standard Knuth-Bendix comple-
tion procedure C. For each finite execution α of A, we construct an execution
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γ of C with an equivalent sequence of deductions as α. The constraint systems
are used to show that any finite execution is equivalent to one which uses the
single order induced by the final constraint system. This is important because
completion is not generally correct when reduction orders are changed during
execution, even if each is compatible with the immediate intermediate rewrite
system [10]. The induced order is +→C|α| , the transitive closure of the reduction
relation of the final constraint system C|α|.

Theorem 1 (Partial Correctness of A). Let α be a finite execution of the
system A. Then there exists an equivalent execution γ of C using reduction order
+→C|α| .

3.1 Partial Completeness

We now show a limited form of completeness for our procedure with respect
to standard Knuth-Bendix completion. Namely, for any successful execution of
the standard completion procedure C there exists a corresponding execution
of the modified procedure A with the same deductions. This shows that our
method can at least construct decision procedures for those theories that are
decidable by the standard method. In Sect. 5, we give an example of a theory
for which our method constructs a convergent completion that, to the authors’
knowledge, cannot be automatically constructed by any tool that implements C
due to inability to specify an appropriate reduction order.

Theorem 2 (Partial Completeness of A). For any finite execution γ of C
with reduction order >, there exists an equivalent execution α of A. Furthermore,
+→C|γ|⊆>.

Proof. By induction on γ. The beginning execution is γ = (E0, ∅), which trans-
lates to α = (E0, ∅, ∅). Otherwise, γ = γ′ �C (Ek, Rk) and by IH there exists α′

that satisfies the claim for γ′, and also →Ck−1⊆>. Let Ck = Ck−1 if the final
deduction is the result of any rule except orient, and Ck = Ck−1 ∪ {s → t}
otherwise, with {s → t} = Rk − Rk−1. We claim α = α′ �A (Ek, Rk, Ck) and
show this is a correct execution of A. This is trivial for rules other than orient,
since their side conditions do not mention the constraint systems. Otherwise,
s > t and +→Ck−1⊆> which implies +→Ck

⊆>. This in turn implies that Ck is
terminating because its rules are compatible with the reduction order >.

This theorem demonstrates the existence of a successful execution of A for every
successful finite execution of C. But note that that the rule orient in A can
orient an equation s = t in either direction when both C ∪ {s → t} and C ∪
{t → s} are terminating systems. Consequently, an execution of A as defined
above will fail if a poor decision is made during orientation. The ability to
construct a successful execution relies on a non-deterministic orientation choice.
Deterministically, an execution of A becomes a binary tree in which each node
is an instance of the rule orient. In practice, we must search for a successful
execution. We ensure discovery of such an execution (corresponding to a path
from the root (E0, ∅)) by fairly advancing each of the individual executions.
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4 Implementation

We have implemented our modified Knuth-Bendix completion procedure in a
7000-line Ocaml program called Slothrop.1 The implementation is based on
a particular completion strategy developed and proved correct by Huet [7], and
later by Bachmair using the inference system C [2]. The implementation itself is
originally based on an ML implementation of Huet’s algorithm by Baader and
Nipkow [1] and makes use of data structures programmed by Filliâtre [5].

The main technical challenge in the implementation is with the orient rule.
As is well known, determining whether or not a term rewriting system terminates
is undecidable in general. However, modern termination-checking tools, such as
AProVE [6], succeed in proving many systems terminating or nonterminating
with almost alarming success. In our implementation, we take advantage of this
success and use AProVE as an oracle to answer queries about the termination of
constraint rewriting systems in each orientation step. If AProVE fails to prove
a system terminating or nonterminating, we treat it as a nonterminating system
and delay its treatment. However, the array of techniques used by AProVE to
show termination includes recursive path orders among many others, so there is
little difficulty recognizing the termination of systems compatible with such an
order. Furthermore, since AProVE is able to prove termination of systems that
are not compatible with a path order, Slothrop can find convergent comple-
tions of theories other modern completion tools (e.g., Waldmeister) cannot.
One example of such a theory is given in Sect. 5.

Integrating a separate termination checker also provides separation-of-
concerns benefits for theorem proving. As the power and speed of the AProVE

tool, so does Slothrop. This also provides the opportunity to leverage other
termination checkers with different properties (e.g., one which is faster but less
powerful might be useful for simple theories).

Another important aspect of our implementation is the manner in which dif-
ferent branches of executions are explored. When AProVE determines that
some equation s = t can be oriented either way, both branches are explored.
Implementation of this exploration is critical to performance. The binary tree
of executions is potentially infinite, and branches whenever orderings exist that
are compatible with both orientations of an equation.

A breadth-first search of the branches is sufficient for partial completeness; if
there is some successful finite execution corresponding to a branch on the tree,
it will eventually be expanded. In practice, however, this strategy spends too
much time in uninteresting areas of the search space, and prevents Slothrop

from finding completions for any but the most modest theories in a reasonable
amount of time. A more effective strategy is a best-first search in which the next
execution to advance is chosen based on a cost function defined by

cost(E, R, C) = size(C) + size(E) + size(Γ (R)),

1
Slothrop is available online at http://cl.cse.wustl.edu/ on the software page.

http://cl.cse.wustl.edu/
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where Γ (R) denotes the set of all nontrivial critical pairs of R. With this strategy,
size(C) can be thought of as the cost to reach the current intermediate step in
the execution and size(E) + size(Γ (R)) as a heuristic estimate for the cost to
find a convergent completion.

In some cases, AProVE is unable to prove termination of a system with
either orientation of a particular equation. Here, we do not discard the system
entirely, but attempt to orient other equations in hope that the previously unori-
entable equation will simplify into an orientable (or trivial) one. In the current
implementation of Slothrop, treatment of such systems is delayed until others
are explored which can be proved terminating or nonterminating. This heuris-
tic is suitable for simple systems, but better ones are needed for more difficult
theories.

5 Performance and New Results

Slothrop is capable of completing a variety of theories fully automatically
in a modest amount of time. For example, the standard 10-rule completion of
the group axioms is discovered in under 3 seconds on a modern desktop PC.
On the way to this completion, it encounters 27 orientations, roughly half of
which are not trivially nonterminating and must be verified with AProVE. On
the execution branch that leads to a completion, however, only two orientation
steps are required. Slothrop automatically completes the theory of groups plus
a single endomorphism (GE1) in under 10 seconds, requiring about 100 calls to
AProVE. A large theory with 21 equations corresponding to propositional proof
simplification rules [12] is considerably more difficult to complete because of the
number of orientations. Nonetheless, Slothrop does find a completion without
user intervention after about 7 hours and 3000 calls to AProVE.

The majority of Slothrop’s running time is spent waiting for calls to
AProVE. Although we have encountered many examples of rewriting systems
which AProVE can show terminating after a prohibitively long amount of
time, in practice we have found that it is uncommon for such difficult sys-
tems to appear on the branch of a successful execution. Most calls to AProVE

that occur on successful branches return in under 2 seconds. Completeness of
Slothrop can be exchanged for performance enhancements by calling AProVE

with a short timeout. The above completions were obtained with a 5-second
timeout.

Since Slothrop is not restricted to a given reduction ordering, it can also
search for multiple completions of a given theory. For example, it finds two

1 ∗ x = x x−1 ∗ x = 1 (x ∗ y) ∗ z = x ∗ (y ∗ z)
f(x ∗ y) = f(x) ∗ f(y) g(x ∗ y) = g(x) ∗ g(y) f(x) ∗ g(y) = g(y) ∗ f(x)

Fig. 3. The Theory of Two Commuting Group Endomorphisms (CGE2)
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completions of the basic group axioms corresponding to both orientations of the
associativity rule. It also finds four completions of GE1 corresponding to the ori-
entations of the associativity endomorphism rules. It also discovers a number of
other larger completions of the same theory in which endomorphism are oriented
differently depending on the context.

Additionally, a convergent completion can be obtained by Slothrop for the
theory of two commuting group endomorphisms (CGE2), shown in Fig. 5. The
reader may verify that no RPO or KBO is compatible with the theory (in par-
ticular, the final commutativity rule). A completion was recently obtained for
the first time by hand [11] — rules derived from critical pairs were manually ori-
ented, local confluence checked, and termination of the resulting system verified
by AProVE.

Using unfailing completion [3], Waldmeister is able to complete CGE2 as
well, but constructs a larger system which is ground-confluent only — i.e, it
contains equations as well as rewrite rules. This system is often less helpful than
a small convergent completion, for example, in characterizing the normal forms of
the system for algebraic proof mining [12]. Furthermore, Waldmeister does not
appear to be able to find this ground-convergent completion fully automatically;
a carefully selected Knuth-Bendix ordering (given in [11]) must be provided.
Slothrop is able to find the convergent completion with no input from the
user other than the theory itself. (This still takes more than an hour, however,
even using the heuristic described in Sect. 4.)

6 Conclusion and Future Work

We have presented a new variant on Knuth-Bendix completion which does not
require the user to provide a reduction ordering to orient identities. The proce-
dure is correct and complete, but only for finite executions. An implementation of
the procedure, called Slothrop, can find convergent completions for a number
of interesting theories without any input from the user, including one (CGE2)
which cannot be obtained by any existing tool.

A primary goal of future work is to increase the efficiency of Slothrop. Basic
heuristic search techniques have made the algorithm feasible for many theories,
but it is still prohibitively slow for large theories — completion of the CGE3 has
not yet been achieved. The performance of Slothrop also does not approach
that of well-tuned equational theorem provers such as Waldmeister for most
tasks. Modern search and learning techniques, e.g. as developed for SAT, may
be applicable to the search for a convergent completion. Finally, we would like
to explore extensions to termination checking techniques to allow proofs to be
constructed incrementally. This may significantly decrease the amortized time to
prove a series of term rewriting systems terminating, since Slothrop tends to
make a number of successive calls on rewrite systems whose rules form increasing
chains.

Infinite Executions. While the provided argument for completeness carries
to infinite executions essentially unmodified, it is not the case that all non-
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failing runs are successful. In particular, termination of the infinite union of
the intermediate constraint systems does not follow from termination of the
individual systems; this is because in general the union of an infinite number
of finite, terminating rewrite systems is not itself terminating. For example,
consider the family of (string) rewriting systems Rj = ∪0≤i≤j{fgif → fgi+1}.
For any k ∈ N it is easy to see that ∪0≤j≤kRj is terminating. But it is not the
case that ∪j∈NRj is terminating, for it contains the infinite derivation ff →
fgf → fggf → · · · .

Instead, it must be shown in a proof of correctness for the infinite case that
some successful branch of execution always exists, and that it will always be
found in the search for a completion. The authors believe the modified procedure
to be correct in the infinite case, making it usable as a semidecision procedure
for theories. We have a proof sketch of correctness for the infinite case of the
system A, and a complete proof is in progress.
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