
Verified Programming in Guru

Aaron Stump
CS Dept.

The University of Iowa, USA
astump@acm.org

Morgan Deters
LSI Dept.

Universitat Politècnica de Catalunya,
Spain

mdeters@lsi.upc.edu

Adam Petcher , Todd Schiller
Timothy Simpson

CSE Dept.
Washington University in St. Louis, USA

adampetcher@yahoo.com,
{tws2,tas5}@cec.wustl.edu

Abstract
Operational Type Theory (OpTT) is a type theory allowing possi-
bly diverging programs while retaining decidability of type check-
ing and a consistent logic. This is done by distinguishing proofs
and (program) terms, as well as formulas and types. The theory
features propositional equality on type-free terms, which facilitates
reasoning about dependently typed programs. OpTT has been im-
plemented in the GURU verified programming language, which in-
cludes a type- and proof-checker, and a compiler to efficient C
code. In addition to the core OpTT, GURU implements a number
of extensions, including ones for verification of programs using
mutable state and input/output. This paper gives an introduction
to verified programming in GURU.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Applicative (functional) languages; F.3.1 [Logics and
Meanings of Programs]: Mechanical verification; F.4.1 [Mathe-
matical Logic]: Mechanical theorem proving

General Terms Languages, Verification

Keywords Operational Type Theory, Dependently Typed Pro-
gramming, Language-Based Verification

1. Introduction
Dependently typed programming languages are a subject of con-
siderable recent attention from the Programming Languages and
more traditional Type Theory communities. The goal of this paper
is to describe verified programming practice in one such language,
called GURU. GURU is a verified programming language, which
combines a dependently typed, pure functional programming lan-
guage with a sound logical theory of its untyped evaluation. Using
this theory, properties may be proved about program terms with all
their annotations dropped. Such annotations include types, proofs
used in explicit casts, and specificational data. Explicit casts are
used to change the type checker’s view of a term beyond what
the range of GURU’s (quite weak) definitional equality. For exam-
ple, in GURU, the type of vectors of A’s of length 3 + 3, written
〈vec A (plus 3 3)〉, is not definitionally equal to 〈vec A 6〉. The
presence of applications of possibly diverging functions in types,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLPV’09, January 20, 2009, Savannah, Georgia, USA.
Copyright c© 2009 ACM 978-1-60558-330-3/09/01. . . $5.00

which is allowed in GURU, generally precludes making two such
types definitionally equal. They are, however, provably equal, and
a cast with such a proof can be used to change a term of the former
type into one with the latter. Casts have no computational effect,
and are removed both during compilation and when dropping an-
notations for provable equality. Annotations are dropped by defini-
tional equality, which greatly reduces the burden on the program-
mer to ensure that such annotations match up at various points in
code and proofs. An example of specificational data could be the
length of such a vector. Some programs never do a case analysis
of the length of a vector, but only the vector itself, using the length
just for specificational purposes. In GURU, inputs to functions, in-
cluding term constructors, may be designated as specificational. A
simple analysis checks that no specificational data is ever used in a
computational position. The data may then safely be dropped dur-
ing compilation and theorem proving.

Having definitional equality drop annotations turns out to be a
remarkably robust design idea for extensions. We discuss several
such extensions in this paper. One is termination casts. These are
like type casts but change the type checker’s view of the termination
behavior of a term. In particular, casting an application of terminat-
ing terms with a termination cast results in a terminating term. Cer-
tain positions in code and proofs are restricted to terminating terms
only. These include instantiations of quantifiers, which range over
values of the quantified type, excluding non-terminating terms; and
also specificational arguments to functions, which should be re-
quired to be terminating since those arguments will not be executed
when the compiled program is run.

Another extension is explicit increments and decrements of ref-
erence counts for data. In GURU, datatypes are, by default, refer-
ence counted. Explicit increments and decrements are included in
code to manipulate reference counts. Memory safety and lack of
memory leaks is guaranteed by a static analysis that enforces a data
ownership policy on code, which ensures that the reference count
is greater than zero whenever a decrement occurs, and that all data
eventually have their reference counts decremented to zero. By de-
fault, function arguments are owned by the callee, and must be con-
sumed (for example by decrementing the reference count) by the
time it returns. Arguments may, however, be designated as owned
by the caller, in which case, it is not necessary for the function
to consume them. This approach helps reduce the number of in-
crements and decrements. Together with size-segregated free lists,
this leads to good performance results on a number of benchmarks.
While increments and decrements are critically relevant to these
memory properties of compiled code, they are otherwise irrelevant
to its behavior as specified by its operational semantics, which, as
standard, does not address memory allocation issues. GURU’s log-
ical theory is concerned only with this operational behavior, and
hence for theorem proving purposes, increments and decrements

are computationally irrelevant and can be dropped like other anno-
tations by definitional equality.

GURU’s ownership analysis naturally accommodates an addi-
tional extension, namely linear types. As proposed in previous
work, linear types may be used for verified practical programming
to give programmers tight control over resource usage (Zhu and Xi
2005). In GURU, this control is put to work for functional model-
ing. Following an idea of Swierstra and Altenkirch, GURU supports
non-functional constructs by describing them with a pure func-
tional model (Swierstra and Altenkirch 2007). For example, mu-
table arrays of length N can be modeled as vectors of length N .
The critical operations of reading and writing an array are done
using the obvious linear time operations in the model. During com-
pilation, however, the functional model (with its critical operations)
is replaced by the more efficient non-functional model. For this ap-
proach to be sound, it is necessary to restrict usage of the functional
model in such a way that the behavior mandated by the opera-
tional semantics will be consistent with that resulting from the non-
functional model in the compiled code. Swierstra and Altenkirch
propose to restrict their usage with monads. In GURU, their usage
is restricted with linear types.

The rest of the paper covers the above surveyed ideas in
more detail, with a focus on using the described features in prac-
tice. A theoretical treatment of the core OPTT is described else-
where (Stump and Westbrook). A theoretical treatment of the other
features is left to future work. We begin with quick consideration
of related verified programming implementations. Then we will
briefly consider the syntax and classification rules for terms and
types. Proofs are distinguished in GURU from terms, and formulas
from types, again for purposes of soundly accommodating possibly
diverging terms. The classification rules for proofs and formulas are
mostly omitted here. The interested reader can find them in (Stump
and Westbrook).

2. Related Work
EPIGRAM is a total type theory proposed for practical programming
with dependent types (McBride and McKinna 2004). Agda has
similar aims (Norell 2007). Xi’s ATS and a system proposed by Li-
cata and Harper have similar aims, but allow general recursion (Li-
cata and Harper 2005; Chen and Xi 2005). Programs which can
index types and which are subject to external reasoning, however,
are required to be uniformly terminating. This is done via stratifica-
tion: such terms are drawn from a syntactic class distinct from that
of program terms. Existing stratified systems restrict external veri-
fication to terms in the index domain. Similar approaches are taken
in CONCOQTION and ΩMEGA (Pasalic et al. 2007; Sheard 2006). In
contrast, OPTT supports what is coming to be called “full-spectrum
dependency”, where arbitrary program terms may appear in types.
Hoare Type Theory supports internal verification of possibly non-
terminating, imperative programs, with a relatively low-level model
of the heap (Nanevski and Morrisett 2005). In contrast, OPTT sup-
ports internal and external verification of pure functional programs,
with mutable state accommodated using linear types. OPTT’s ap-
proach sacrifices a low-level view of the heap in favor, it is hoped,
for a more manageable level of abstraction.

3. Central Design Ideas of OPTT
The central design idea of OPTT is to separate three uses of re-
duction, to apply different restrictions to each: definitional reduc-
tion in definitional equality, which in OPTT is restricted to be
very weak, only dropping annotations, α-equivalence, and unfold-
ing non-recursive definitions; computational reduction of program
terms for purposes of computing a value, which is not restricted at
all; and logical reduction of proofs to establish logical consistency,

which in OPTT is restricted to be of relatively modest complexity,
disallowing higher-order logical features. The advantage of this ap-
proach is that we may retain a relatively simple logic, in a proof
theoretic sense, for reasoning about possibly non-terminating pro-
grams. Decidability of type checking requires that reduction for
definitional equality be strictly weaker than reduction for comput-
ing a value. There are other reasons for keeping reduction for def-
initional equality weak, which are discussed in (Stump and West-
brook). The rest of the language design unfolds from this starting
point. Because definitional equality is weak, we know we will need
casts in terms, which motivates OPTT’s untyped provable equality.
It is otherwise well known to be tedious to reason about depen-
dently typed programs, due to the need to deal with casts in terms.
The mechanism used for separating computational reduction and
logical reduction is simply to have separate syntax for proofs and
program terms, and hence for formulas and types.

4. Term and Type Syntax
The syntax for OPTT terms and types is given in Figure 1. The
syntax-directed classification rules for terms are given in Figure 2.
All classification rules in this paper compute a classifier as output
for a given context Γ and expression as input. Contexts assign
classifiers to constants and variables. Declarations for constants
are assumed added, as discussed in Section 4.4 below. The rules
operate modulo definitional equality. Their syntax-directed nature
implies decidability of classification.

Meta-variables. We write P for proofs, and F for formulas, de-
fined in Section 5. We use x for variables, c for term constructors,
and d for type constructors. We occasionally use v for any variable
or term constructor. Variables are considered to be syntactically dis-
tinguished as either term-, type-, or proof-level. This enables defi-
nitional equality to recognize which variables are proofs or types. A
reserved constant ! is used for erased annotations, including types
(Section 4.1).

Specificationality. We write o for ownership annotations on
function inputs. These will be extended below, but for now, the
only such is spec, for specificationality. Similarly, s is for indi-
cating specificationality of arguments in applications: either spec
or nothing. The reason for marking specificationality in applica-
tions syntactically is to keep definitional equality from depending
on typing. A simple static specificationality analysis ensures that
specificational inputs are used only as specificational arguments
to functions. They are disallowed everywhere else. This specifi-
cationality analysis is performed separately from typing, and so
the typing rules ignore specificationality annotations. Currently in
GURU, the programmer explicitly marks function inputs as speci-
ficational, while the specificationality annotations for applications
are inferred during type checking. Occasionally the programmer
finds it useful to supply specificationality annotations on applica-
tions him/herself, which GURU allows.

Multi-arity notations. We write fun x(ō x̄ : Ā) : T. t for
fun x(o1 x1 : A1) · · · (on xn : An) : T. t, with n > 0, and
each oi either spec or nothing. Also, in the fun typing rule, we use
judgment Γ ` x̄ : Ā:

Γ ` A : sort(A) Γ, x : A ` x̄ : Ā

Γ ` x, x̄ : A, Ā Γ ` · : ·

Here and in several other rules, sort is a meta-level function assign-
ing a sort to every expression. The sort of a type is type, of type
is kind, and of a formula is formula.

The Terminates judgment. Specificational arguments are re-
quired to be terminating, using a Terminates judgment. This is
also used in quantifier proof rules below. Terminating terms here
are just inactive terms I:

t ::= x || c || fun x(ō x̄ : Ā) : T. t || (t s X) ||
cast t by P || abort T ||
let x = t by y in t′ ||
match t by x y with

c1 s̄1 x̄1 => t1| · · · |cn s̄n x̄n => tn end ||
existse term P t

X ::= t || T || P

A ::= T || type || F

T ::= x || d || ! || Fun(o x : A). T || 〈T Y 〉

Y ::= t || T

Figure 1. Terms (t) and Types (T)

I ::= x || c || T || P || (c I1 · · · In) || cast I by P ||
fun x(x̄1 : A1) · · · (x̄n : An) : T. t

The class of terms which Terminates recognizes as terminating is
expanded in Section 7 below.

Conditions on match. The match typing rule has one premise
for each case of the match expression (indicated using meta-level
bounded universal quantification in the premise). In each case,
the two assumption variables (declared just following the “by” in
match-terms) take on different classifiers. The first serves as an
assumption that the scrutinee equals the pattern, and the second that
the scrutinee’s type equals the pattern’s type. The premise requiring
T to be a type is to ensure it does not contain free pattern variables.
The rule also has several conditions not expressed in the figure.
First, the term constructors c1, · · · , cn are all and only those of the
type constructor d, and n must be at least one (matches with no
cases are problematic for type computation without an additional
annotation). Second, the context ∆i is the one assigning to pairwise
distinct variables x̄i the types required by the declaration of the
constructor ci. Third, the type Ti is the return type for constructor
ci, where the pattern variables have been substituted for the input
variables of ci. Fourth, the type constructor is allowed to be 0-
ary, in which case 〈d X̄〉 should be interpreted here as just d. The
uninformative formalization of these conditions is omitted.

4.1 Definitional Equality
Proofs, type annotations, and specificational data are of interest
only for type checking, and are dropped during evaluation. OPTT’s
definitional equality takes this into account. It also takes into ac-
count safe renaming of variables, and replacement of defined con-
stants by the terms they are defined to equal. Flattening of left-
nested applications, and right-nested fun-terms and Fun-types is
also included. More formally, definitional equality is the least con-
gruence relation which makes (terms or types) Y ≈ Y ′ when any
of these conditions holds:

1. Y =α Y ′ (Y and Y ′ are identical modulo safe renaming of
bound variables).

2. Y ≡ Ŷ [c] and Y ′ ≡ Ŷ [tc], where c is defined non-recursively
at the top level to equal tc (see Section 4.4 below).

Γ(v) = A

Γ ` v : A

Γ ` T : type

Γ ` abort T : T

x, x̄ 6∈ FV(T)
Γ ` x̄ : Ā Γ, x̄ : Ā, x : Fun(x̄ : Ā). T ` t : T

Γ ` fun x(ō x̄ : Ā) : T. t : Fun(ō x̄ : Ā). T

if s = spec, then Terminates X
Γ ` t : Fun(x : A). T Γ ` X : A

Γ ` (t s X) : [X/x]T

Γ ` t : T1 Γ ` P : {T1 = T2}
Γ ` cast t by P : T2

Γ ` t : A Γ, x : A, y : {x = t} ` t′ : T x, y 6∈ FV(T)

Γ ` let x = t by y in t′ : T

Γ ` t : 〈d X̄〉 Γ ` T : type
∀ i ≤ n.
(Γ, ∆i, x : {t = (ci x̄i)}, y : {〈d X̄〉 =Ti} ` ti : T)

Γ ` match t by x y with
c1 s̄1 x̄1=>t1| . . . |cn s̄n x̄n=>tn end : T

Γ ` P : Exists(x : A).F̂ [x]

Γ ` t : Fun(spec x : A)(u : F̂ [x]).C x, u 6∈ FV(C)

Γ ` existse term P t : C

Figure 2. Term Classification

3. Nested applications and abstractions in Y and Y ′ flatten to the
same result, as mentioned above.

4. Y ⇒ Y ′, using the first-order term rewriting system of Figure 3
(where we temporarily view abstractions as first-order terms).

The rules of Figure 3 drop annotations in favor of the special
constant !, mentioned above. There, we temporarily write P− for
a proof P which is not !, and similarly for T− and A−. The
rules also operate on members of the list of input declarations in
a fun-term, as first class expressions. Such lists can be emptied by
dropping specificational inputs (hence the first rule in the figure).
We temporarily consider patterns in match terms as applications,
and hence apply the rules for rewriting applications to them. The
rules are locally confluent and terminating, so we can define a
function | · | to return the unique normal form of any expression
under the rules. Note that because dropping annotations does not
depend on the classification judgment, it is defined on both typeful
and type-free (possibly even ill-typed) expressions.

Definitional equality is easily decided by, for example, consid-
ering the unannotated expansions of the expressions in question.
These expansions result from replacing all constants with their def-
initions, then dropping all annotations, and then putting terms into
an α-canonical form.

The distinction between terms, types, proofs, and formulas pro-
vides a simple principled basis for adopting different definitional
equalities in different settings. Definitional equality as just defined
we term computational definitional equality, and use it when clas-
sifying terms not inside types, proofs, or formulas. We also define
a specificational definitional equality, used in all other situations.
The difference at this point in our development is just that spec-
ificational equality drops specificationality annotations from Fun-

fun x() : T . t ⇒ t
fun x(x̄ : Ā) : T− . t ⇒ fun x(x̄ : Ā) : ! . t
P− ⇒ !

(t T−) ⇒ (t !)
(t spec X) ⇒ (t !)
(t !) ⇒ t
cast t by P ⇒ t
abort T− ⇒ abort !
existse term P t ⇒ t
(x̄ : Ā−) ⇒ (x̄ : !)
(spec x̄ : Ā−) ⇒ ·

Figure 3. Dropping Annotations

types:

Fun(spec x : A). T ⇒ Fun(x : A). T

These annotations are relevant only for type checking terms and
specificationality analysis, and not for reasoning. Dropping them
during formal reasoning avoids some clutter in proofs, since theo-
rems need not mention specificationality. We will put the distinc-
tion between computational and specificational definitional equal-
ity to work more crucially when we consider functional modeling
in Section 8 below.

4.2 Operational Semantics
Evaluation in OPTT is call-by-value. We omit the straightforward
definition of the small-step evaluation relation ; for space reasons.
Note only that it is defined just on terms with annotations dropped.
Also, we take ; to be small-step partial evaluation, where free
(term-level) variables are considered to be values. Such variables
can be introduced by the universal introduction proof rule or induc-
tion proof rule. Matching on such a variable during partial evalua-
tion results in a stuck term.

4.3 Type Refinement
In principle, the assumption variables provided by match-terms are
sufficient for building proofs needed to refine the types of terms (by
casting) in cases. In practice, while automation cannot perform all
necessary refinements (due to undecidability of type inhabitation in
the presence of indexed datatypes), some automation can alleviate
the burden of casts significantly. GURU implements a simple form
of type refinement using first-order matching (modulo definitional
equality) of the type of the pattern and the type of the scrutinee.
Pattern variables occurring in the type of the pattern may be filled
in by such matching, for the benefit of type checking the case
associated with the pattern. Impossible cases are detected by match
failure, and are neither type checked nor compiled. For example,
if we analyze a scrutinee of type <vec A (S n)>, for vectors of
As of length n + 1, then GURU’s type refinement determines that
the match-term does not need a case for the empty vector. This is
because the empty vector’s type is <vec A Z>, and we get a match
failure trying to match Z against (S n). Other systems implement
similar (or indeed, more advanced) versions of this feature.

4.4 Commands and Datatypes
Input to GURU is a sequence of commands, the most central of
which are described in Figure 4. Here, G ranges over terms, types
and type families, formulas, and proofs (defined in Section 4 above
and 5 below). K is for kinds. Type and term constructors are intro-
duced by the Inductive command, and defined constants by the
Define command. Datatypes may be both term- and type-indexed.
We additionally restrict input types to a (term) constructor for d so

Define c : A := G.

Inductive d : K := c1 : D1 | . . . | ck : Dk .

where
D ::= Fun(ȳ : Ā).〈d Y1 . . . Yn〉

K ::= type || Fun(x : B). K

B ::= type || T

Figure 4. Commands

that they may contain d nested in type applications, but not in Fun-
types or formulas. For meta-theoretic reasons, the input types of
term constructors (that is, the types stated for inputs to the construc-
tor) may not contain Fun-abstractions or Forall-quantifications
over type. This may not be essential, but the current normalization
argument depends on it (and it does not seem needed in practice
so far). The syntax also prohibits type constructors from accepting
proofs as arguments. So far we have not found a need for that fea-
ture in practice, though it could probably be added without prob-
lems. The only issue is to make sure that proofs are irrelevant if
used as type indices, but the rules of Figure 3 would ensure this.

5. Proofs and Formulas
The syntax of OPTT formulas is given in Figure 5. For compact
notation, we view implications as degenerate forms of universal
quantifications, and similarly conjunctions as existential quantifi-
cations. We find we do not need disjunction (not to be confused
with the boolean or operation) for any of a broad range of program
verification examples, so we have currently excluded it, for meta-
theoretic simplicity. The syntax-directed classification rules for for-
mulas are given in Figure 6. The full syntax for proofs is omitted,
although a few examples are given next. There are standard logical
inferences for the quantifiers, and equational inferences for prov-
ing equalities. The latter include principles of injectivity and range
disjointness for term and type constructors, as well as congruence
rules. There is also a construct for induction over the structure of
an element of a possibly indexed datatype. The following are two
important sample proof classification rules:

Γ ` P : Forall(x : A). F Γ ` X : A Terminates X

Γ ` [P X] : [X/x]F

|t| ; |t′|
Γ ` evalstep t : {t = t′}
Untyped equations. Equations and disequations are formed

between type-free terms, as well as types. Instead of allowing any
untyped terms, one could require some form of approximate typing,
but this is not essential nor required in practice.

Evaluation. The rule evalstep axiomatizes the small-step
operational semantics. In practice, as in other theorem provers,
higher-level tactics are needed. GURU implements several of these,
discussed below.

Terminates and Quantifiers. Forall-elimination and Exists-
introduction require the instantiating and witnessing terms, respec-
tively, to be typed terminating expressions. Quantifiers in OPTT
range over values (excluding non-terminating terms), and hence
this restriction is required for soundness. In particular, induction-
proofs establish universally quantified formulas by case analysis on
the form of data in a particular datatype. This would be unsound if

F ::= Quant(x : A). F || {Y1
?
= Y2}

Quant ∈ {Forall, Exists}
?
= ∈ {=, !=}

Figure 5. Formulas (F)

Γ ` A : sort(A) Γ, x : A ` F : formula

Γ ` Quant(x : A). F : formula

Γ ` {t1
?
= t2} : formula

Γ ` {T1
?
= T2} : formula

Figure 6. Formula Classification

such a formula could be instantiated by a term which could fail to
normalize to a piece of data in that datatype.

Induction. Induction-proofs are are similar to a combination
of terminating recursive fun-terms and match-terms. The syntax
is:

induction(x̄ : Ā)by x y z return F
with c1 x̄1 => P1| · · · |cn x̄n => Pn end

The third assumption variable (z) is bound in the cases for the
induction hypothesis. The first two play similar roles as in match-
terms. The last classifier in the list Ā is required to be a datatype
(i.e., of the form 〈d Ȳ 〉). The last variable in the list is thus the
parameter of induction. Earlier parameters may be needed due to
dependent typing. The classifier for the proof is then of the form
Forall(x̄ : Ā).F .

5.1 Evaluation Tactics
While the core proof language just described is sufficient in theory,
in practice one needs tactics, as in other theorem provers. Theo-
rem provers often provide incomplete or non-terminating tactics,
though of course not unsound ones. GURU implements several tac-
tics for equational reasoning. The simplest is eval, for evaluating
a term to a normal form:

|t| ;! |t′|
Γ ` eval t : {t = t′}

Similarly, we have evalto, which may stop before a normal form
is reached:

|t| ;∗ |t′|
Γ ` evalto t t′ : {t = t′}

Most frequently used in practice is join, for joining terms at a nor-
mal form (recall that ;! is standard notation from term rewriting
theory for reduction to a normal form):

|t| ;! t′′ |t′| ;! t′′

Γ ` join t t′ : {t = t′}
The most sophisticated tactic is hypjoin (Petcher 2008). The syn-
tax for this tactic is the following:

hypjoin t t′ by P1 · · ·Pn end

This is like join, in that it tries to join terms t and t′. It is given
proofs P1, . . . , Pn, however, each of which should prove a (possi-
bly non-normalized) ground equation. The tactic then tries to join

the terms modulo those equations. This essentially requires com-
puting a congruence closure modulo evaluation. In (Petcher 2008),
hypjoin is proved sound and also, under some conditions on ter-
mination of the terms involved, complete. In practice, hypjoin is
very useful for proving equations without giving the kind of de-
tailed proofs which are otherwise required. The only current draw-
back is that it is often significantly slower to check a hypjoin proof
than to check the sort of detailed proof it is capable of finding. One
might conjecture that this is due to the need (for completeness) to
perform exhaustive interreduction of the equations, when many of
those reductions are not needed in the proof that is found. This re-
mains to be further investigated, however.

All the above evaluation tactics currently rely on undecidable
side conditions about evaluation, and may fail to terminate. If
they terminate, however, a proof using just evalstep and basic
equational reasoning principles can in principle be reconstructed,
though this is not currently implemented in GURU.

6. Simple Examples
We consider here two simple examples, which have been machine
checked using the GURU implementation of OPTT. The first could
be done in type theories like COQ’s, albeit with more work (in
a precise sense described below). The second cannot be done di-
rectly, due to the presence of a function which truly can diverge on
some inputs. It could be handled by indirect means, for example by
encoding it as a relation. But such means incur their own costs: one
can no longer use COQ’s built-in partial evaluation with a function
encoded as a relation.

6.1 Associativity of Append on Lists with Length
Internally verifying that the length of appended lists is equal to the
sum of their lengths is standard for dependently typed program-
ming. Externally verifying associativity of such a function is not.
Such reasoning is possible in systems like COQ, but generally re-
quires the use of an additional axiom expressing some form of
proof irrelevance (Hofmann and Streicher 1998; The Coq Devel-
opment Team 2004). This case does not require such an axiom,
but, as typically implemented, does require tedious manipulations
of casts. Indeed, it is often remarked that external reasoning about
dependently typed functions is tedious in COQ.

For our GURU implementation, we first declare a datatype of
lists with length, assuming a standard definition of the datatype
nat for unary natural numbers. The type <vec A n> is inhabited
by all and only (finite) lists of elements of type A of length n. The
vecn constructor creates a list of length zero (“Z”), and vecc one
of length (S n) from a list of length n.

Inductive vec : Fun(A:type)(n:nat). type :=
vecn : Fun(A:type). <vec A Z>

| vecc : Fun(A:type)(n:nat)(a:A)
(l:<vec A n>).<vec A (S n)>.

We may now define a recursive function append with the follow-
ing type. This type states that the length of the output list is the sum
(assuming a standard definition of plus) of the lengths of the input
lists. It also records that the lengths are specificational data. Specifi-
cational data analysis enforces statically that computational results
cannot depend on these lengths, but only the lists themselves.

Fun(A:type)(spec n m:nat)
(l1 : <vec A n>)(l2 : <vec A m>).
<vec A (plus n m)>

The code for append is the following, where P1 and P2 are short
equational proofs omitted here:

fun append(A:type)(spec n m:nat)
(l1 : <vec A n>)(l2 : <vec A m>) :
<vec A (plus n m)>.

match l1 by u v with
vecn A’ => cast l2 by P1

| vecc A’ n’ x l1’ =>
cast
(vecc A’ (plus n’ m) x
(append A’ n’ m l1’ l2))

by P2
end

The expected return type of the function is <vec A (plus n m)>,
but in each case without the casts we have something with a prov-
ably equal but not definitionally equal type. So in each case, a cast
is used to change the type. The proof P1 proves that { m = (plus
n m)}. The proof P2 proves that { (S (plus n’ m)) = (plus
n m) }. These proofs uses the assumption v that the type of l1,
namely <vec A n>, is equal to the type of the pattern, namely
<vec A Z> in the first case, and <vec A (S n’)> in the second.
From these, using injectivity of vec, we can derive {n = Z} and
{n = (S n’)}, respectively; from which the equation between n
and (plus n m) follows in each case.

The statement of associativity is the following:

Forall(A:type)(n1 n2 n3 : nat)
(l1 : <vec A n1>)
(l2 : <vec A n2>)
(l3 : <vec A n3>).

{ (append (append l1 l2) l3) =
(append l1 (append l2 l3)) }

Since for append, the lengths n1, n2, and n3 are specificational
data, they are dropped in type-free positions. Hence, the equation
to be proved does not mention those lengths. In type theories like
COQ’s or Epigram’s, in contrast, the equation to be proved must be
typed, and so must mention the lengths:

{ (append (plus n1 n2) n3
(append n1 n2 l1 l2) l3) =

(append n1 (plus n2 n3)
l1 (append ! n2 n3 l2 l3)) }

In fact, since the two sides of this latter equation have, respectively,
types <vec A (plus (plus n1 n2) n3)> and <vec A (plus
n1 (plus n2 n3))>, even stating this theorem requires heteroge-
neous equality. The proof of the equality must contain in it a proof
of associativity of addition. In contrast, in GURU, since the lengths
are dropped, the proof of associativity is just as for append on lists
without length. The proof does not require associativity of plus.

6.2 Untyped Lambda Calculus Interpreter
We internally verify that a simple call-by-value interpreter for the
untyped lambda calculus maps closed terms to closed terms. The
datatype for lambda terms t is indexed by the list of t’s free vari-
ables. Using explicit names for free variables is adequate for our
purposes here. We take names to be natural numbers. The datatype
of terms is the following:

Inductive lterm : Fun(l:<list nat>).type :=
var : Fun(v:nat).

<lterm (cons nat v (nil nat))>
| abs : Fun(a:nat)(l:<list nat>)(b:<lterm l>).

<lterm (removeAll nat eqnat a l)>
| app : Fun(l1 l2:<list nat>)

(x1:<lterm l1>)(x2:<lterm l2>).
<lterm (append nat l1 l2)>.

Here, removeAll removes all occurrences of an element from a
list, and append appends lists (without length). Note that this ex-
ample, implemented before implementation of the specificational-
ity analysis described above was complete, does not use specifica-
tional data. It should be possible to make the lists of nats that are
given as arguments to the constructors for lterm specificational.

The crucial helper function is for substitution of a closed term
e2 for a variable n into an open term e1, with list of free variables
l. This substitution function has the following type:

Fun(e2:<lterm (nil nat)>)(n:nat)
(l:<list nat>)(e1:<lterm l>).
<lterm (removeAll nat eqnat n l)>

Note that here we are internally verifying a certain relationship
between the sets of free variables of the input terms and the output
term. Internally, this code uses several (external) lemmas about
removeAll. Where substitution enters another lambda abstraction,
a commutativity property is required, saying that removing x and
then removing y results in the same list as removing y and then
x. Using substitution, we can implement β-reduction for closed
redexes in the interpreter. The interpreter then has the following
type, which verifies internally that evaluation of a closed term, if it
terminates, produces a closed term:

Fun(e1:<lterm (nil nat)>).<lterm (nil nat)>

We also externally verify that if this interpreter terminates, then
its result is a lambda abstraction. Here, we do not bother to track
the fact that the list of free variables in the resulting abstraction is
empty (this could be easily done).

Forall(e1 e2:<lterm (nil nat)>)
(p:{(lterm_eval e1) = e2}).

Exists(a:nat)(l:<list nat>)(b:<lterm l>).
{ e2 = (abs a b) }

The proof of this property relies on a principle of computa-
tional induction, for reasoning by induction on the structure of
a computation which is (assumed here to be) terminating, namely
(lterm eval e1).

7. Termination Casts
Universal elimination and existential introduction require terminat-
ing terms, which up until now have been taken to be just terms
already in normal form. This turns out to be too restrictive in prac-
tice, as we now explain. Suppose we want to instantiate a universal
using a non-constructor term (f ā), where for simplicity suppose ā
are constructor terms. Using the proof rules given above, one would
first prove totality of f : for all inputs x̄, there exists an output r such
that (f x̄) = r. Instantiating x̄ with ā and then performing existen-
tial elimination will provide a variable r together with a proof u
that (f ā) = r. Now the original universal instantiation can be
done with r, translating between r and (f ā) as necessary using
equational reasoning and u. If this strikes the reader as somewhat
tedious, that is indeed the authors’ experience. Matters are even
worse with nested non-constructor applications, where the process
must be repeated in a nested fashion.

To improve upon this, we extend Terminates from constructor
terms to provably total terms, as follows. We introduce a new term
construct of the form terminates t by P . This is a termination
cast. Where a type cast changes the type checker’s view of the type
of a term, a termination cast changes its view of the termination
behavior of a term. Terminates is extended to check that P either
proves t is equal to a constructor term, or else proves totality of the
head (call it f) of t, in the sense mentioned above. Terminates
still must check that subterms of applications are terminating, even

if the head is. Note that Terminates is now contextual, since the
proof P may use hypotheses from the context. The basic design
of OPTT makes this addition straightforward, since termination
casts are computationally irrelevant. We extend our definitional
equalities by dropping terminates-annotations:

terminates t by P ⇒ t

Termination casts may be used in universal instantiation and exis-
tential introduction, but are eliminated by definitional equality dur-
ing equational reasoning.

8. Functional Modeling, Ownership Annotations
Inspired by a suggestion of Swierstra and Altenkirch, GURU
supports non-functional operations like destructive updates and
input/output via functional modeling (Swierstra and Altenkirch
2007). The basic idea is to define a functional model of the non-
functional operations. This model can be used for formal reasoning.
It is replaced during compilation by its non-functional implemen-
tation, which must be trusted correctly to implement the functional
model. To ensure soundness, usage of the functional model in code
is linearly restricted. Swierstra and Altenkirch propose using mon-
ads for this. Here, we use uniqueness types (Barendsen and Smet-
sers 1993). Types and type families can be designated as opaque,
in which case any functions which perform case analysis on them
must be marked specificational when they are defined at the top
level in GURU. Functions marked specificational must be replaced
during compilation.

Previously, fun-terms could specify that arguments are spec-
ificational or not. Now, we extend these annotations to include
ownership annotations unique and unique owned. Inputs marked
unique must be consumed by the function exactly once, and
may not have their reference counts incremented. Those marked
unique owned may be inspected but must not be consumed or
have their reference counts incremented. Term constructors may
take unique (but not unique owned) arguments. Applications of
such to unique expressions become unique as well, consum-
ing the resource. Functions marked specificational need not obey
uniqueness requirements, since they will be replaced by trusted
non-functional implementations. A simple static analysis ensures
correct resource usage.

The distinction mentioned above (Section 4.1) between com-
putational and specification definitional equality is here crucial. In
specificational functions, we use the specificational equality, which
takes definitions of opaque types into account. In computational
functions, we use the computational equality, which does not. This
allows formal reasoning to make use of the function model, while
prohibiting computational functions from violating the abstraction
boundary imposed by opacity. For example, if 32-bit words are
modeled as vectors of booleans of length 32, then operations on
vectors must not in general be applied to words; only those marked
as specificational, which will be replaced during compilation. Own-
ership annotations are dropped in the specificational equality, re-
ducing clutter during external reasoning.

9. Reference Counting and Compilation
Since all data in OPTT are inductive, the data reference graph is
truly acyclic. So GURU’s compiler (to C code) implements mem-
ory reclamation using reference counting, instead of garbage col-
lection. Reference counting is sometimes criticized as imposing too
much overhead, due to frequent increments and decrements. GURU
puts this under the control of the programmer via explicit incs and
decs. But GURU also provides ownership annotations to reduce
the need for these. Function inputs may be marked as owned by the
calling context. To consume them, the function must do an inc. But

just to inspect them by pattern matching does not require an inc,
and the function may notdec an owned input. The static analysis
mentioned above for tracking uniqueness also ensures correct ref-
erence counting. Pattern matching consumes unowned resources.
Functions and flat inductive data like booleans are not tracked. The
former is sound here because GURU does not implement closure
conversion. Closures may be implemented by hand, thanks in part
to OPTT’s System-F-style polymorphism.

When the reference count of a piece of data falls to zero, it is,
of course, time to reclaim the memory associated with that data.
As shown in the empirical results of the larger case study below,
much high-performance allocation can be achieved using a custom
allocation scheme rather than just the standard malloc and free
library functions. GURU’s approach is the following. We keep a
distinct free list for every term constructor. Suppose it is time to
reclaim the memory for a data element of the form (c V̄). Then
we simply add that data element to the free list for c, without
changing the reference counts for the subdata V̄ . Subsequently,
when it is time to allocate a new piece of data built with constructor
c, we pull (c V̄) off the free list. At that point, we decrement the
reference counts for the subdata V̄ . In addition to being very fast
in practice (on the benchmarks tested so far), this scheme provides
time-bounded memory management operations. The time required
to free a data item is a small constant, and the time to allocate
a new item is bounded by the number of arguments possible to
a constructor (since we must decrement the reference counts for
subdata V̄ if we are returning an element (c V̄) from the free
list for c). The time-bounded nature of this memory management
scheme makes it much more attractive for real-time systems, for
example, where achieving real-time garbage collection is a subject
of ongoing research.

Note that the basic design idea of OPTT again helps here,
since we make increments and decrements (of terminating terms)
computationally irrelevant via definitional equality. They need not
be considered during formal reasoning.

One final note about reference counting and compilation con-
cerns polymorphism. GURU implements polymorphism in the style
of System F by passing type representations at run-time. The type
representation here are very simple. We just associate an integer
with every type constructor. We do not need a representation for
every application of a type constructor. We must also associate in-
tegers with function types declared in the C source, which arise
from flattening nested function types of GURU (since C allows def-
initions of function types, but not nested ones). These type rep-
resentations are passed whenever GURU code passes a type as an
argument. So they are also passed to term constructors, and hence
stored in polymorphic data structures. They have just one purpose,
arising from the following situation. Suppose we have a polymor-
phic term constructor like cons for (homogeneous) polymorphic
lists. So we have terms of the form (cons A a l), where A is a
type, a : A, and l is the rest of the list. When it is time to decrement
the reference count for a, this must be done in a type-dependent
way. If a is an untracked piece of data (an element of a flat induc-
tive type or a function), then we should do nothing, since such data
do not have a reference count to decrement. Otherwise, we should
decrement the reference count. If that falls to zero, we must put a
onto the free list for whichever constructor a is built with. So we
use the type representation for A as an index into a table of decre-
ment functions, thus dispatching to the appropriate function for a.
The corresponding dispatch occurs also when it is time to incre-
ment the reference count for a piece of data of type A, with A a
type variable.

10. Case Study: Incremental LF
This section describes a larger case study carried out in GURU,
in the domain of efficient proof checking. In automated theorem
proving, the complexity of solver implementations limits trustwor-
thiness of their results. For example, modern SMT (Satisfiability
Modulo Theories) solvers typically have codebases around 50k-
100kloc C++ (e.g., CVC3 (Barrett and Tinelli 2007)). One method
to help catch solver errors and to export results to skeptical interac-
tive theorem provers is to have the solvers emit proofs. Independent
checking of the proofs by a much smaller and simpler checker can
confirm the solvers’ results. Efficient and flexible proof checking
for tools like SMT solvers is a subject of current interest in the SMT
community (e.g., (Moskal 2008)). A proposal of the first author is
to use an extension of the Edinburgh Logical Framework (LF) as
the basis for efficient and flexible proof checking for SMT (Stump
and Oe 2008; Harper et al. 1993). LF is a dependent type theory
with support for higher-order abstract syntax, used previously in
proof-carrying code and related applications (e.g., (Appel 2001;
Necula 1997)). In LF encoding methodology, proof checking in
an object logic is reduced to type checking in LF. To handle large
proofs from SMT solvers, several optimizations for LF type check-
ing have been proposed, including incremental checking.

10.1 Incremental LF Type Checking
Incremental checking intertwines parsing and type checking for
LF (Stump 2008). The goal is to avoid creating abstract syntax
trees (ASTs) in memory whenever possible. ASTs must be created
for expressions which will ultimately appear in the type of a term,
but others need not. This gives rise to one pair of modes, namely
creating vs. non-creating. Standard bi-directional type checking for
canonical forms LF gives rise to an orthogonal pair of modes,
namely type synthesizing (computing a type for a term in a typing
context) vs. type checking (checking that a term has a given type in
a typing context) (Watkins et al. 2002; Pierce and Turner 1998).
To check a term, we are initially in non-creating mode. When
we encounter an application with head term of type Πx : A. B,
where x is free in B, we must switch to creating mode to check
the argument term. If x is not free in B, we may remain in non-
creating mode, thus avoiding building an AST for the argument.
An implementation of incremental checking in around 2600 lines
of C++ has been evaluated on benchmark proofs generated from a
simple quantified boolean formula (QBF) solver (Stump 2008). The
results show running times faster than those previously achieved
by signature compilation, where a signature is compiled to an LF
checker customized for checking proofs in that signature (Zeller
et al. 2007). Implementing the incremental type checker in C++ is
quite error-prone, due to lack of memory safety in C++, and the
dependence of outputs on requested checking modes.

10.2 Incremental Checking in GURU

An incremental LF checker called GOLFSOCK has been imple-
mented in GURU, where we internally verify two properties. First,
mode usage is consistent, in the sense that if the core checking rou-
tine is called with a certain combination of modes (from the orthog-
onal pairs checking/synthesizing and creating/non-creating), then
the appropriate output will be produced: the term, iff in creating
mode; and its type, iff in synthesizing mode. Second, whenever a
term is created, there is a corresponding typing derivation for it in
a declarative presentation of LF. GOLFSOCK is somewhat unusual
compared with related examples (e.g., (Urban et al. 2008)), due to
the need to use more efficient data structures than typically used in
mechanized metatheory. We consider a few of these data structures
next.

10.3 Machine Words for Variable Names
GOLFSOCK uses 32-bit machine words for variable names. An ear-
lier version used unary natural numbers for variables, but perfor-
mance was poor, with profiling revealing 97% of running time on
a representative benchmark going to testing these for equality. Re-
placing unary natural numbers with 32-bit words resulted in a 60x
speedup on that benchmark. But using 32-bit words for variable
names requires significant additional reasoning in GOLFSOCK. The
reason is that capture-avoiding substitution relies on having a strict
upper bound for the variables (bound or free) involved in the sub-
stitution. This strict upper bound is used to put the term into α-
canonical form during substitution: all bound variables encountered
are renamed to values at or above the upper bound, thus ensuring
that free variables are not captured. We must maintain the invariant
that new upper bounds produced by functions are always greater
than or equal to the initial upper bounds. This requires increment-
ing of 32-bit words and inequality, as well as associated lemmas.
Fortunately, the GURU standard library includes an implementa-
tion of bitvectors (as vectors of booleans), with an increment func-
tion, functions mapping to and from unary natural numbers, and
appropriate lemmas about these. These are specialized to vectors
of length 32 for machine words. For GOLFSOCK, the most critical
of these are word inc, which increment a 32-bit word, reporting
if overflow occurred; and the following lemma stating that if incre-
menting word w produces w2without overflow (ff is boolean false),
then mapping w2 to a unary natural number gives the successor of
the result of mapping w.

Define word_to_nat_inc2
: Forall(w w2:word)

(u : { (word_inc w) =
(mk_word_inc_t w2 ff)}).

{ (S (word_to_nat w)) = (word_to_nat w2) }

Note that mk word inc t is a term constructor used to pass back
both the incremented word (its first argument) and a boolean telling
whether or not overflow occurred (its second argument). To use
this lemma, GOLFSOCK aborts if overflow occurs. Provisions are
included to reset the upper bound in non-creating, checking mode,
where this is proven sound; and overflow does not occur in any
benchmarks tested. A more robust solution, of course, is to use
arbitrary precision binary numbers. Implementation of these is in
progress but currently not available.

Following the methodology described in Section 8, the word
datatype is treated as opaque, with the critical computational oper-
ations on words replaced during compilation. The fact that these re-
placements are functionally equivalent to the operations as modeled
in GURU is unproven and must be trusted. Fortunately, there are just
three such operations used in GOLFSOCK: creating the word rep-
resenting 0, incrementing a word with overflow testing, and testing
words for equality. These total just 8 lines of C code.

10.4 Tries and Character-Indexed Arrays
A trie is used for efficiently mapping strings for globally or locally
declared identifiers to variables (32-bit words) and the correspond-
ing LF types. Tries are implemented in the standard library with the
following declaration:

Inductive trie : Fun(A:type).type :=
trie_none : Fun(A:type).<trie A>

| trie_exact : Fun(A:type)(s:string)(a:A).<trie A>
| trie_next : Fun(A:type)(o:<option A>)

(unique l:<charvec <trie A>>).
<trie A>.

The first constructor is for an empty trie, the second for a trie map-
ping just one string to a value, and the third for a trie mapping multi-

ple strings to values. The second and third overlap in usage: we can
map a single string to a value using one trie exact or a nesting
of trie nexts. This trie next uses an opaque datatype charvec
for character-indexed arrays, where characters are 7-bit words (for
ASCII text only). These arrays are modeled functionally as vectors
of length 128. We statically ensure that array accesses are within
bounds, since the vector read function requires a proof of this. De-
structive array update is supported with uniqueness types, ensur-
ing access patterns consistent with destructive modification. During
compilation, the functional model is replaced by an implementation
with actual C arrays, and constant-time read and write operations.
Operations implemented on tries include insertion, lookup, and re-
moval, as well as a function trie interp which maps a trie to a
list of (key,value) pairs.

The fact that trie next contains a character-indexed array
of tries poses a challenge for proving theorems about tries. The
problem is that trie operations access subtries of a trie T via an
array read. In the functional model, the resulting subtrie is not a
structural subterm of T, and so proof by induction on trie structure
cannot apply an induction hypothesis to the subtrie. This problem
may not seem difficult: informal reasoning can easily get around
this problem using instead complete induction on the size of the
trie. But how can we write a provably total function to compute the
size of a trie? Such can certainly be implemented in GURU, but to
prove it total we are back to the same problem it was introduced to
solve: the natural totality proof proceeds essentially by induction
on the structure of the trie. Indexing tries by their size does not
help, since the character-indexed array type is homogeneous: it
cannnot store subtries of different sizes, if the size is part of the
type of tries. One could get around this problem by indexing tries
by an upper bound on their sizes, but then inserting a bigger subtrie
into the array would require weakening the upper bounds for all
the other tries. In a language with good support for eliminating
coercion functions (like weakening the upper bound on a trie’s size)
during compilation, this would solve the problem. Such a feature
is perhaps non-trivial to implement, and GURU does not have it
presently.

A different, easy solution is enabled by the separation of terms
and proofs in OPTT. We introduce a specificational construct size
t to compute the size of any value. Functions are assigned size 0,
while constructor terms are assigned the successor of the sizes of
their subterms. The evaluation rules of the theory are extended ap-
propriately. We may now prove properties about trie operations by
complete induction on trie size computed by this construct. OPTT’s
design allows us to make such an addition without needing to re-
consider any meta-theory: neither the logical consistency argument
(since size may not be applied to proofs) nor type soundness for
term reduction (since size is purely specificational).

As a performance benchmark, a program to histogram the words
in ASCII text was implemented in both GURU and OCAML version
3.10.1. Runtimes are indistinguishable with array-bounds check-
ing on or off in the OCAML version. Note that array accesses
are statically guaranteed to be within bounds in the GURU ver-
sion. The same data structures, particularly mutable tries, and al-
gorithms were implemented in each. Counting the number of times
the word “cow” occurs in an English translation of “War and Peace”
(it occurs 3 times) takes 3.7 seconds with the OCAML version on
a standard test machine, and 1.5 seconds with the GURU version.
Disabling garbage collection in OCAML drops the runtime to 1.2
seconds. While hardly conclusive, this experiment supports the hy-
pothesis that programmer-controlled reference counting may not be
inferior to garbage collection, at least for some applications. This is
consistent with the results of a thorough study showing that garbage
collection may be significantly slower than more fine-grained mem-

benchmark size (MB) C++ impl GOLFSOCK TWELF
cnt01e 2.6 0.9 1.3 9.9
tree-exa2-10 3.1 1.1 1.6 12.6
cnt01re 4.6 1.7 2.3 149.5
toilet 02 01.2 11 4.0 5.8 809.8
1qbf-160cl.0 20 6.9 8.6 timeout
tree-exa2-15 37 13.7 20.7 timeout
toilet 02 01.3 110 40.4 65.8 timeout

Figure 7. Checking Times in Seconds for QBF Benchmarks

ory management schemes in memory-constrained settings (Hertz
and Berger 2005).

10.5 Statistics
The code for the central check routine is around 1100 lines. Its size
would make it challenging to reason about externally, so verifying it
internally with dependent types seems the right choice. GOLFSOCK
proper is around 4000 lines of code and proofs, resting upon files
from the GURU standard library totally an additional 6700 lines,
mostly of proofs. The GURU compiler produces 9000 lines of C
for GOLFSOCK. A number of lemmas remain to be proved. Even
so, they are more trustworthy then the several thousand lines of
complex C++ code of the first author’s original unverified incre-
mental checker. This increase in trustworthiness can be confirmed
anecdotally. The first author encountered just a couple of relatively
benign bugs while developing it (related to properties not selected
to be verified), in contrast to a long and laborious debugging effort
needed for the original unverified implementation.

10.6 Empirical Results
Figure 7 gives empirical results comparing the original C++ imple-
mentation (“C++ impl”) with GOLFSOCK, and also TWELF (Pfen-
ning and Schürmann 1999). The primary usage of TWELF is for
machine-checked meta-theory (e.g., (Lee et al. 2007)), not check-
ing large proof objects. TWELF is included here as a well-known
LF checker not written or co-written by the first author. The bench-
marks used are the QBF ones mentioned above, originally consid-
ered in the work on signature compilation (Zeller et al. 2007). Note
that while the C++ checker has support for a form of term recon-
struction (also known as implicit arguments), GOLFSOCK does not,
and hence we use the fully explicit form of these benchmarks. A
timeout of 1800 seconds was imposed. The results show GOLF-
SOCK is around 30% slower than the C++ version. We may con-
sider this a good initial result, particularly since the C++ version
implements many optimizations not supported in GOLFSOCK. For
example, the C++ version implements a form of delayed substi-
tution, while GOLFSOCK substitutes eagerly. Each such optimiza-
tion which the C++ implementation can include at no (initial) cost
would need to be verified in the GOLFSOCK version, with respect
to declarative LF typing. Memory usage, not reported in the table,
is comparable in the C++ version and GOLFSOCK. The version
of GOLFSOCK used for Figure 7 uses the custom memory man-
agement scheme described in Section 9 above. Figure 7 compares
this version with a version which instead uses malloc and free
for allocation and deallocation of memory. We see that on average
that GOLFSOCK with custom allocation is a bit more than 4 times
faster than GOLFSOCK using malloc and free. More results are
not reported due to the malloc/free version exhausting memory
on larger examples. Debugging with the standard memory debug-
ging tool VALGRIND does not reveal any memory leaks, so this
behavior requires further investigation.

benchmark GOLFSOCK malloc GOLFSOCK custom

cnt01e 5.3 1.3
tree-exa2-10 6.7 1.6
cnt01re 9.7 2.3

Figure 8. Comparing malloc/free with Custom Memory Man-
agement

11. Conclusion
The GURU verified programming language provides a powerful
language for implementing dependently typed functional programs
and proving properties about them. The core design ideas of OPTT
are put to good use in supporting specificational data, reference
counting, and functional modeling with linear types. Operationally
irrelevant annotations are dropped from programs during theorem
proving, thus reducing the burden of proof for programmers; and
similarly during compilation to efficient C code. Reference count-
ing, particularly using annotations to reduce the number of incre-
ments and decrements, shows promise in this setting, where the ref-
erence graph is acyclic. The case study and empirical evaluation of
the incremental LF checker GOLFSOCK demonstrates that GURU
can be applied to build and verify efficient and realistic programs.

Acknowledgements: Thorsten Altenkirch and anonymous POPL
2009 reviewers for detailed and helpful comments on an earlier
draft; Daniel Tratos and Henry Li for additions to the GURU stan-
dard library; and the NSF for support under award CCF-0448275.

References
A. Appel. Foundational Proof-Carrying Code. In 16th Annual IEEE

Symposium on Logic in Computer Science, 2001.
E. Barendsen and S. Smetsers. Conventional and Uniqueness Typing in

Graph Rewrite Systems. In Proc. 13th Conference on Foundations of
Software Technology and Theoretical Computer Science, pages 41–51.
Springer-Verlag, 1993.

C. Barrett and C. Tinelli. CVC3. In W. Damm and H. Hermanns, editors,
Proceedings of the 19th International Conference on Computer Aided
Verification (CAV ’07), pages 298–302. Springer-Verlag, 2007.

C. Chen and H. Xi. Combining Programming with Theorem Proving. In
Proceedings of the 10th International Conference on Functional Pro-
gramming (ICFP05), Tallinn, Estonia, September 2005.

R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics.
Journal of the Association for Computing Machinery, 40(1):143–184,
January 1993.

Matthew Hertz and Emery D. Berger. Quantifying the Performance of
Garbage Collection vs. Explicit Memory Management. In Proc. 20th
Annual ACM SIGPLAN Conference on Object Oriented Programming,
Systems, Languages, and Applications, pages 313–326. ACM, 2005.

M. Hofmann and T. Streicher. The groupoid interpretation of type theory. In
G. Sambin, editor, Twenty-five years of constructive type theory, pages
83–111. Oxford: Clarendon Press, 1998.

D. Lee, K. Crary, and R. Harper. Towards a Mechanized Metatheory
of Standard ML. In Proc. 34th ACM Symposium on Principles of
Programming Languages, pages 173–184. ACM Press, 2007.

D. Licata and R. Harper. A Formulation of Dependent ML with Explicit
Equality Proofs. Technical Report CMU-CS-05-178, Carnegie Mellon
University School of Computer Science, December 2005.

C. McBride and J. McKinna. The View from the Left. Journal of Functional
Programming, 14(1), 2004.

M. Moskal. Rocket-Fast Proof Checking for SMT Solvers. In C. Ramakr-
ishnan and J. Rehof, editors, Tools and Algorithms for the Construction
and Analysis of Systems, 2008.

A. Nanevski and G. Morrisett. Dependent Type Theory of Stateful Higher-
Order Functions. Technical Report TR-24-05, Harvard University, 2005.

G. Necula. Proof-Carrying Code. In 24th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages 106–119, January
1997.

U. Norell. Towards a Practical Programming Language Based on Depen-
dent Type Theory. PhD thesis, Chalmers University of Technology, 2007.

E Pasalic, J. Siek, W. Taha, and S. Fogarty. Concoqtion: Indexed Types
Now! In G. Ramalingam and E. Visser, editors, ACM SIGPLAN 2007
Workshop on Partial Evaluation and Program Manipulation, 2007.

A. Petcher. Deciding Joinability Modulo Ground Equations in Operational
Type Theory. Master’s thesis, Washington University in Saint Louis,
May 2008. Available from http://cl.cse.wustl.edu.

F. Pfenning and C. Schürmann. System Description: Twelf — A Meta-
Logical Framework for Deductive Systems. In 16th International Con-
ference on Automated Deduction, 1999.

Benjamin C. Pierce and David N. Turner. Local type inference. In
25TH ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 252–265, 1998.

T. Sheard. Type-Level Computation Using Narrowing in Ωmega. In
Programming Languages meets Program Verification, 2006.

A. Stump. Proof Checking Technology for Satisfiability Modulo Theo-
ries. In A. Abel and C. Urban, editors, Logical Frameworks and Meta-
Languages: Theory and Practice, 2008.

A. Stump and D. Oe. Towards an SMT Proof Format. In C. Barrett and
L. de Moura, editors, International Workshop on Satisfiability Modulo
Theories, 2008.

A. Stump and E. Westbrook. A Core Operational Type Theory. Under
review, available from http://www.cs.uiowa.edu/∼astump.

W. Swierstra and T. Altenkirch. Beauty in the Beast. In Haskell Workshop,
2007.

The Coq Development Team. The Coq Proof Assistant Reference Manual,
Version V8.0, 2004. http://coq.inria.fr.

C. Urban, J. Cheney, and S. Berghofer. Mechanising the Metatheory of LF.
In Proc. of the 23rd IEEE Symposium on Logic in Computer Science,
pages 45–56. IEEE Computer Society, 2008.

K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A Concurrent Logical
Framework I: Judgments and Properties. Technical Report CMU-CS-02-
101, Carnegie Mellon University, 2002.

M. Zeller, A. Stump, and M. Deters. Signature Compilation for the Edin-
burgh Logical Framework. In C. Schürmann, editor, Workshop on Log-
ical Frameworks and Meta-Languages: Theory and Practice (LFMTP),
2007.

D. Zhu and H. Xi. Safe Programming with Pointers through Stateful Views.
In Proceedings of the 7th International Symposium on Practical Aspects
of Declarative Languages, pages 83–97, Long Beach, CA, January 2005.
Springer-Verlag LNCS vol. 3350.

