
The Algebra of Equality Proofs

Aaron Stump and Li-Yang Tan

Dept. of Computer Science and Engineering
Washington University in St. Louis

St. Louis, Missouri, USA
Web: http://cl.cse.wustl.edu/

Abstract. Proofs of equalities may be built from assumptions using
proof rules for reflexivity, symmetry, and transitivity. Reflexivity is an
axiom proving x=x for any x; symmetry is a 1-premise rule taking a proof
of x=y and returning a proof of y=x; and transitivity is a 2-premise rule
taking proofs of x=y and y=z, and returning a proof of x=z. Define an
equivalence relation to hold between proofs iff they prove a theorem in
common. The main theoretical result of the paper is that if all assump-
tions are independent, this equivalence relation is axiomatized by the
standard axioms of group theory: reflexivity is the unit of the group,
symmetry is the inverse, and transitivity is the multiplication. Using a
standard completion of the group axioms, we obtain a rewrite system
which puts equality proofs into canonical form. Proofs in this canonical
form use the fewest possible assumptions, and a proof can be canonized
in linear time using a simple strategy. This result is applied to obtain
a simple extension of the union-find algorithm for ground equational
reasoning which produces minimal proofs. The time complexity of the
original union-find operations is preserved, and minimal proofs are pro-
duced in worst-case time O(nlog

2
3), where n is the number of expressions

being equated. As a second application, the approach is used to achieve
significant performance improvements for the CVC cooperating decision
procedure.

1 Introduction

Ground equational reasoning plays an important role in many approaches to
verification and automated reasoning [8, 13, 17, 12, 3, 14, 9]. Recently, there has
been interest in producing minimal proofs from algorithms for ground equational
reasoning [11, 10, 5]. Minimal proofs are of interest primarily for performance
reasons: they can be exported to a fast SAT solver as conflict clauses, which
greatly improve search space pruning [1].

In this paper, we approach the problem of minimal proofs by studying the
algebra of equality proofs themselves (Section 2). It turns out that theorem
equivalence of equality proofs with independent assumptions is completely char-
acterized by the axioms for free groups (Sections 3, 4, and 5). This enables us to
use a standard convergent rewrite system for free group terms to put equality
proofs into canonical form (Section 5). If all assumptions are independent, this

form is minimal, in the sense that it uses the unique minimal set of assump-
tions needed to prove the equality. We analyze the number of steps required
for canonization using the rewrite rules. A simple strategy yields canonization
in time linear in the size of the equality proof (Section 6), although without a
strategy canonization can take cubic time (Section 7). We then show how these
results can be used to obtain minimal proofs of equations x = y from a simple
augmentation of the standard union-find algorithm for ground equational rea-
soning in (O(nlog

2
3) time, where n is the size of the equivalence class for x and

y (Section 8). Finally, major improvements in search space pruning and overall
performance are obtained in the context of the CVC tool [16] using the algebra
of equality proofs (Section 9).

2 Equality Proofs

Notation: If f is an n-ary function symbol and A1, . . . , An are sets of terms,
we write f(A1, . . . , An) for {f(t1, . . . , tn) | t1 ∈ A1, . . . , tn ∈ An}.

Let U be a set of assumptions, and let P be the set of equality proofs induc-
tively defined as follows, where Refl, Symm, and Trans are function symbols of
arities 0, 1, and 2, respectively:

P ::= U | Refl | Symm(P) | Trans(P ,P)

Let A be a set of atoms, and let E be the set of all equations between atoms. Let
:: be a total function from U to E , specifying which equation is proved by each
assumption. Extend this to a non-functional relation on all of P ×E , which says
which theorems are proved by which equality proofs; this is done inductively by
the universal closures of the following clauses:

Refl :: a = a

p :: a1 = a2 ⇒ Symm(p) :: a2 = a1

p1 :: a1 = a2 ∧ p2 :: a2 = a3 ⇒ Trans(p1, p2) :: a1 = a3

We say that the assumptions in U are independent iff no equation proved by
an assumption is equationally entailed by the other assumptions. For example,
assumptions of a = b, b = c, and a = c, respectively, are not independent.

Finally, define a relation == of theorem equivalence on P×P by the universal
closure of

p1 == p2 ⇔ (∃ e. p1 :: e ∧ p2 :: e)

Two equality proofs are in this relation iff they prove a theorem in common. For
example, Trans(Refl,Refl) == Refl, because each proof proves a = a, for some
a ∈ A. It turns out that technical reasons prevent us from adopting the stronger
notion where proofs are equivalent iff they prove exactly the same theorems. Not
every equality proof proves a theorem. Write ≡ for meta-equality on sets like A,
E , and P . Then, for example, if p ∈ P proves a = b with a 6≡ b, then Trans(p, p)
does not prove any theorem. The following lemmas help justify the use of the
notion of proving a theorem in common as our notion of theorem equivalence.
We define P̂ to be Dom(::), so that p ∈ P̂ iff p proves a theorem.

Lemma 1 If p ∈ P̂ does not contain any assumptions, then ∀a ∈ A. p :: a = a.
Further, if a 6≡ b, then p does not prove a = b.

Lemma 2 If p ∈ P̂ contains an assumption, then p proves exactly one theorem.

3 Algebraic Characterization of Theorem Equivalence

In this Section, we show that theorem equivalence on proofs which prove a
theorem is axiomatized by the standard axioms of group theory, as long as the
assumptions in U are independent. In more detail, for all p1, p2 ∈ P̂, p1 ==
p2 holds iff the equation p1

∼= p2 is provable using standard congruence rules
for equality and the universal closures of the formulas given in Figure 1. For
comparison, the group axioms are given in more customary form in Figure 2.
Refl plays the role of the group unit, Symm is the inverse operator, and Trans
is the multiplication.

[Associativity] Trans(Trans(p1, p2), p3) ∼= Trans(p1,Trans(p2, p3))
[Unit] Trans(Refl, p) ∼= p

[Inverse] Trans(Symm(p), p) ∼= Refl

Fig. 1. Group Axioms for Equality Proofs

[Associativity] (x1 ∗ x2) ∗ x3
∼= x1 ∗ (x2 ∗ x3)

[Unit] 1 ∗ x ∼= x

[Inverse] x−1 ∗ x ∼= 1

Fig. 2. Group Axioms

We observe first that strictly speaking, neither P nor P̂ forms a group with
operators Refl, Symm, and Trans and equivalence relation ==. For the case of
P , this is because if p is an equality proof which does not prove any theorem,
then the left hand side (lhs) of the [Inverse] axiom of Figure 1 does not prove
any theorem, but the rhs (Refl) does. Hence, the two proofs do not prove the
same theorems, so the axiom is just false (if == is taken for ∼=) for domain P .
We prove below that all the axioms are sound with respect to == for P̂, but P̂
is not closed in general under Trans. As noted above, if p :: a = b with a 6≡ b,
then Trans(p, p) is not in P̂. So, P̂ does not form a group under Refl, Symm, and
Trans. Nevertheless, we have the following results, which are proved in Sections 4
and 5 below.

Theorem 1 (Soundness) For all p1, p2 ∈ P̂, if p1
∼= p2, then p1 == p2.

Theorem 2 (Completeness) For all p1, p2 ∈ P̂, if p1 == p2, then p1
∼= p2.

4 Proof of Soundness

Lemma 3 (Theorem Determinacy) Suppose p ∈ P̂, p :: a1 = a2 and p ::
b1 = b2. Then a1 ≡ b1 iff a2 ≡ b2.

Proof. If p contains no assumption, then by Lemma 1, a1 ≡ a2 and b1 ≡ b2,
and we have the result by transitivity of ≡. If p contains an assumption, then
by Lemma 2, p proves exactly one theorem, and so a1 ≡ b1 and a2 ≡ b2.

Proof (Soundness (Theorem 1)). First we observe that the congruence rules for
∼= are sound. If p1 == p2, then Symm(p1) == Symm(p2). For the congruence rule
for Trans, we reason as follows. Suppose one of p1 or p2 contains assumptions.
WLOG, say it is p1. Then by Lemma 2, both p1 and Trans(p1, p) prove at
most one theorem, for any p. If the latter proves no theorem, we contradict
the hypothesis of Theorem 1 that the proofs in question prove a theorem. If
Trans(p1, p) proves a theorem, then since p2 proves a theorem in common with p1,
p2 must prove the same theorem as p1, and hence Trans(p2, p) proves a theorem
in common with Trans(p1, p). If neither p1 nor p2 contains an assumption, then
by Lemma 1, they prove all the same theorems, and hence Trans(p1, p) and
Trans(p2, p) prove a theorem in common, assuming again that they prove any
theorem at all. We now consider the group axioms for ∼=.

Case [Associativity]: Suppose Trans(Trans(p1, p2), p3) :: a = d. By the definition
of ::, this implies that there is a c such that Trans(p1, p2) :: a = c and p3 :: c = d.
The former fact implies again by the definition of :: that there is a b such that
p1 :: a = b and p2 :: b = c. Then clearly Trans(p1,Trans(p2, p3)) proves a = d.

Case [Unit]: If Trans(Refl, p) proves a = b, then p must prove a = b.

Case [Inverse]: If Trans(Symm(p), p) proves a = c, then there must be a b such
that Symm(p) :: a = b and p :: b = c. The former consequence implies that
p :: b = a. By Lemma 3, a ≡ c, so Trans(Symm(p), p) :: a = a. We also
have, of course, Refl :: a = a. Note that this is the point at which defining
theorem equivalence as proving exactly the same theorems breaks down. For
we also have, e.g., Refl :: b = b, but by Lemma 1, if p contains an assumption,
Trans(Symm(p), p) cannot prove two theorems. And hence, since it proves a = a,
it cannot prove b = b. So this axiom would not be sound with the stronger version
of theorem equivalence.

5 Canonical Proofs and Completeness

The proof of our completeness theorem (Theorem 2) relies on the canonical forms
for equality proofs. Recall that the rewrite rules of Figure 3 are a convergent
completion of the group axioms of Figure 2, oriented from left to right [7]. These
rules are given again in Figure 4, formulated for equality proofs.

(x1 ∗ x2) ∗ x3 → x1 ∗ (x2 ∗ x3)
1 ∗ x → x

x ∗ 1 → x

x−1 ∗ x → 1
x ∗ x−1 → 1
1−1 → 1
(x−1)−1 → x

(x ∗ y)−1 → y−1 ∗ x−1

x−1 ∗ (x ∗ y) → y

x ∗ (x−1 ∗ y) → y

Fig. 3. Convergent System for Simplifying Group Terms

Trans(Trans(p1, p2), p3) → Trans(p1,Trans(p2, p3))
Trans(Refl, p) → p

Trans(p,Refl) → p

Trans(Symm(p), p) → Refl

Trans(p,Symm(p)) → Refl

Symm(Refl) → Refl

Symm(Symm(p)) → p

Symm(Trans(p1, p2)) → Trans(Symm(p2), Symm(p1))
Trans(Symm(p1),Trans(p1, p2)) → p2

Trans(p1,Trans(Symm(p1), p2)) → p2

Fig. 4. Convergent System for Canonizing Proofs

Theorem 3 (Canonical Proofs) Suppose an equality proof p is in canonical
form with respect to the rewrite system of Figure 4. Then p is either Refl or in
the set C inductively defined by:

C ::= U | Symm(U) | Trans(U , C) | Trans(Symm(U), C)

Furthermore, no assumption is used twice in p, and if p ∈ C, then there is no
a ∈ A such that p :: a = a.

Proof. The proof is by induction on the form of p. If p is Refl or in U , it is clearly
in C and satisfies the condition on assumptions. It does not prove any equation
of the form a = a, by independence of assumptions. If p ≡ Symm(p1) for some
p1, then by IH, p1 ∈ C. We cannot have p1 ≡ Symm(p2), since then p is not
canonical. For the same reason, we cannot have p1 ≡ Trans(p2, p3) or p1 ≡ Refl.
The only possibility is that p1 ∈ U , which shows that p ∈ C. This also implies
that p does not prove any equations of the form a = a, since p1 does not by
independence of assumptions. The condition on assumptions is clearly satisfied,
since p contains a single assumption.

Finally, if p ≡ Trans(p1, p2) for some p1, p2, then by IH we may assume
p1, p2 ∈ C; p is not canonical if one of p1 or p2 is Refl. We also cannot have

p1 ≡ Trans(p3, p4), since p would not be canonical. Similar considerations show
that the only possibilities are p1 ≡ u ∈ U or p1 ≡ Symm(u) ∈ Symm(U). This
shows p ∈ C. To show that the condition on assumptions is satisfied by p, we
have by IH that it is satisfied by p2. It now suffices to show that u cannot occur
in p2. Suppose p1 :: a = b for some a, b ∈ A. Since p1 contains an assump-
tion, a and b are, in fact, the unique atoms such that p1 :: a = b. Suppose
u occurs in p2. Since p2 ∈ C, this means that there is a sequence L1, . . . , Ln

of proofs in U ∪ Symm(U) such that p2 ≡ Trans(L1,Trans(. . . ,Trans(Ln, q)))
for some q ∈ C; where Ln ≡ u or Ln ≡ Symm(u). Suppose Ln ≡ p1. If
n = 1, then the only way p (≡ Trans(p1,Trans(p1, q))) can prove a theo-
rem is if a ≡ b, which contradicts independence of assumptions. If n > 1,
then Trans(L1,Trans(. . . ,Trans(Ln−2, Ln−1))) :: b = a. This contradicts in-
dependence, since this latter term and Ln do not contain the same assump-
tion by IH. Suppose now that Ln 6≡ p1, and hence, Ln :: b = a. Suppose
n > 1. We have Trans(L1,Trans(. . . ,Trans(Ln−2, Ln−1))) :: b = b. If n = 2
then Ln−1 :: b = b, contradicting independence of assumptions. Otherwise,
Trans(L1,Trans(. . . , Ln−2)) :: b = x for some x, and Ln−1 :: x = b. This again
contradicts independence of assumptions. A similar argument shows that p does
not prove any equation of the form b = b. If n = 1, then p ≡ Trans(p1,Trans(L1, q)),
where either p1 = Symm(L1) or L1 = Symm(p1). In either case, p is not in canon-
ical form.

Completeness now follows easily:

Proof (Completeness (Theorem 2)). Assuming p1, p2 ∈ P̂ prove a theorem in
common, we must show p1

∼= p2. By Soundness (Theorem 1), we may assume p1

and p2 are in the canonical form of Theorem 3. Suppose p1 6≡ p2. Then neither
one can be Refl, since by Theorem 3, Refl is the only proof in that canonical form
which proves an equation of the form a = a. So p1, p2 ∈ C. Since p1 and p2 both
prove a theorem and both contain an assumption, by Lemma 2, we may suppose
they both prove just a = b (where a 6≡ b). Suppose p2 ∈ U ∪ Symm(U). Then
independence of assumptions is violated, since p1 :: a = b but p1 6≡ p2. Suppose
p2 ≡ Trans(L,Trans(L1, . . . Ln)). Then L :: a = x and Trans(L1, . . . Ln) :: x = b

for some x. Hence,

Symm(Trans(Trans(L1, . . . Ln),Symm(p1))) :: a = x

which again contradicts independence of assumptions (since L ∈ U ∪ Symm(U
also proves a = x).

6 A Linear-Time Strategy for Canonizing Proofs

In this Section, we show that if the rules of Figure 4 are applied with a leftmost
outermost strategy, a given equality proof can be canonized in a number of steps
linear in its size. Let Collapse be the set of all rewrite rules from the Figure
which have either a variable or a constant on the rhs. We call the remaining two
rules RAssoc and InverseIn, respectively:

Trans(Trans(p1, p2), p3) → Trans(p1,Trans(p2, p3))
Symm(Trans(p1, p2)) → Trans(Symm(p2),Symm(p1))

Define the right-linear spine of a proof p to be the longest position π of
the form 1∗ such that p|π′ is a Trans expression, for every prefix π′ of π. The
internal nodes of a proof are those of its subexpressions that are Trans or Symm
expressions. A node p′ is on the right-linear spine π of a proof p if there is a
prefix π′ of π such p|π′ ≡ p′. Now the leftmost outermost strategy decreases
the measure (m1(p), m2(p), m3(p)) in the lexicographic combination of the usual
arithmetic ordering, where the components are:

m1(p) The number of subterms occuring in some subterm of p of the form
Symm(p′).

m2(p) The size (denoted |p|) of p.
m3(p) The number of internal nodes not on the right-linear spine of p.

Note that the whole measure is bounded above by (|p|, |p|, |p|). We now show
that every rule decreases this measure. InverseIn decreases m1. This is because
we are using an outermost strategy, and so if InverseIn applies to a subterm,
that subterm is not itself contained in a Symm node at a shorter position in p.
No other rule increases m1, no matter what strategy is used. Note that when
InverseIn decreases m1, it causes m2 to increase by 1. No other rule can increase
m2, and the Collapse rules all decrease it, without increasing m3. This is again
true no matter what strategy is used. The rule RAssoc decreases m3. This is
so again because we are using an outermost strategy. If RAssoc applies to a
subterm of p, that subterm must actually occur on the right-linear spine of p. If
not, it is either immediately beneath some Symm node, in which case InverseIn
applies; or else it is the left child of some other Trans node. That other Trans
node cannot be on the right-linear spine, since if it were, RAssoc would have
been applied to it using our leftmost outermost strategy. An inductive argument
based on similar reasoning shows that other Trans node cannot be off the right-
linear spine. Hence, the original subterm we considered must have indeed been
on the right-linear spine. And then the length of that spine is increased by one by
applying RAssoc. We can then bound the number of steps to canonize p above
by 4|p|. This is so since each component is decreased linearly from an amount
bounded by |p|, with only the linear increase in m2 caused by applying InverseIn
to account for additionally.

7 Canonizing Proofs without a Strategy

In this Section, we analyze the complexity of canonization if no strategy is used.
Canonization of term p can take time at least cubic in |p|. To see this, first
observe that right associating a left-associated term of size n takes O(n2) time if
a leftmost innermost strategy is used. This is because with an innermost strategy,
each assumption starting with the third one from the left must be pushed past

all the assumptions to its left. This takes Σn
i=3i = O(n2) time. Now consider the

following example

Symm1(. . . (Symmn

2
(Trans(. . . (Trans(a1, a2), a3), . . .), an

2
)) . . .)

where a1, . . . , an

2
are assumptions. For each instance of the inverse operator

Symm, it obviously takes (at least) linear time to distribute it inwards to the
innermost positions. Since InverseIn swaps the positions of its arguments, each
distribution of Symm into a proof in completely right associated form results
in a completely left-associated form. The proof then has to be put into right
associated form again. If we alternate pushing inverses in and right associating
fully left associated terms, the overall time complexity is O(n3). The following
theorem shows that this is, in fact, the worst case.

Theorem 4 (Analysis with no strategy) It takes O(|p|3) steps to normalize
a proof p using the rules of Figure 4 (without a fixed strategy).

Proof. Let TransPos(p) be the set of positions in p at which there is a Trans
operator. Let lefts(π) be the number of 0s in position π, and let invs above(π, p)
be the number of prefixes of π at which p has a Symm operator. Now define the
following three measures:

m1(p) = Σπ∈TransPos(p) invs above(π, p),
m2(p) = Σπ∈TransPos(p) lefts(π),
m3(p) = |p|

The claim is that each rule reduces the measure

m(p) = (m1(p), m2(p), m3(p))

in the lexicographic combination of the usual less-than relation on natural num-
bers. Collapse rules clearly reduce m3, and can readily be seen to preserve m1

and m2. InverseIn reduces m1, and RAssoc maintains m1 while reducing m2.
We obtain a bound of 2|p|3 for the number of rewrite steps to normalize

p. This is done using a more refined analysis of the changes to the measure
m, presented by the table of Figure 5. Each row bounds the effect of a rule
or rules on m(p), for an arbitrary proof p, by showing the worst-case (slowest
decrease) change on the measure when p is rewritten to some p′. In the worst
case, RAssoc rewrites Trans(Trans(p1, p2), p3) to Trans(p1,Trans(p2, p3)) where
p1 is an assumption. This is the worst case because p1 then contributes nothing
to m2(p), since its position is not in TransPos(p). If p1 contained a Trans node,
then m2 would decrease by more than 1. As it is, the only decrease to m2(p)
is due to the fact that the Trans node at position 1 in p′ is to the left of one
fewer Trans nodes than the node at position 0 in p. The worst case shown by
Figure 5 for InverseIn occurs when the rule is applied at the top position of
Symm(Trans(p1, p2)), where p1 is an assumption and p2 is hence a term of size
|p| − 3. In this case, m2 increases by |p| − 3, because p2 occurs to the left of one
more Trans node in the resulting term than in the original term p.

Rule(s) Starting measure Ending measure

Collapse (m1, m2, m3) (m1, m2, m3 − 1)
RAssoc (m1, m2, m3) (m1, m2 − 1, m3)
InverseIn (m1, m2, m3) (m1 − 1, m2 + |p| − 3, m3 + 1)

Fig. 5. How the rules change the measure m(p) of a proof p

To obtain the 2|p|3 bound, we next observe that m1(p) and m2(p) are both
bounded by |p|2 for any p. Each use of InverseIn results in a decrease by 1 in m1

and an increase by |p| − 3 in m2. To offset the latter increase, RAssoc will have
to be used some number of times bounded by |p|. Hence, the overall number of
steps is bounded by the sum of |p|2 for the initial value of m2; |p|

3 to reduce all
the additions to m2 caused by reducing m1 (|p| for each reduction to m1, which
is bounded by |p|2); |p|2 to offset the additions to m3 incurred by InverseIn; and
|p| for the initial value of m3. For any p with |p| > 2, this sum is bounded above
by 2|p|3. (The only reducible term of size less than or equal to 2 is Symm(Refl),
which reduces to Refl in just one step.)

8 Minimal Proofs from Union-Find

This Section presents an approach to producing minimal proofs from the well-
known union-find algorithm [4, Chapter 22]. Proofs are minimal in the sense
that they use the unique minimal subset of independent assumptions from which
a given equation can be derived. Recall that union-find maintains equivalence
classes of atoms in balanced, lazily path-compressed trees. Each atom has an
associated find pointer which points towards the root of its tree. Roots of trees
have null find pointers.

We obtain minimal proofs from union-find by first instrumenting the code for
union and find to maintain proofs (cf. [15, Chapter 5]). Unioning the equivalence
classes for atoms x and y requires a proof that x = y. Here, such proofs are
just assumptions from U . Finding the representative y of x’s equivalence class
produces a proof that x = y. Each non-null find pointer has an associated proof.
We maintain the invariant that if x’s find pointer points to y, then the associated
proof is a proof of x = y. This invariant is maintained as illustrated in Figures 6
and 7. Find pointers are denoted with solid arrows, and the associated proofs
are written (using the compact group notation) next to them. In Figure 7, the
dotted arrow is for an assumption given to union. The proof produced for a call
to find for atom x is just the proof associated with x’s find pointer after path
compression has modified it to point directly to the root of x’s tree. If x is the
root of its tree, the proof is just Refl.

On top of proof-producing union and find, we define a check function, that
checks whether or not atoms x and y are equal under the assumptions given
to union. If they are equal, the function produces a minimal proof of x = y.
The implementation is as follows. We call find on x and y. If they have the

e3

e2

e1

p2

p1

p2

p1
�

 p2

e3

e2

e1

Fig. 6. Maintaining proofs during path compression.

r1 r2

e1 e2

p1 p2

p

 r2

r1

 e2

e1

p1
-1

�

 p
�

 p2

Fig. 7. Maintaining proofs during unions.

same representative z, then find produces proofs p1 and p2 of x = z and y = z,
respectively. To compute the minimal proof that x = y, we simply canonize the
proof Trans(p1,Symm(p2)) using the rules of Figure 4. Since we can canonize a
proof using the strategy of Section 6 in time linear in the proof’s size, it suffices
to bound the size of Trans(p1,Symm(p2)) to bound the additional time needed
for producing the minimal proof.

We bound the size of proofs returned by find as follows. Define the proof to the
root for a non-root atom x in a union-find tree to be Trans(p1,Trans(p2, . . . , pn)),
where p1, . . . , pn are the proofs associated with the find pointers on the path from
x to the root of the tree. Clearly the size of the proof to the root for x is the size
of the proof returned by find for x. Suppose that T (n) is a bound on the size of
the biggest proof to the root in a tree of size n maintained by union-find. Clearly
the size of the biggest proof to the root is not affected by path compression. So
consider the effect of doing a union. The worst case is when two trees of equal

size n are merged. The size of the new tree is 2 ∗ n + 1. The proof associated
with the new find pointer (see Figure 7) is clearly bounded by 2∗T (n)+4, since
it consists of one Symm node, two Trans nodes, an assumption, and two proofs
to the roots of the merged trees. The size of the biggest proof to the root in the
resulting tree is hence 3 ∗ T (n) + 4. This is because all the paths in one of the
merged trees have been augmented by a find pointer whose associated proof is
of size 2 ∗ T (n) + 4. So T (n) must satisfy T (2 ∗ n + 1) = 3 ∗ T (n) + 4. Textbook
techniques yield a solution to this recurrence of T (n) = O(nlog

2
3). In the worst

case, when the size of the minimal proof is O(n), this result is quite close to the
result of O(n logn) obtained in [10]. It must be noted, however, that in that
work, minimal proofs of size k are obtained in O(k logn) time, which is clearly
better than the bound obtained here, if k � n or n is very large. The advantage
of the approach presented here is its simplicity: the cited work requires rather
subtle additions to union-find to compute minimal proofs.

9 Application to Cooperating Decision Procedures

In this Section, the above ideas are applied in the context of the CVC (“Cooper-
ating Validity Checker”) system to obtain major performance improvements on
benchmark formulas from hardware verification [16]. In review, CVC and similar
tools like CVC Lite (CVC’s successor) and ICS separate boolean reasoning from
theory-specific reasoning [2, 6]. A fast propositional SAT solver tries to find an
assignment to the propositional skeleton of the input formula, or possibly to an
equisatisfiable CNF version. Either at each step as the assignment is generated
or once it is found, cooperating decision procedures (DPs) are consulted about
the consistency of the assignment. For example, a large formula might contain
many equalities or other interpreted atomic formulas between ground terms.
The SAT solver chooses an assignment to some of those formulas which makes
the goal formula satisfiable, if the meanings of the interpreted predicates are
ignored. The cooperating DPs then determine if that assignment is consistent
with the meanings of the interpreted predicates. If not, a subset of the assign-
ment is identified as inconsistent and returned to the SAT solver as a conflict
clause. Conflict clauses are maintained during subsequent search for a satisfying
assignment, and can greatly prune the search space [1]. Smaller conflict clauses
are always more effective than their supersets at pruning the search space.

CVC leverages its infrastructure for generating proofs to track assumptions.
The basic idea is that when the cooperating DPs discover that an assignment
proposed by the SAT solver is inconsistent, a subset of the assumptions used
in that assignment can be determined by inspecting an explicit proof of the
contradiction. Such proofs are generated by CVC’s DPs. In its fastest mode
before the present work, the DPs generate not a full proof, but an abstract proof
consisting just of the assumptions that would have appeared in the full proof [1].
This greatly reduces the time required to manipulate proofs and extract conflict
clauses.

For the first experiments reported in this Section, CVC was modified to
canonize equality proofs according to the linear-time strategy of Section 6. Note
that this requires full proofs instead of abstract proofs. Each time CVC’s DPs
try to build an equality proof, that proof is put in canonical form. It turns
out that an additional transformation on proofs is required to get significant
benefits for CVC’s equational reasoning. CVC’s congruence closure algorithm
rewrites asserted disequalities each time one of the sides is asserted equal to
something else. The modified disequality is then asserted. The resulting proofs
of contradictions turn out often to involve subproofs of the following form:

a = b

a = c b = d

(a = b) ⇔ (c = d)
SubstEquiv

c = d
EquivMP

Such subproofs are rewritten to ones of the following form in order to take
advantage of the canonization algorithm:

a = c

c = aSymm
a = b b = d

a = d
Trans

c = d
Trans

Algebraically, this corresponds to adding the following rewrite rule to the rules
of Figure 4:

EquivMP(p1,SubstEq(p2, p3)) → Trans(Symm(p2),Trans(p1, p3))

Adding this rule to those of Figure 4 leads to no new critical pairs, and the
resulting system is obviously still terminating. Hence, it remains convergent.
Leftmost outermost application is readily seen to remain linear time.

Figure 8 compares the number of decisions (the number of times a value
was chosen for an atomic formula in a propositional assignment) and wallclock
time on 6 benchmark formulas from hardware verification, using the approach
with abstract proofs and the approach with canonized full proofs. The sizes
of the benchmark formulas themselves in ASCII text are also listed. We see
that canonization reduces the number of decisions from anywhere from 15% to
65% on these benchmarks, but in all but one case (pp-dmem) requires more
time overall. Profiling the largest benchmark (pp-regfile) reveals that 60% of the
overall runtime is going to proof canonization. This is an unacceptably high price
to pay for the search space pruning we are achieving. We address this problem,
but first consider data on the canonization itself.

Figure 9 breaks out the number of uses of the different rewrite rules during
canonization. Note that the numbers for the Collapse rules do not count uses
of the following rules, where it is never necessary to build the left hand side at
all when canonizing equality proofs as they are being built:

1 ∗ x → x

x ∗ 1 → x

1−1 → 1

Benchmark Size (KB) dec. orig time orig (s) dec. canon time canon (s)

dlx-regfile 70.9 2807 2.1 2430 5.6
dlx-dmem 71.0 1336 1.0 1025 1.8
pp-regfile 2480.0 115197 295.7 43610 336.9
pp-dmem 1842.2 25928 68.1 11991 58.2
pp-bloaddata 314.2 4060 1.7 3502 3.3
pp-TakenBranch 1842.3 15364 26.1 9616 33.2

Fig. 8. Comparison of original CVC and CVC with canonization of equality proofs on
hardware verification benchmarks (“dec.” stands for decisions).

Benchmark Collapse RAssoc InverseIn Total

dlx-regfile 87515 156463 85961 329939
dlx-dmem 25576 46584 22721 94881
pp-regfile 4620398 10391230 3933697 18945325
pp-dmem 964806 1885856 737122 3587784
pp-bloaddata 41329 61975 31831 135135
pp-TakenBranch 486355 834499 273832 1594686

Fig. 9. Number of rewrites by category for canonization of equality proofs when run-
ning modified CVC on the given benchmarks.

We address the problem of spending too much time canonizing full equality
proofs as follows. Instead of canonizing equality proofs and then extracting the
assumptions from proofs of contradictions (with canonical equality subproofs),
we extract assumptions from uncanonized proofs of contradictions in a way that
incorporates the algebra of equality proofs. In more detail, for each equality
subproof occurring in a proof of a contradiction, we compute the difference
between the number of positive and the number of negative occurrences of each
assumption in that subproof. An occurrence is positive if it beneath an even
number of uses of Symm, and negative otherwise. During this computation, we
queue up non-equality subproofs of the equality proof for later consideration. It
is an easy lemma that the difference between the number of positive and the
number of negative occurrences of an assumption is 0 iff that assumption does
not occur in the canonized version of the subproof (cf. Theorem 3).

With this “smart” abstraction of otherwise uncanonized proofs of contradic-
tions, we obtain the favorable results in Figure 10. Wallclock times range from
slightly slower for some of the smaller benchmarks to 60% faster in the case
of the two toughest benchmarks. Profiling the pp-regfile benchmark reveals that
smart abstraction now takes a much more acceptable 10% of the overall runtime.

The numbers of decisions used for the smart version are slightly different from
the numbers of decisions for the canonizing version (Figure 8). Careful inspection
of trace data from canonization shows that in some cases, a Collapse rule applies
to eliminate an entire non-equality subproof. This sort of elimination will not be
possible in general in the case of smart abstraction. And once different conflict

Benchmark dec. orig time orig (s) dec. smart time smart (s)

dlx-regfile 2807 2.1 2430 2.5
dlx-dmem 1336 1.0 1048 0.9
pp-regfile 115197 295.7 44547 121.9
pp-dmem 25928 68.1 11899 23.7
pp-bloaddata 4060 1.7 3461 2.1
pp-TakenBranch 15364 26.1 11928 24.6

Fig. 10. Comparison of original CVC and CVC with smart abstraction of assumptions
from uncanonized proofs of contradictions.

clauses begin to be added, the behaviors of the two versions of CVC are highly
likely to diverge.

10 Conclusion and Future Work

Theorem equivalence of equality proofs using independent assumptions is com-
pletely characterized by the standard axioms for free groups. Using a standard
completion of the group axioms taken as rewrite rules, equality proofs can be put
into canonical form. This form is minimal in the sense that the fewest possible
assumptions are used. Canonization can be performed using a simple strategy in
time linear in the size of the equality proof. Without a strategy, canonization can
take cubic time in the proof’s size. Using these results, the standard union-find
algorithm for ground equational reasoning can be instrumented to produce min-
imal proofs of equations x = y in additional time O(nlog

2
3), where n is the size

of the equivalence class of x and y. Using the algebra of equality proofs, major
improvements were achieved in the performance of the CVC tool on hardware
verification benchmark formulas. The approach is attractive, because rather than
carefully modifying specific algorithms to produce minimal proofs (as in [10, 5]),
we apply a simple general-purpose technique. This can result, for example, in
improvements for other decision procedures, like arithmetic, that do equational
reasoning.

The most exciting avenue for future work is to extend the algebra of equality
proofs to an algebra of congruence proofs. In the case of unary function symbols,
the congruence proof rule functions like a homomorphism: Congr(Trans(p1, p2)) =
Trans(Congr(p1),Congr(p2)). If this observation can be generalized appropri-
ately to higher arities, we may be able to canonize congruence proofs. This
promises further speedups for tools like CVC, which rely heavily on congruence
closure. Careful inspection of some of the conflict clauses generated reveal cases
where out of large clauses (e.g., 21 literals) derived from proofs using congruence
rules, only a very small number (e.g., 3) are needed for inconsistency.

The authors wish to thank the anonymous reviewers for their helpful com-
ments, as well as Grigori Mints and David Dill for earlier feedback on the ideas.

References

1. C. Barrett, D. Dill, and A. Stump. Checking Satisfiability of First-Order For-
mulas by Incremental Translation to SAT. In 14th International Conference on

Computer-Aided Verification, 2002.
2. Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of the co-

operating validity checker. In Proceedings of the 16th International Conference on

Computer Aided Verification, 2004.
3. Jerry R. Burch and David L. Dill. Automatic verification of pipelined microproces-

sor control. In David L. Dill, editor, Conference on Computer-Aided Verification,
volume 818 of Lecture Notes in Computer Science, pages 68–80. Springer-Verlag,
1994.

4. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press,
1992.

5. L. de Moura, H. Rueß, and N. Shankar. Justifying Equality. In S. Ranise and
C. Tinelli, editors, 2nd International Workshop on Pragmatics of Decision Proce-

dures in Automated Reasoning, 2004.
6. J. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: integrated canonizer and

solver. In G. Berry, H. Comon, and A. Finkel, editors, 13th International Confer-

ence on Computer-Aided Verification, 2001.
7. D. Knuth and P. Bendix. Simple Word Problems in Universal Algebras. In J. Leech,

editor, Computational Problems in Abstract Algebra, pages 263–297. Pergamon
Press, 1970.

8. S. Lahiri, R. Bryant, A. Goel, and M. Talupur. Revisiting Positive Equality. In
Tools and Algorithms for the Construction and Analysis of Systems, volume 2988
of LNCS, pages 1–15. Springer-Verlag, 2004.

9. G. Nelson and D. Oppen. Fast decision procedures based on congruence closure.
Journal of the Association for Computing Machinery, 27(2):356–64, 1980.

10. R. Nieuwenhuis and A. Oliveras. Union-Find and Congruence Closure Algorithms
that Produce Proofs. In S. Ranise and C. Tinelli, editors, 2nd International Work-

shop on Pragmatics of Decision Procedures in Automated Reasoning, 2004. (short
paper).

11. R. Nieuwenhuis and A. Oliveras. Proof-producing Congruence Closure. In J. Giesl,
editor, 16th International Conference on Rewriting Techniques and Applications,
2005. (under review).

12. A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding Equality Formulas by
Small Domains Instantiations. In Proceedings of the 11th International Computer-

Aided Verification Conference, volume 1633 of Lecture Notes in Computer Science,
pages 455–469. Springer-Verlag, 1999.

13. H. Ruess and N. Shankar. Deconstructing Shostak. In 16th IEEE Symposium on

Logic in Computer Science, 2001.
14. R. Shostak. Deciding combinations of theories. Journal of the Association for

Computing Machinery, 31(1):1–12, 1984.
15. A. Stump. Checking Validities and Proofs with CVC and flea. PhD thesis, Stanford

University, 2002. available from http://www.cs.wustl.edu/˜ stump/.
16. A. Stump, C. Barrett, and D. Dill. CVC: a Cooperating Validity Checker. In 14th

International Conference on Computer-Aided Verification, 2002.
17. M. Velev and R. Bryant. Superscalar Processor Verification Using Efficient Re-

ductions of the Logic of Equality with Uninterpreted Functions. In L. Pierre and
T. Kropf, editors, Correct Hardware Design and Verification Methods, volume 1703
of Lecture Notes in Computer Science, pages 37–53. Springer-Verlag, 1999.

