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Abstract
This paper presents a resource typing framework for the Guru
verified-programming language, in which abstractions for various
kinds of program resources can be defined. Implemented examples
include reference-counted data, mutable arrays, and heap-allocated
mutable aliased data. The approach enables efficient, type-safe pro-
gramming with mutable and aliased data structures, with explicit
deallocation (not garbage collection). We evaluate performance of
the approach with two verified benchmarks, one involving mutable
arrays, and another involving FIFO queues.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Applicative (functional) languages; F.3.1 [Logics and
Meanings of Programs]: Mechanical verification; F.4.1 [Mathe-
matical Logic]: Mechanical theorem proving

General Terms Languages, Verification

Keywords Dependently Typed Programming, Resource Types,
Aliasing, Language-Based Verification

1. Introduction
Dependent types are of significant current interest for practical ver-
ified programming, as a substantial number of recent works attest
(e.g., [1, 4, 6–9, 13]). Dependent types hold out the promise of
incrementally extending the verification power of traditional type
systems. With traditional verification methods, there is a significant
shift in thinking required for programmers to apply the method. In
contrast, with dependent types, programmers can incrementally en-
rich types with which they are well familiar. For example, it is a rel-
atively small conceptual leap to go from a type like 〈list A〉 (for
homogeneous lists) to a type like 〈list A n〉 (for homogeneous
lists of length n). Of course, the richer the properties expressed by
the types, the more verification burden we might expect. But still,
with dependent types, there seems a better chance of incrementally
exploring the continuum of correctness, starting with current pro-
gramming practice, than with traditional verification methods.

But current dependent type systems are largely confined to
functional programming languages. Despite the great intellectual
depth of the literature on functional programming, and enthusiastic
user communities, industrial adoption of functional programming
is miniscule compared to languages like C/C++ or Java. There are,
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no doubt, many non-technical reasons for this, such as maturity
of standard libraries (it is very difficult to compete, for example,
with the massive standard library for Java). But there is at least
one technical issue which has always held back functional pro-
gramming languages, and others based on automatic memory man-
agement: efficiency. Again, despite tremendous invention in the
field, garbage collection remains costly, as several recent studies
report [3, 17].

This paper shows how to combine the expressive power of de-
pendent types with linear types to define imperative abstractions
for different kinds of resources, without the need for garbage col-
lection. Combined linear and dependent types are potent verifica-
tion tools (cf. [15, 18]). This is carried out in the context of the
Guru verified-programming language, a dependently typed pure
functional programming language. Resources are created and con-
sumed explicitly. The type system rules out memory errors such
as accessing deallocated or uninitialized memory by ensuring that
each resource is consumed exactly once. The definition of a re-
source is flexible, so that resource consumption need not corre-
spond to memory deallocation. This flexibility is achieved through
a resource typing framework, in which different resource man-
agement schemes can be defined by a set of primitive types, along
with operations on those types. The definition of a term-level prim-
itive consists of its type, an optional pure functional term which
models the primitive, and (imperative) C code which the Guru com-
piler will use for the implementation of the primitive. The connec-
tion between this C code and the pure functional model (if supplied)
must be trusted. The resource typing framework – in particular, its
linear types – helps ensure that the abstraction is used only in ways
where the behaviors of the imperative implementation and func-
tional model coincide. But since the number of lines of C code re-
quired to implement, say, mutable arrays is very small (on the order
of tens of lines), we contend that this is a reasonable compromise
between trustedness and the burden of verification.

We begin with an overview of resource typing in GURU, focus-
ing on several example resource types. We then consider several
example imperative abstractions built using those resource types.
These include abstractions for mutable arrays, and an example of
an abstraction using aliasing, namely FIFO queues. We give a sys-
tem of resource-typing rules, and state its soundness with respect
to a resource-manipulating semantics. Finally, we give some empir-
ical results comparing our approach to memory management with
that based on garbage collection in OCAML and HASKELL on some
benchmark programs.

The following SUBVERSION command will check out the ver-
sion of GURU and the sources for all the examples in this paper,
from the Google Code repository for GURU, at www.guru-lang.
org. Most are in GURU’s standard library, guru-lang/lib/. A
few (noted below) are in a special directory along with the source
of this paper: guru-lang/papers/resource-typing/tests/:

svn co



http://guru-lang.googlecode.com/svn/branches/plpv2010/

2. Overview of GURU’s Resource Typing
In this section, we define a resource-typing framework, orthogonal
to GURU’s datatype typing, upon which we can build various im-
perative abstractions. We start with the familiar idea of modeling
resources using linear types. A resource is considered to be an en-
tity to which exactly one other entity refers, while it exists in the
program. So a resource in this sense is intended to be like a physical
resource, such as a bicycle: at most one person can make use of the
bicycle at a time. This is the first principle of our resource-typing
framework: we must have exactly one reference to each extant re-
source at any point during evaluation. To this we add a second prin-
ciple, inspired by examples of physical resource, like the bicycle
example. For after all, more than one person can use the bicycle,
if one rides on the handle bars and another on the seat. Resources
often consist of sub-resources (like the handle bars and seat of the
bicycle), which may be used independently. But while they are in
use, the resource of which they are parts is not available for use as a
whole. This is our second principle: resources may be divided into
sub-resources, but in that case, the whole resource cannot be used
by another entity until use of the sub-resources is complete.

Our framework allows us to track the sub-resource relationship
statically. It also enforces the linearity discipline. The framework
allows different resource types to be declared, together with prim-
itive operations on them. Primitives are declared with an optional
functional model, and then C code providing its (imperative) imple-
mentation. When such a primitive is declared, its resource type is
declared axiomatically: we do not check that the functional model
satisfies that resource type, but just take it as a given that the C
code’s behavior matches that specified by the resource type. As
stated above, the behavioral equivalence of the C code and the func-
tional model is not proven, and must be trusted. It is our contention
that this is a reasonable tradeoff between verifiability and trustwor-
thiness.

A final note on usability of the framework: while we are cur-
rently programming directly in the language described below, we
envision this serving as a core language for a surface language with
more inference than we have here (see the Conclusion).

2.1 Quick introduction to GURU

In order to move quickly to concrete examples, we survey first the
syntax and informal semantics of terms and types in GURU, includ-
ing resource-type annotations. We omit the syntax for proofs P and
formulas F , which are separate syntactic categories in GURU. The
syntax is given in Figure 1, where we write o to mean an optional
occurrence of o.

Terms and types are as reported in our previous work [14],
except for the ownership annotations o, with their accompanying
consumption annotations i. For terms t, we have general recursive
functions introduced with fun, which lists inputs and their types
first, then a “:”, then the output type, then a “.”, and then the body
of the function. We support finite failure via abort. Operationally,
impossible terms behave like abort, but come with a proof that
that point in the code can never be reached (because the assump-
tions in scope at that point are contradictory). The do-end con-
struct is just a prefix notation for sequencing of terms. It is not
the monadic do familiar from HASKELL. We have explicit casts to
change the type of a term t using an equation between types proved
by a proof P . We also have let- and match-terms. Right after the
match keyword, we may optionally have !, which means that the
scrutinee will not be consumed by the match. The default is that
the scrutinee will be consumed. These let- and match-terms bind
additional assumption variables after the by keyword, which pro-
vide information in the rest of those terms about the computation

t ::= x ||
c ||
fun x(i1 o1 x1 : A1) · · · (in on xn : An)

: o T. t ||
(t X) ||
cast t by P ||
abort T ||
impossible P T ||
do t1 . . . tn end ||
let x = t by y in t′ ||
match ! t by x y with
c1 x̄1 => t1| · · · |cn x̄n => tn end ||

existse term P t ||
@ t

X ::= t || T || P

A ::= T || type || F

T ::= x || d || ! || Fun(i o x : A).o T || 〈T Y 〉

Y ::= t || T

o ::= #untracked || spec ||#r ||#〈r x〉

i ::= ˆ || ! || 1

Figure 1. Terms (t) and types (T ); underlined occurrences are
optional

that must have led there. For example, in let-terms, the assump-
tion variable has classifier {x = t}, following the let-definition
of x to t. This is useful information in the body of the let, since
it tells us that t has terminated, and that x is provably equal to its
value. The existse term is a rarely used construct for elimination
of a proved existential formula, inside a term. The final term con-
struct @ t is for compressing chains of ownership, discussed further
below.

A few words are warranted on the Operational Type Theory
(OpTT) upon which GURU is based. Provable equality between
terms in GURU has the meaning that the two terms either both di-
verge using GURU’s call-by-value operational semantics, or join at
a common value. Provable equality between types has the meaning
that the types are equal modulo provable equality of any terms they
contain (as indices to indexed datatypes). OpTT preserves decid-
ability of typing and logical consistency in the presence of general
recursion. Definitional (automatic) equality is very weak, and does
not include computation. Casts are used to change the type of a
term, thus placing evaluation under the control of the programmer,
instead of the type checker. The axiom joinn t1 t2 states that t1
and t2 are joinable in at most n steps (in practice, n is omitted and
enforced by a global timeout). To ensure logical consistency, proofs
are syntactically separated from terms, and a straightforward ter-
mination analysis is used to ensure that induction proofs are well-
founded. The separation of logical and computational parts in a
type-theoretic language has been independently proposed in Luo’s
Logic-Enriched Type Theory [5].

2.2 Ownership annotations
Let us now consider the ownership annotations o and consumption
annotations i (of Figure 1). Every term in GURU has a resource
type, as well as a datatype. The ownership annotations o are given
for function inputs and outputs, in order to state that resource type,



as well as to express subresource relationships. The different kinds
of resource types are:

• #untracked. This is for data that are not being treated as
resources, such as scalar data (booleans, machine words, etc.).
Note that we do not perform closure conversion in GURU, so
that we may also treat functions as untracked data (closure
conversion would require tracking the memory for the closure).

• spec. This is for specificational data, that are dropped during
compilation and by GURU’s definitional equality. Note that the
current design does not allow declaring an additional resource
type (other than spec) for specificational data.

• #r. This is for data of a declared resource type r. We envision
library designers crafting a small number of resource types
(as we have done so far), that can then be used by GURU
programmers.

• #<r x>. This is for data of a declared resource type r, which
are subresources of x, where x is a variable. If we have y :
#<r x>, then we say that y is pinning x. Our static analysis,
defined below, will require that all pinning resources of x are
consumed before x itself is consumed.

If an ownership annotation is omitted, GURU chooses a default of
either #untracked, if the datatype is flat (like bool), a function
type, or declared untracked by the user; or else #unowned, dis-
cussed below.

Consumption annotations i refine somewhat the basic resource-
tracking of linear types. Without any consumption annotation, the
meaning is that the input must be consumed exactly once by the
function. An input can be consumed by passing it to another func-
tion whose type asserts that it will consume the input (including
resource-managing primitive functions which actually deallocate
memory). This includes passing the input to a term constructor. It
can also be consumed by returning it from the function. The addi-
tional annotations i mean:

• ˆ : consume (exactly once) but do not return. This annotation
means that the input is to be consumed by the function, but not
returned, neither directly, nor in another data structure.

• !: do not consume. This annotation means that the input will not
be consumed at all by the function. This is primarily used when
defining primitive operations for resource types.

• 1: consume, where returning counts as consuming. This anno-
tation is not implemented in GURU, since leaving off the con-
sumption annotation already has this meaning. 1 is included just
for uniformity below.

3. Example Resource Types
In this section, we consider examples of resource types and their
associated primitive operations. We use these resource types to
help build higher-level imperative abstractions, described later in
the paper.

3.1 Reference-Counted Data
The most commonly used resource type in GURU is #unowned.
This is the resource type for reference-counted data, which are not
pinned by some other reference. Figure 2 gives a listing from the
unowned.g library file (see guru-lang/lib on the 1.0 branch
in the Google Code repository, via www.guru-lang.org), which
declares this resource type. This listing has four commands: a
ResourceType-command to declare the unowned resource type;
an Init-command to declare how subdata are to be initialized
when extracting them during pattern-matching; and two Define-

commands, defining primitive functions for incrementing and
decrementing the reference count. Let us look at these in turn:

• the ResourceType-command. This declares the resource type,
together with a primitive function consume unowned. This
function will be used by GURU for consuming elements of that
resource type, in one special situation: match-terms. By default,
when we match on a piece of data, that data will be consumed.
The GURU compiler will insert a call to this consume-function
after extracting the subdata.
The functional model given for consume unowned is a trivial
GURU function. The C code for consume unowned, which fol-
lows “<<END”, uses functions dec, op, and release, provided
by the GURU runtime, to check the reference counts, which are
stored in all but the low 8 bits of a single word per constructor
application. If the reference count is 0 (so all those bits at and
above bit 8 are off), then the data is released. (So the GURU run-
time provides special built-in support for reference counting.)

• the Init-command. This specifies how to initialize subdata y
of x when we pattern-match on x. The GURU compiler will
insert a call to the given C function, whenever the resource type
of the scrutinee of a match is the same as the first resource
type listed (for x) in the Init-command, and the resource
type of the subdatum is the same as the second resource type
listed (for y). Here, we initialize reference-counted subdata
by incrementing their reference counts. Consuming a piece of
data will consume its subdata, so if the reference count of the
scrutinee falls to 0, we will decrement the reference counts of
its subdata when it is consumed. That is why we increment
the subdata’s reference counts with this Init-function, so that
we still have a reference to them even after the scrutinee is
consumed. Note that while this use of Init-commands could
require a number of commands quadratic in the number of
resource types, we anticipate that the number of resource types,
particularly used in combination with each other, will be small
(less than 10, say).

• The Define-commands. The keyword primitive signals that
these are primitives. Here, it is the resource types declared for
the primitives that are of most interest. For inc, the resource
type is

Fun(spec A:type)(! #unowned y:A).#unowned A

This says that inc takes a typeA, and then an element y of that
type. The resource type of y is #unowned, and the consumption
annotation is !, indicating that this y will not be consumed by
inc. Then inc will produce a new #unowned A as output. So
the type is telling us (and the resource-tracking analysis) that
when we increment a reference count of some object x, we
do not consume the reference to x, but gain an additional new
reference to it from inc. So where there was one reference to
x before, there are now two references. So we are thinking of
each reference to x as a separate resource to be tracked.
The type for dec just says that it consumes the given reference.
The consumption annotation ˆ says that it does not return that
reference – but this is not important in this case.

The attentive reader might be wondering about why we use
spec with the type A given to inc, but not with the type A given
to dec. The reason is that at runtime, compiled GURU programs
pass integers corresponding to type families (that is, one integer
for all different instances of the type family for homogeneous
lists). This is for the benefit of the runtime function release,
which actually manages memory for data constructed with the
different term constructors. So even though all type annotations
are dropped during formal reasoning in GURU’s logic, some are



preserved during compilation. Here, it turns out that inc does
not need the type at runtime, while dec (which ends up calling
release) does. Note that the C code for the one case has A as an
argument, while in the other it does not.

3.2 Owned Data
One criticism of reference counting as a memory management tech-
nique is that memory traffic generated by incrementing and decre-
menting reference counts is costly in terms of performance. We
mitigate this cost by defining a second resource type, for references
which may be created and consumed without increments and decre-
ments of the reference count. The idea is that if such a reference r
is (ultimately) pinning a reference-counted reference x (that is, an
unowned reference), then it is safe to compute with r, without fear
that the referenced data object’s memory will be reclaimed. The
reference-counted reference x cannot be consumed until r is, since
r is pinning x. So we can use r safely without incrementing the
reference count. This idea is the reason for the ˆ consumption an-
notation. We need to know that the pinning reference r is really
gone, before it is safe to consume x. If the pinning reference has
been consumed by being returned by the function, possibly inside
a data structure, then this sort of consumption is not sufficient to
guarantee safety: the type system will have lost track of the con-
nection between r and x. If, on the other hand, a function is known
to consume r and not return it, then this means that the reference r
is dead, and no longer pins x.

We list some representative primitives for this resource type in
Figure 3 (for the rest, see guru-lang/lib/owned.g), and explain
them as follows:

• consume owned. As explained, we do not need to decrement
the reference count for x when we consume it.

• inspect. This takes a reference-counted (unowned) reference
x, and returns an owned reference pinning x. This is how we
obtain an owned reference.

• clone owned. This takes an owned reference y and creates a
new owned reference pinning y. Chains of ownership, where x
pins y and y pins z, can be built up in this way. Occasionally it
is necessary to collapse such chains, in which case we use the
@ t term-construct (Figure 1). If x pins y and y pins z, then @ x
pins z directly.

• inc owned. This takes an owned reference y and creates a new
unowned reference to the same object. This requires, of course,
that the reference count be incremented.

• ginit owned unowned. This initializes an unowned subdatum
y of an owned scrutinee x. In this case, the initialized y pins
x. This initialization has the effect of propagating the owned
resource type during pattern-matching, and is another point at
which chains of ownership can develop.

3.3 Unique Data
A simple resource type is that for an object to which exactly
one reference is allowed while the object exists, without the pos-
sibility of multiple references as above (although we will relax
that slightly below). The resource type for this is unique, de-
fined in Figure 4. The interesting point to note here is that when
pattern-matching on a unique object, we are insisting (with the
must consume scrutinee directive) that the scrutinee is indeed
consumed. We do not provide any way of initializing unique sub-
data from a scrutinee which is not itself unique. This ensures that
unique must propagate from subdata to containing data. That is
necessary, of course, to prevent duplicating a unique resource via
a duplicated reference to an object containing the resource. If a
term constructor’s type does not declare that it creates unique data,

while stating that it accepts unique arguments, then that construc-
tor could be applied, but never pattern-matched against (due to the
deliberate omission of the appropriate Init-function).

3.4 Unique-owned resource type
We introduce a final resource type unique owned, which we
use to implement readers/writers locking. We can obtain multi-
ple unique owned references r from a unique reference x, but
those references pin x. Our higher-level imperative abstractions
insist that operations which update the object o to which x refers
consume x, producing as output a new reference to the (impera-
tively) updated o. Since they consume the unique x, our resource-
tracking discipline forbids there from being any extant pinning
references to x. This ensures (statically) that all read-only refer-
ences to o are consumed, before the read-write reference x can be
used. The Init-function for initializing an unowned subdatum y of
a unique owned scrutinee x initializes that subdatum to be of re-
source type <owned x>, thus propagating the “owned” quality. The
listing is omitted for space reasons, but see lib/unique owned.g.

4. Array Abstractions
In this section, we consider two different abstractions of mutable
arrays, built using the resource types described in the previous sec-
tion. These array abstractions include a small number of primitive
operations, with a very small number of additional lines of C code
to trust (20 for warray, 27 for qcharray).

4.1 Mutable Arrays of Reference-Counted Data
We can easily define an abstraction for mutable word-indexed ar-
rays storing reference-counted data, where we statically ensure
that array-bounds are respected. The corresponding library file is
warray.g. First, we define <warray A n>, where A is a type and
n is a word. The intention is that n is the length, as a word, of the
array. We define that warray-type as a primitive abbreviation for
<vec A (to nat wordlen n)>. Primitive abbreviations like this
one are not included in GURU’s definitional equality when type
checking code that may be compiled. This is to ensure that com-
piled code only accesses warrays using warray’s primitive oper-
ations, not operations (like pattern-matching) on the vec type. In
code specially marked as specificational, or in proofs, however, the
abbreviation is included in definitional equality, since for reasoning
purposes, we will treat warrays as vectors.

It should also be explained that in that definition, word is the
type for 32-bit machine words, which are functionally modeled as
bitvectors of length 32, and imperatively implemented as actual
machine words. The to nat function converts a bitvector to a
unary natural number, for more convenient reasoning. Appealing
to such functions inside of types does not cause those functions
to be executed at run-time, or even compile-time. Since compile-
time evaluation is entirely under the control of the programmer, he
may find ways to prove equalities about applications of (expensive)
functions like to nat without actually performing long executions
of them.

Then we define four primitive operations, to allocate, deallo-
cate, read to, and write from a warray. Figure 5 lists the code for
just one representative operation, namely the read operation. The
functional model of this operation is just to use vec get to look up
the value stored at location (to nat wordlen i). The running
time for this, of course, is exponential in the size (as a word) of i.
The imperative implementation just uses the standard C constant-
time array access operation. Note that the input u to the primitive
is required to be a proof that the index i is less than the length n
of the array, when those words are converted to nats. By requiring
this proof, we statically ensure array-bounds are respected when-



ResourceType unowned with
Define primitive consume_unowned : Fun(A:type)(^ #unowned r:A).void
:= fun(A:type)(r:A).voidi

<<END
inline void gconsume_unowned(int A, void *r) {

if (r == 0) return;
dec(r);
// fprintf(stdout,"gdec(%x) = %d\n", r, op(r) >> 8);
if (op(r) < 256)

release(A,r,1);
}

END.

Init ginit_unowned_unowned(#unowned x)(#unowned y).#unowned
<<END

inline void *ginit_unowned_unowned(int A,void *x,void *y) {
ginc(y);
return y;

}
END.

Define primitive inc : Fun(spec A:type)(! #unowned y:A).#unowned A := fun(A:type)(y:A).y
<<END

inline void *ginc(void *y) {
inc(y);
// fprintf(stdout,"ginc(%x) = %d\n", y, op(y) >> 8);
return y;

}
END.

Define primitive dec : Fun(A:type)(^#unowned y:A).void := fun(A:type)(y:A).voidi
<<END

#define gdec(A,y) gconsume_unowned(A,y)
END.

Figure 2. The unowned resource type

ResourceType owned with
Define primitive consume_owned : Fun(A:type)(^#owned x:A).void
:= fun(A:type)(x:A).voidi <<END
inline void gconsume_owned(int A, void *x) { }

END.

Define primitive inspect : Fun(spec A:type)(!#unowned x:A).#<owned x> A
:= fun(A:type)(x:A).x <<END
#define ginspect(x) x

END.

Define primitive clone_owned : Fun(spec A:type)(! #owned y:A).#<owned y> A
:= fun(A:type)(y:A).y <<END
#define gclone_owned(y) y

END.

Define primitive inc_owned : Fun(spec A:type)(!#owned y:A).#unowned A
:= fun(A:type)(y:A).y <<END
inline void *ginc_owned(void *y) {

inc(y);
return y;

}
END.

Init ginit_owned_unowned(#owned x)(#unowned y).#<owned x> <<END
#define ginit_owned_unowned(A,x,y) y

END.

Figure 3. The owned resource type (selected primitives)



ResourceType unique with
Define primitive consume_unique : Fun(A:type)(^#unique x:A).void

:= fun(A:type)(x:A).voidi <<END
inline void gconsume_unique(int A, void *x) {

release(A,x,0);
}

END.

Init must_consume_scrutinee ginit_unique_unique(#unique x)(#unique y).#unique <<END
#define ginit_unique_unique(A,x,y) y

END.

Init must_consume_scrutinee ginit_unique_owned(#unique x)(#owned y).#owned <<END
#define ginit_unique_owned(A,x,y) y

END.

Init must_consume_scrutinee ginit_unique_unowned(#unique x)(#unowned y).#unowned <<END
#define ginit_unique_unowned(A,x,y) y

END.

Figure 4. The unique resource type

Define primitive warray_get
: Fun(spec A:type)(spec n:word)

(! #unique_owned l:<warray A n>)
(i:word)
(u:{(lt (to_nat i) (to_nat n)) = tt}).
#<owned l> A :=

fun(A:type)(spec n:word)
(l:<warray A n>)(i:word)
(u:{(lt (to_nat i) (to_nat n)) = tt}).

(vec_get A (to_nat wordlen n) l (to_nat wordlen i) u)
<<END
inline void* gwarray_get(void **l, int i) { return l[i]; }
END.

Figure 5. Definition of warray get primitive

ever warray get is used. The warray set primitive has a similar
requirement.

As far as resource typing goes, we see that warray get requires
a unique owned warray l. So this is a read-only reference to
the warray. The function returns an element of datatype A, with
resource type <owned l>. We use a pinning owned resource type
here instead of unowned, just to avoid incrementing the reference
count for the returned data. The calling context can always do that,
using inc owned. Of course, the array l is pinned by this <owned
l> reference, until the latter is consumed. So we will not be able
to update the array until the pinning reference has been consumed
(possibly just by exchanging it for an unowned reference).

4.2 Mutable Arrays of Unique Data
We now consider mutable arrays storing unique data. Currently, we
have implemented this imperative abstraction for character-indexed
arrays, qcharray. Implementing it for word-indexed arrays poses
no significant challenges, but remains to future work. The basic
idea here is to track statically the set of indices at which the ar-
ray is currently unavailable for reading. Such indices correspond
either to uninitialized locations in the array, or to locations where
the data has been “checked out” for writing. The set of such in-
dices is tracked as a string (which in GURU is a list of charac-
ters), included as an additional parameter to the qcharray type.
Checking out the element at index c from a qcharray (i.e., read-
ing from the array) requires a proof that c is not in the list of in-
dices which are already checked out. Similarly, checking in an el-
ement at index c from a qcharray (i.e., writing to the array) re-
quires that the list of checked-out elements contains c. We list the

qcharray_empty
: Fun(A:type).#unique <qcharray A all_chars>

Inductive qcharray_mod_t
: Fun(A:type)(c:char)(s:string).type :=

mk_qcharray_mod :
Fun(A:type)(#unique a:A)

(spec c:char)(spec s:string)
(#unique l:<qcharray A (stringc c s)>).

#unique <qcharray_mod_t A c s>.

qcharray_out
: Fun(A:type)(#untracked c:char)(spec s : string)

(#unique l:<qcharray A s>)
(u : { (string_mem c s) = ff}).

#unique <qcharray_mod_t A c s>

qcharray_in
: Fun(spec A:type)(#untracked c:char)

(#unique a:A)(spec s1 s2:string)
(#unique l:<qcharray A (string_app s1 (stringc c s2))>).

#unique <qcharray A (string_app s1 s2)>

Figure 6. Types for selected qcharray primitives

types of selected primitives for qcharray in Figure 6. To discuss
just a couple of those: the type for qcharray empty says that it
returns a qcharray where all the indices are checked out (since
they are all uninitialized); and qcharray out returns a pair, as an
element of the qcharray mod t type listed in the figure, of the el-
ement that has been checked out, and the qcharray. The type of
the qcharray has been modified so that it now includes the index
c for the checked-out element.

5. Abstractions Using Aliasing
In this section, we consider how to implement imperative ab-
stractions with aliased heap-allocated data. We first discuss the
rheaplet abstraction, which provides a functional model of a por-
tion of the heap, and then see how to use it to implement FIFO
queues. We give first a simple unverified implementation of FIFO
queues, and then a verified version. In the course of implementing
the verified version, we uncovered a bug in the unverified version,
which was not revealed by the benchmark testcase (used for the
empirical evaluation below).



5.1 Modeling the aliased heap with rheaplets
To implement an aliased data structure, it is necessary to find a
way to model of the non-local communication which arises when
a structure is updated via one reference, and then read via another
reference. We rely here on a functional model of a portion of the
heap, which we call a rheaplet. The “-let” is to indicate that this
is just a portion of the heap, not its entirety; and the “r-” is because
we use run-time reference counting of the number of aliases to
each cell, to manage memory. This approach statically guarantees
that uninitialized or deleted memory will never be read or written.
It should be acknowledged from the beginning, however, that this
approach can leak memory if cycles are formed in the reference
graph. We have several things to say about that issue, in Section 8
below.

The rheaplet abstraction is based on a type family <rheaplet
A I>, for heaplets storing aliased data of type A. The I is a
rheaplet id, which we use to prevent (statically) aliases asso-
ciated with one heaplet from being used to access another. The
type of aliases is then <alias I>, for aliases into the heaplet with
heaplet id I . In the functional model, a heaplet is a list of elements
of type A, and an alias is a unary natural number giving a posi-
tion into that list. In the imperative implementation, rheaplets
and rheaplet ids are just dummy scalar values (retained during
compilation because we currently do not support specificational
data of resource type other than the default, and so these cannot be
declared specificational). The imperative implementation of aliases
is explained next.

There are three rheaplet primitives. The first (“rheaplet in”)
is for adding some data to the rheaplet. In the functional model,
the data is added by appending it to the list which functionally
models the heaplet. In the imperative implementation, adding data
to a heaplet allocates a 3-word cell in memory, with one word each
for a reference count for the number of outstanding aliases, the type
(represented as an integer, as mentioned above) of the data, and the
pointer to the data. The imperative implementation of aliases is
just as references to this 3-word cell. This means that aliases can
be managed using the usual primitives for reference-counted data
(Section 3.1 above). The level of indirection added by the 3-word
cell means that we can change the object to which the aliases refer,
by changing the pointer (the last word) in the cell. This indirection
imposes an additional cost in memory and running time, and so it
is particularly important to evaluate it empirically, as we do below.
The rheaplet in function returns the updated heaplet, and the
new alias.

Finally, the types for the primitives for reading and writing via
an alias are given in Figure 7. They are similar in spirit to the types
for reading and writing mutable arrays above. The main point to
note is the use of the rheaplet id I to connect an alias with its
rheaplet. Even though we may deallocate a cell in the imperative
implementation (if the number of outstanding aliases to that cell
falls to zero), in the functional model we never remove an element
from the list which models the heaplet. So an alias is always a valid
index into the list of its associated heaplet.

5.2 Unverified FIFO Queues
Using the rheaplet primitives, we have implemented a statically
memory-safe FIFO queue abstraction. The source code for this may
be found as queue.g in the tests subdirectory for this paper (see
the Introduction). A queue consists of a singly-linked list from the
qout-end, where data is dequeued, to the qin end, where it is en-
queued. Each cell of the queue is allocated in a heaplet associated
with the queue. This is because the last such cell has two aliases (all
the others have one), which ends up forcing all cells to be heaplet-
allocated. Figure 8 lists the datatype definition for queues (omitting
a simple definition for queue cells), and then the types for the opera-

rheaplet_get
: Fun(spec A:type)(spec I:rheaplet_id)(^#owned p:<alias I>)

(!#unique_owned h:<rheaplet A I>).
#<owned h> A

rheaplet_set
: Fun(A:type)(spec I:rheaplet_id)(^#owned p:<alias I>)

(#unique h:<rheaplet A I>)(a:A).
#unique <rheaplet A I>

Figure 7. The types of the primitives for reading and writing an
rheaplet via an alias

tions on queues. Note that these operations are not primitives. They
are built using the above abstractions, and require no additional un-
trusted C code. Note also that since this data structure does not form
cycles in the heap, our reference-counting approach for rheaplets
is sufficient to reclaim all unreachable memory (though this is not
statically verified).

We just consider a few points about the typings in the fig-
ure. Both empty (queue datan) and non-empty (queue datac)
queues have a unique reference to a rheaplet of queue cells. Ad-
ditionally, non-empty queues have references to qout and qin. Al-
locating a new queue with queue new (not shown) creates a new
heaplet. The queue front and dequeue functions require a proof
that the queue is non-empty. These proofs allow us to show (via
impossible-terms, mentioned in Section 2.1 above) that several
situations cannot arise. There is only one place where the queue
code uses abort, in response to violation of an unverified invariant
that the qin-cell has no next pointer. We will eliminate this abort
in the next section. The total number of lines of code, with com-
ments, is 138. Of these, only 6 are proofs, used in the impossible-
terms just mentioned.

5.3 Verified FIFO Queues
In order to verify that the qin-cell of a queue has no next pointer,
we must reason explicitly about the heap. This was not required
for the implementation of the queue data structure as above. In
particular, it is necessary to reason explicitly about the equality
and disequality of aliases. This imposes a significant burden of
proof, which future work must lighten in order for this method to be
practical; more is said about this in Section 8 below. Nevertheless,
the current approach provides an adequate foundation for more
automated methods of verifying such properties.

Figure 9 shows the invariants needed to verify that the qin-cell
of the queue has no next pointer, expressed as additional proof argu-
ments required by the constructors for the verified queue type. The
full source code for the verified queue may be found as queue2.g
in the tests directory for this paper (see the Introduction). The new
invariants for non-empty queues are the following:

• inv qin. This expresses that qin is a valid index into the
heaplet h; inv qout is similar.

• inv. This expresses that all the next pointers in the queue cells
stored in the heaplet h are valid indices into h. Note that the
@<...> construct is GURU notation for application of a defined
predicate symbol (whose definition here we omit).

• inv qin2. This expresses our desired invariant, that the qin
cell has no next pointer.

Some discussion of these invariants is warranted. First, the reader
might well wonder why we are introducing these explicit state-
ments that aliases are valid indices into the heaplet. After all,
we maintain the relationship between aliases and heaplets stati-
cally, using the shared rheaplet id. While we have designed our



Define type_family_abbrev
rheaplet_queue :=

fun(A:type)(I:rheaplet_id).
<rheaplet <queue_cell A I> I>.

Inductive queue : Fun(A:type).type :=
queue_datac
: Fun(A:type)(spec I:rheaplet_id)

(#unique h:<rheaplet_queue A I>)
(qin qout : <alias I>).

#unique <queue A>
| queue_datan

: Fun(A:type)(spec I:rheaplet_id)
(#unique h:<rheaplet_queue A I>).

#unique <queue A>.

queue_is_empty
: Fun(spec A:type)

(^#unique_owned q:<queue A>).bool

queue_front
: Fun(spec A:type)

(^#unique_owned q:<queue A>)
(u:{ (queue_is_empty q) = ff }). A

enqueue
: Fun(spec A:type)

(#unique q:<queue A>)(a:A).
#unique <queue A>

dequeue
: Fun(spec A:type)

(#unique q:<queue A>)
(u:{ (queue_is_empty q) = ff }).

#unique <queue A>

Figure 8. Types for the unverified queue abstraction

static typing to ensure that heaplets are accessed only by their own
aliases, this does not imply a principle like:

Forall(A:type)(I:rheaplet_id)
(a:<alias I>)(r:<rheaplet A I>).

{ (lt a (length r)) = tt }

Indeed, this principle is unfortunately false: aliases created later
need not be valid indices into earlier versions of heaplet with
heaplet id I . The problem is due at least in part to the fact that our
logic is intuitionistic (GURU’s design would also allow classical
logic), while the state involved must be reasoned about linearly.
How to recover something like this principle is not yet clear, though
see the discussion below (Section 8).

The verified versions of the queue functions of Figure 8 above
have the same types as given there. The difference is that now
whenever the constructors for the queue type are used to (re)construct
a queue, we must supply proofs of our invariant properties. These
proofs are built manually, with modest aid from GURU’s lone but
reasonably powerful tactic, called hypjoin. This tactic automati-
cally proves terms equal (under some reasonable conditions about
termination) iff they are joinable in the operational semantics mod-
ulo ground equations specified (by giving proofs for them) by the
user [10, 11]. Despite this tactic, the proofs are mostly manual,
swelling the original 138 lines for the unverified queue to 310, not
counting general list lemmas from the standard library and general
heaplet lemmas, such as, for example, this one expressing that the
operation of adding an element to the heaplet is successful (read-
ing the updated heaplet h′ using the new alias p returns the added
element a):

Inductive queue : Fun(A:type).type :=
queue_datac
: Fun(A:type)(spec I:rheaplet_id)

(#unique h:<rheaplet_queue A I>)
(qin qout : <alias I>)
(inv_qin : {(lt qin (length h)) = tt})
(inv_qout : {(lt qout (length h)) = tt})
(inv : @<rheaplet_queue_inv A I h>)
(inv_qin2 : {(queue_cell_has_next

(rheaplet_get qin h)) = ff}).
#unique <queue A>

| queue_datan
: Fun(A:type)(spec I:rheaplet_id)

(#unique h:<rheaplet_queue A I>)
(inv:@<rheaplet_queue_inv A I h>).

#unique <queue A>.

Figure 9. The main datatype, with invariants, for the verified
queue abstraction

rheaplet_in_get
: Forall(A:type)(I:rheaplet_id)(h h’:<rheaplet A I>)

(p:<alias I>)(a:A)
(u:{(rheaplet_in h a) = (return_rheaplet_in h’ p)}).

{ (rheaplet_get p h’) = a }

As noted above, while proving these invariants for the verified
queue we uncovered a bug in the unverified queue. The bug is rather
insidious, because it is not uncovered by our benchmark testcase.
This benchmark enqueues space-delimited strings read from stan-
dard input, and then dequeues them all, printing the last string de-
queued. The bug was that the unverified code was inadvertently
swapping qin and qout in the dequeue operation. On our bench-
mark, the effect was to dequeue the first element (at qout), and
then the last element (at the new qout, which is the previous qin).
Since there is no next pointer from that erroneous qout, it appears
to dequeue as though it has removed the last element. All mem-
ory is correctly freed, thanks to our linear typing (and confirmed by
valgrind). The error was detected during proof of this intension-
ally quite different property, because the assertion that qin has no
next-pointer cannot be proved when we swap qin and qout.

6. Type System
We now give a formal definition of the resource-tracking static
analysis implemented in GURU as an abstract operational seman-
tics. We formulate soundness with respect to an operational seman-
tics operating on certain (finite) reference graphs. The reference
graphs are in the form of what we call shallowly augmented forests:
they are forests, except that nodes may have multiple predecessors
in the graph, but then at most one of those predecessors can itself
have a predecessor. This is sufficient for our functional-modeling
approach, since it captures the idea that data are all tree-structured,
except that there may be some additional references to the nodes
(corresponding to predecessors that have no predecessor).

6.1 Assumptions on the terms
We assume that terms have already passed the datatype checker,
and that calls to initialization functions have been inserted as fol-
lows. (Our implementation inserts these calls during resource-type
checking, where we just check simple typing with respect to the
resource types like unique.) Suppose we have an Init-command
beginning like this:

Init ginit_r_rr(#r scrut)(#rr subdat).#rrr



Suppose further we have a match-case with a scrutinee of resource
type r, and a pattern c x̄, where y ≡ xi is of resource type rr.
Also, assume the scrutinee is syntactically a variable x (we perform
a simple compiler transformation to ensure this, before resource
tracking begins). Then the body of the case will begin with nested
let-bindings, including one of the form

let y = ginit_r_rr(x,y) in

We further assign the ginit r rr function this resource type,
which omits the datatype annotations (like <list A> or similar)
and shows only the resource-type (like unowned or unique) and
consumption annotations:

Fun(! rr scrut)(^ r subdat).rrr

Also, we assume that uses of match without the optional ! indica-
tion (see Figure 1) have been translated to uses which do include
this annotation, and where the body of each case contains, right
after the prefix of let-bindings just discussed, a call to the appro-
priate consume-function for r (the scrutinee’s resource type), on
the scrutinee. This desugars match, which does consume the scru-
tinee, right after initialization of subdata, into match!, which does
not.

We assume the (singly recursive) terms have already been de-
functionalized into global first-order recursive equations of the
forms (f x̄) = t. This is a standard step for compilation of func-
tional languages, and allows us to assume below that all functions
are defined at the top level. Term constructors we denote with c,
and primitives with p. Finally, we assume that proofs (including as-
sumption variables) as well as data marked specificational have al-
ready been dropped, after datatype checking. Also, we do not treat
existse term- and do-terms (both easily handled), for space rea-
sons.

6.2 Graph-based operational semantics
We define a graph-based evaluation relation ∆; t ⇓k r; ∆′, where t
is a term; r (here and below) is a variable; ∆,∆′ are functions from
variables x to values of the form (c x1 . . . xn), with c an arity-n
term constructor; and k a natural number (thus describing inductive
data more explicitly as a graph). If ∆(x) = (c x̄), this means
variable x is instantiated with that term, where the variables x̄ may
have their own instantiations in ∆ (similarly for ∆′). Furthermore,
k is a natural number used as a timer; it is a technical device to
allow us to distinguish diverging and finitely failing computations
(for which we derive a ⊥ judgment in the limit) from ones which
fail due to resource errors (for which there is no derivation possible
at all using the rules).

Figure 11 gives the rules. The first is for expiration of the timer.
In this case, the form of the judgment has ⊥ on the right hand
side of the ⇓, indicating timeout with the given timer. We take
these ⊥-judgments to propagate strictly for all rules (that is, if
a premise is provable with such a judgment, then the rule also
concludes with⊥) – but we leave this machinery unformalized. The
second rule is for evaluation of variables, the third for evaluation of
constructor applications (we consider uses of 0-ary constructors as
degenerate applications), and the fourth for evaluation of function
applications. The next two rules, for applications of primitives p,
consume resources by modifying the map ∆ according to p’s type,
and return values using a functional model unconstrained by that
type. In particular, this is where we might add an additional shallow
reference into a tree.

Consuming resources when a primitive is applied is done using
a meta-theoretic function application U(∆, x̄, ī), defined in Fig-
ure 10. We write p :: ī in the rule to indicate that the consumption
annotations ī are the ones stated in p’s type for its arguments. We

U(∆, x, x̄, 1, ī) = U(∆− x, x̄, ī), if x ∈ dom(∆)

U(∆, x, x̄, !, ī) = U(∆, x̄, ī)

U(∆, x, x̄, ˆ , ī) = U(∆− x, x̄, ī), if x ∈ dom(∆)

U(∆, ·, ·) = ∆

Figure 10. Meta-theoretic function for consuming ∆ resources

also inductively define a function “−” on ∆ and an x ∈ dom(∆)
for removing subgraphs from the graph defined by ∆:

S0(x) = (c x̄) ∀i.(S0 − xi = Si)

S0 − x = (
T
i Si) \ {(x, (c x̄))}

x 6∈ dom(S)

S − x = S

Note that if an inference contains an undefined application of a
meta-theoretic function, we interpret this to mean the inference is
not allowed.

For simplicity, we assume that if a primitive p lacks a functional
model, then its return type is an instance of a primitively defined
type. In that case, the second rule for applications of primitives just
returns a new variable, bound to an uninterpreted entity “·” in the
heap. Earlier stages of type-checking rule out pattern-matching on
elements of primitively defined types, but it is more convenient not
to rely on that here (so we include the second match-rule). Note
that in the match-rules we use a more compact meta-theoretic no-
tation for match-terms. Finally, if for all k, ∆; t ⇓k ⊥, then we
write ∆; t ⇓ ⊥, and say that t diverges. This relation is not recur-
sively enumerable, but that is not problematic since it is used only
in the formulation of soundness of our resource-tracking analysis.

6.3 Resource-tracking analysis
Next, we define an abstract, modular evaluation relation Θ; t ⇓
x; Θ′, where Θ,Θ′ are functions from variables x to a consump-
tion annotation i (see Figure 1) or an expression 〈y〉, where y is
a variable pinned by x. The rules are given in Figure 12, using a
meta-theoretic function V similar to U above, and defined in Fig-
ure 13. (The first rule of that Figure removes a resource x from
Θ if (1) it is there, (2) not a pinning reference (these must be re-
moved with consumption annotation ˆ ), and (3) not itself pinned
by another reference.) The rules of Figure 12 are syntax-directed
and all decrease the size of the term from conclusion to premises.
Hence, in a standard way, they determine a terminating algorithm.
The first two rules are for variables and constructor applications,
while in the third, g is for a regular function symbol or a primi-
tive function symbol: the two cases are handled the same way here,
based on their resource type. Note that our indexed notation in the
second and third rule forces the initial Θ (Θ1) to propagate sequen-
tially through the evaluation of the arguments, ending with a final
Θn+1. We treat abort, similarly here as above, with a judgment
form ending in ⊥, which is propagated via straightforward omitted
rules.

The rules are modular, in the sense that they rely on types for
all the regularly defined functions they call. This is justified by our
assumption that our code has already been defunctionalized into
top-level definitions. These types (given in the original source code)
are confirmed using the following rule:

(f x̄) = t
Assuming f :: ī, we have: {(x1, i1), . . . , (xn, in)}; t ⇓ r; {(r, 1)}

f :: ī

The definition of the V function is the heart of the resource-
tracking analysis. It insists that pinning references cannot be con-
sumed by being returned; that is, the corresponding consumption



∆; t ⇓0 ⊥

x ∈ dom(∆)

∆;x ⇓k+1 x; ∆

∀i.(∆i; ti ⇓k ri; ∆i+1)
r 6∈ dom(∆n+1)

∆1; (c t1 . . . tn) ⇓k+1 r; {(r, (c r̄))} ∪∆n+1

∀i.(∆i; ti ⇓k ri; ∆i+1)
(f x̄) = t
∆n+1; [r̄/x̄]t ⇓k r; ∆′

∆1; (f t1 . . . tn) ⇓k+1 r; ∆′

∀i.(∆i; ti ⇓k ri; ∆i+1)
(p x̄) = t
p :: ī
U(∆n+1, x̄, ī); [r̄/x̄]t ⇓k r; ∆′

∆1; (p t1 . . . tn) ⇓k+1 r; ∆′

∀i.(∆i; ti ⇓k ri; ∆i+1)
no functional model for p
p :: ī
r 6∈ dom(∆)

∆1; (p t1 . . . tn) ⇓k+1 r; {(r, ·)} ∪ U(∆n+1, x̄, ī)

∆; t ⇓k (cj r̄); ∆′′

∆′′; [r̄/x̄]tj ⇓k r; ∆′

∆; match t with j.(cj x̄j=>tj) ⇓k+1 r; ∆′

∆; t ⇓k (d r̄); ∆′′

d 6∈ {c1, . . . , cn}
∆; match t with j.(cj x̄j=>tj) ⇓k+1 ⊥

∆; t ⇓k r; ∆′

∆′; [r/x]t′ ⇓k r′′; ∆′′

∆; let x = t in t′ ⇓k+1 r
′′; ∆′′

∆; abort ⇓k ⊥

∆; t ⇓k r; ∆′

∆; @ t ⇓k+1 r; ∆′

Figure 11. Graph-based operational semantics

annotation must be ˆ . It also insists that references cannot be con-
sumed until all their pinning references are.

Some simplifying design choices have been made in this al-
gorithm. For example, the rule for constructor applications disal-
lows arguments marked with ˆ (meaning to be consumed but not
returned). Also, branches in match-cases must have the same ef-
fect on Θ, and may not return pinning references. Note that having
the same effect on Θ is not the same as having exactly the same
pattern of resource allocations and consumptions. One match-case
might create a reference, which another does not. But then that first
match-case must ensure that the reference is consumed by the end
of the case, so that the observable effect on Θ is the same as in the
other case. These restrictions could perhaps be relaxed. Also, we

x ∈ dom(Θ)

Θ;x ⇓ x; Θ

∀j.(Θj ; tj ⇓ rj ; Θj+1)
c :: ī
ˆ 6∈ {̄i}
r 6∈ dom(Θ)

Θ1; (c t1 . . . tn) ⇓ r; {(r, 1)} ∪ V (Θn+1, r̄, ī)

∀j.(Θj ; tj ⇓ rj ; Θj+1)
g :: ī
r 6∈ dom(Θ)

Θ1; (g t1 . . . tn) ⇓ r; {(r, 1)} ∪ V (Θn+1, r̄, ī)

∀j.(Θ, x̄j ; tj ⇓ rj ; {(rj , i)} ∪Θ′)
r 6∈ dom(Θ′)

Θ; match x with j.(cj x̄j=>tj) ⇓ r; {(r, i)} ∪Θ′

Θ; t ⇓ r; Θ′

Θ′; [r/x]t′ ⇓ r′′; Θ′′

Θ; let x = t in t′ ⇓ r′′; Θ′′

Θ; abort ⇓ ⊥

Θ; t ⇓ r; {(r, 〈y〉)} ∪Θ′

(y, 〈z〉) ∈ Θ′

Θ; @ t ⇓ r; {(r, 〈z〉)} ∪Θ′

Figure 12. Resource-tracking abstract operational semantics

V (Θ, x, x̄, 1, ī) = V (Θ− x, x̄, ī), if
1. x ∈ dom(Θ)
2. ∀y.Θ(x) 6= 〈y〉
3. ∀(y, 〈z〉) ∈ Θ, z 6= x

V (Θ, x, x̄, !, ī) = V (Θ, x̄, ī)

V (Θ, x, x̄, ˆ , ī) = V (Θ− x, x̄, ī), if x ∈ dom(Θ)

V (Θ, ·, ·) = Θ

Figure 13. Meta-theoretic function for consuming Θ resources

have not formalized consuming resources named in (global) defini-
tions, although our implementation supports this.

Let us define ∆∗(t) for shallowly augmented forests ∆ to be
the term which is just like t except that we replace each x ∈
dom(∆) with ∆∗(∆(x)). The fact that ∆ is a shallowly augmented
forest ensures well-foundedness of this definition. If for every x ∈
dom(∆) we have that ∆∗(x) is ground (no free variables), then we
will call ∆ ground. Also, let us write σ :: Θ→ ∆ to indicate that:

1. σ is an injective function from dom(Θ) to dom(∆), and

2. ∀(x, 〈y〉) ∈ Θ:

(a) y ∈ dom(Θ), and

(b) ∆∗(σ(x)) is a subterm of ∆∗(σ(y)) (with both defined).

PROPOSITION 1 (Type Soundness). If Θ; t ⇓ r; Θ′, then for all
ground shallowly augmented forests ∆ and σ :: Θ → ∆, the
following are both true.

1. Either ∆; ∆∗(t) ⇓ ⊥, or else ∆; ∆∗(t) ⇓k r′; ∆′ for some k,
r′, σ′, and ∆′ with:



Processor: 2.67 GHz Intel Xeon W3520
Memory: 8 GB
OS: Linux version 2.6.18-164.2.1.el5
Compilers: GHC 6.10.4 -O

OCamlOpt 3.11.1
Gnu gcc 4.3.3 -O4

Figure 14. Specifications of the test system.

(a) σ′ :: Θ′ → ∆′, and
(b) σ′(r) = r′,
(c) σ′|dom(σ) ⊂ σ.

2. If (x, ˆ ) ∈ Θ, then for all y ∈ dom(∆), ∆′∗(σ′(x)) is a
subterm of ∆′∗(y) only if it (already) is of ∆∗(z), for some
z ∈ dom(∆) where ∆∗(y) is a subterm of ∆∗(z).

3. If (x, !) ∈ Θ, then σ′(x) is defined.

The first condition states that resources are consumed from ∆ in
a way consistent with Θ (as mediated by σ). The second states
that evaluation using ∆ cannot cause a reference marked with ˆ
(“consume but do not return”) to be embedded in a value in ∆′,
unless it was already so embedded in ∆. The third states that
references marked not to be consumed are in fact still present in the
final state. Writing out in detail the detailed proof of this theorem,
which should proceed by induction on the structure of the assumed
typing derivation, with sub-inductions for relating results of U and
V , remains to future work. We may then easily apply this theorem
to conclude that our modular analysis of recursive functions is
sound.

7. Empirical Results
The goal of the following tests is to compare the performance of
mutable arrays and FIFO queues implemented in GURU with anal-
ogous data structures implemented in two of the leading functional
programming languages currently in use, HASKELL and OCAML.
Comparisons are also made to HASKELL and OCAML versions
with garbage collection minimized by picking large enough values
for heap sizes so that collection is not necessary (see the Makefile
in the tests directory mentioned in the Introduction). The spec-
ifications of the test system are described in Figure 14, including
compilers and optimization options.

7.1 Mutable Array Test
The first test uses a verified version of a textbook binary search
algorithm using word-indexed mutable arrays. What makes the
implementation in GURU unique is that it uses the warray get
primitive method mentioned earlier in this paper. Recall that this
method requires a proof that the index of the array that is to be
accessed is less than the length of the array. Therefore, for binary
search to succeed, we must derive a proof that the middle point
to search is less than the length of the array. This proof is derived
relatively easily given three other proofs: that the first index of the
search space is less than the length of the array, that the last index
of the search space is less than the length of the array, and that the
first index of the search space is less than or equal to the last index
of the search space. This gives our binary search function the type
shown in Figure 15. Also of note is the use of a generic comparator
function, allowing the algorithm to work over all types of word-
indexed arrays. Supplying this comparator function to the search
function is similar to defining and utilizing an instance of the Ord
type class for a data type in HASKELL.

To test the performance of binary search, an ordered array of
size 220 is created and then each possible index is searched for.
The total time to complete both of these tasks is shown in Fig-

Define warray_binary_search
: Fun(A:type)

(spec n:word)
(^ #unique_owned l:<warray A n>)
(first last:word)
(value:A)
(c:Fun(^ #owned a b:A). comp)
(u:{(lt (to_nat first) (to_nat n)) = tt})
(v:{(lt (to_nat last) (to_nat n)) = tt})
(w:{(le (to_nat first) (to_nat last)) = tt})
. bool

Figure 15. The type of the binary search algorithm for word-
indexed arrays.

Mutable Array Test
Language Avg Real Time Size of Binary
HASKELL 1.18 s 581K
HASKELL (No GC) 0.49 s
OCAML 0.61 s 131K
OCAML (No GC) 0.54 s
GURU 0.42 s 37K

Figure 16. Average real time performance of word-indexed array
test.

Queue Test
Language Avg Real Time Size of Binary
HASKELL 1.08 s 614K
HASKELL (No GC) 0.53 s
OCAML 0.66 s 132K
OCAML (No GC) 0.37 s
GURU 0.60 s 37K

Figure 17. Average real time performance of queue test.

ure 16. The different sizes of the binary executables are somewhat
striking, so we include these as well. The GURU implementation
beats the implementations in HASKELL and OCAML, with garbage
collectors on. The reports of others, cited in the Introduction, about
the performance penalty of garbage collection are confirmed here.

7.2 FIFO Queue Test
The second test involves the methods of the FIFO queue described
earlier in the paper. To begin with, two new FIFO queues are
created. Then the contents of War and Peace are enqueued to the
first queue word by word. The first queue is then dequeued one
element at a time, enqueueing the item into the second queue. Once
the second queue is full the contents are again dequeued and the
last element is printed to the console. The results of this test are
shown in Figure 17. We see similar relative performance as for the
previous example. For this benchmark, GURU is easily beaten by
OCAML and HASKELL, if their garbage collectors are turned off.
This is as one would expect, given the much greater maturity of
their implementations. Note that the verified and unverified queues
have indistinguishable performance (so we show just the results
for the verified queue). We conjecture that branch prediction in the
CPU masks the difference between the two implementations (the
verified one does not need to do a run-time check to detect the
situation which is proved to be impossible).



8. Discussion
There are several points arising in this study that deserve further
discussion:

The status of memory leaks. Our rheaplet abstraction does
not guarantee absence of memory leaks, and indeed, cyclic struc-
tures can be leaked. Statically ensuring that memory leaks do not
occur appears costly. Indeed, dynamic methods such as garbage
collection are currently so widely used for just that reason: they
ensure that memory is not leaked, with no additional verification
cost. But there is a performance cost, which we are trying to avoid.
One could imagine adding garbage-collected regions as additional
resource types. Indeed, our rheaplet data structure already com-
promises performance in order to reduce the burden of static ver-
ification. If static verification of the absence of memory leaks is
desired, then the approach we would advocate is to use a version of
heaplets (not yet implemented) where the number of outstanding
aliases is statically tracked in the heaplet’s type.

On automating proofs. Our current burden of proof for our
example using aliased heap-allocated data is similar to that of
the 2008 version of the Ynot system, at least in being heavier
than desirable [6]. The 2009 version of Ynot greatly decreases the
burden of manual proof through clever use of automated tactics
(in the COQ proof assistant) [2]. We also agree that automation
must be applied to help reduce the manual effort for proofs about
the heap. Our emphasis in GURU is on developing predictable and
complete tactics like hypjoin. In contrast, COQ’s standard tactics
include many of a heuristic and unpredictable nature, which can
easily break when a proof script is modified.

The provable connection between aliases and heaplets. The
use of heaplets to model just a portion of the heap is similar in
spirit to the use of separating conjunction in the separation logic ap-
proach used by the Ynot authors [6, 12]. It also distinguishes such
approaches from previous work of Zhu and Xi on stateful views,
where a type t@l is used to express that an element of type t oc-
curs at address l, in the single implicit global heap [18]. Above we
were forced to reason in more detail than we would like about the
fact that aliases associated statically (via their rheaplet id) with
a heaplet are actually valid indices into that heaplet (considered as
a list). This must be improved in future work.

9. Conclusion
We have seen how a resource typing framework based on two
simple principles can support a variety of low- and higher-level
imperative abstractions:

• Resources may be used by at most one party at a time.
• Resources may be divided into subresources, which must be

returned before the resource as a whole is usable again.

Future work includes completing the detailed proof of type sound-
ness, using the formulation devised above. On the practical side,
our focus will be on reducing the burden of annotation and proof
in the ways discussed in the previous section, and also by find-
ing ways to eliminate the need for programmers to apply resource
primitives like inc, dec, and inspect explicitly. Ideas from other
uniqueness-type systems could help there (e.g. [16]). A simple first
approach might be to devise an algorithm that will automatically
insert calls to these primitives, given types for all function input
variables.
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