
Towards Typing for Small-Step Direct Reflection

Jacques Carette
Dept. of Computing and Software

McMaster University
Hamilton, Ontario, Canada
carette@mcmaster.ca

Aaron Stump
Computer Science Dept.
The University of Iowa
Iowa City, Iowa, USA
astump@acm.org

Abstract
Direct reflection is a form of meta-programming in which pro-
gram terms can intensionally analyze other program terms. Pre-
vious work defined a big-step semantics for a directly reflective
language called Archon, with a conservative approach to variable
scoping based on operations for opening a lambda-abstraction and
swapping the order of nested lambda-abstractions. In this short pa-
per, we give a small-step semantics for a revised version of Archon,
based on operations for opening and closing lambda abstractions.
We then discuss challenges for designing a static type system for
this language, which is our ultimate goal.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Applicative (functional) languages; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs

General Terms Languages, Types

Keywords Meta-Programming, Reflection, Small-Step Seman-
tics, Symbolic Computation

1. Introduction
We are interested intyped, directly reflective, meta-programming
languages with binders. By “directly reflective”, we mean that we
can not only inspect all terms, but decompose them all as well.
In other words, we would like a language in which all well-typed
terms are simultaneously extensional and intensional. Furthermore,
we would like to do this for as small an extension of the classical
λ-calculus as possible.

In previous work [12], the second author defined a directly re-
flective language called Archon, via a big-step operationalseman-
tics. This used a conservative approach to variable scopingbased
on operations for opening a lambda-abstraction and swapping the
order of nested lambda-abstractions. Here, we give a small-step se-
mantics for a revised version of Archon, based on operationsfor
opening and closing lambda abstractions. Since type systems are
usually developed based on small-step semantics, this is animpor-
tant first step.

If we were interested in acombinatory calculusfor this task,
we would adapt recent work of Jay and Palsberg [7], about which

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PEPM’12, January 23–24, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1118-2/12/01. . . $10.00

we will say more in the next section. From our point of view, their
language is missing a crucial ingredient: binders. We want to be
able to do direct reflection, in a hygienic manner, on terms with
binders. And, as the authors readily admit, their treatmentof typing
for theE combinator is unsatisfactory.

Our work belongs to a rich tradition of investigations on re-
flection, intensionality, open code, and typed meta-programming,
thus we first give a (brief) overview of some of these strands.We
present two versions of Archon: first the one from [12], and then a
new one which we believe to be more convenient to work with. We
then present our work-in-progress on a type system for (revised)
Archon.

2. Related Work
Jay and Palsberg [7] achieve something closely related, butfor
a combinatory calculus. They start from thepure factorisation
calculus[6], augmented with some usual combinators from theSK
combinatory calculus, as well as two new combinators,B andE,
respectively for blocking computation and for deciding equality of
operators. They then proceed to add syntactic sugar for the identity
combinator,λ-abstraction,let and let rec. They furthermore
add pattern-matching with path polymorphism [5], but this too can
be de-sugared. This is a remarkable piece of work. Unfortunately, it
does not achieve our goals: while it is possible to program intheir
system as if one were in aλ-calculus,introspectioncan only be
done at the level of the underlying combinatory calculus. This is in
every way similar to the situation of introspection in Java,whereby
one can only examine (and modify) thebyte codeof a Java class,
but not its source code. And, as they mention in section 7.1, the
typing of theE combinator is not entirely satisfactory.

Closer still to achieving part of what we want is the work
of Rendel, Ostermann and Hofer [10], who define a typedself-
representationof the (pure)λ-calculus. To achieve this, they first
leverage a technique from [2] whereby they abstract over a type
constructor, and then repeat this at the type level (to introduce
kind-polymorphism). This necessitates an extension of systemFω,
which they callF ⋆

ω , with a rule which amounts tokind:kind. While
this is not as bad astype:type, it is nevertheless quite discom-
forting. Furthermore, while they do indeed achieve typed self-
interpretation, it is notdirect as they only interpretquotedterms
(their terms are not self-quoting), nor do they allow reflection.

Another interesting strand concernsintensional logic, and in
particular the work of Paul Gilmore onIntensional Type Theory
(ITT) [3]. Terms in ITT have two types, an extensional and an
intensional type; closed terms in ITT have these two types coincide.
We see this as a very valuable insight.

There is a huge amount of work on typed staged languages,
which allow a restricted amount of code manipulation, but no
reflection, direct or indirect. Most influential on us has been the

T ::= x | λx.T | λ̄x.T | T T | open T T | vcomp T T

| swap T | T : T T T T T T T

Figure 1. The Syntax of HOSC-Archon Terms

T2 x T1 ⇓ R x 6∈ FV(λ∗x.T1) ∪ FV(T2)

open (λ∗x.T1) T2 ⇓ λ∗x.R
E-OPENLAM

T ⇓ λ1x.λ2y.R

swap T ⇓ λ2y.λ1x.R
E-SWAPLAM

Figure 2. HOSC-Archon Rules for Open and Swap

work of Rhiger [11] on a typed language with first-class open and
closed code fragments. He cleverly moves the typing contextinto
the types, to allow for a very fine-grained tracking of dependency in
an explicitly staged language. Kim, Yi and Calcagno [8] essentially
extend this with many more features, include variable-capturing
substitution at “higher levels”.

Atkey, Lindley and Yallop [1] take a different tack: rather than
deal with self-representation, especially of embedded languages,
they really work with language pairs(L1, L2), with explicit equiva-
lences between the languages. They achieve reflection because one
language is always represented (in the host language) as a first-
order datatype, on which intensional analysis may be performed.
While quite pragmatic, this is theoretically unsatisfying.

3. HOSC-Archon
Previous work of the second author defined a directly reflective
meta-programming language called Archon [12]. We will refer
to that language as HOSC-Archon in this paper. The syntax for
HOSC-Archon terms is given in Figure 1. In this section, we retain
the same syntax as in [12] , though in the next section we will depart
from this somewhat. Here, the constructλ̄ is for call-by-nameλ-
abstraction, whileλ is reserved for call-by-value abstraction. The
vcomp construct is for comparing two variables for equality. The
: construct is for intensional case-analysis, calleddecomposition,
on the form of an unevaluated term, and includes terms to apply for
each of the seven possible forms (one for each syntactic construct)
of the scrutinized term to the left of the colon. Colon is a weak form
of pattern-matching which, by construction, is always exhaustive.

We will give a full semantics for our revised version of this lan-
guage in the next section. First, for comparison, we consider the
semantics of HOSC-Archon’sopen andswap, in Figure 2. Eval-
uation of aswap-term (the rule E-SWAPLAM) evaluates the sub-
termT and then, if it is a consecutively nestedλ-abstraction, swaps
the order of theλ-bindings. The E-OPENLAM shows the situation
whereopen has an unevaluatedλ-abstraction (λ∗ indicates either
λ or λ̄), and evaluation applies a termT2 to the bound variable and
the body of thatλ-abstraction. It is assumed that variables are re-
named before theλ-abstraction is opened, so that the variablex is
not free inT2. After evaluation of that application completes, the
result is rebound withλx, thus preventing variables from escaping
their scopes. It is this behavior we will relax in the next section. It
is possible to define highly intensional meta-programming opera-
tions like testing terms for alpha-equivalence, or Mogensen-Scott
decoding and encoding functions, in HOSC-Archon [12].

4. Revised Archon: Syntax and Semantics
Figure 3 gives the syntax for terms in our revised version of Ar-
chon. ContextsC are defined for the operational semantics, defined

convention θ ::= v | n

term t ::= x | t t ′ | λθx .t | open t t ′

| closeθx t | veq t t ′ | t :
−→
t ′

context C ::= ∗ | C t | h C| (λvx .t) C

concreteValue v ::= λθx .t | h

headValue h ::= x | h v

Figure 3. Syntax for (Revised) Archon Terms

in Figures 4 and 5. As usual for reduction defined with contexts, the
clauses defining contextsC show where reduction may take place
in a term; so we may reduce in an argument to a call-by-valueλ-
abstraction, but not a call-by-name one. We allowsymbolic com-
putationin both HOSC-Archon and revised Archon, so the notion
of valuesv includes (viaheadValue) applications of variablesx to
values. We use (calling) convention markersθ to indicate whether
λ-abstractions are call-by-name (n) or call-by-value (v). The most
important change, of course, is that we have removedswap and re-
placed it withclose. The motivation is threefold:swap seems less
fundamental thanclose, close gives us finer control over scoping,
andopen/close exhibit a more pleasant natural symmetry.tt and
ff denote the usual Church encodings of booleanstrue andfalse.

C[(λvx .t) v] → C[[v/x]t]
C BETAV

C[(λnx .t) t ′] → C[[t ′/x]t]
C BETAN

x ′ 6 ∈ FV (C[t t ′])

C[open (λθx .t) t ′] → C[((t ′ x ′) [x ′/x]t)]
C OPEN

C[closeθx t] → C[λθx .t]
C CLOSE

x 6= x ′

C[veq x x ′] → C[ff]
C VARDIFF

C[veq x x] → C[tt]
C VARSAME

Figure 4. Small-Step Semantics for (Revised) Archon, Non-
Decomp Rules

The rules of Figures 4 and 5 define a small-step operational
semantics for Archon terms.

−→
t denotest1t2t3t4t5t6t7. This se-

mantics bans variable capture during substitution, just like HOSC-
Archon, but it now permits variables to escape their scopes.So if
we havet →+ t′, then it can happen that the setFV(t′) of free vari-
ables oft′ is not a subset ofFV(t). New free variables may appear
during reduction, because unlike in HOSC-Archon, revised Archon
does not insist that a variablex which is freed byopen must al-
ways be re-bound around a resulting term which might containx
free. One could certainly implement this re-binding discipline on
top ofopen andclose: one can just require all terms to useopen′

defined as follows. For simplicity we always re-bind the variable as
call-by-name; using decomposition one could re-bind the variable

C[x :
−→
t] → C[t1 x]

C DVAR
C[(λnx .t) :

−→
t] → C[t2 ff (λnx .t)]

C DCBN
C[(t ′ t ′′) :

−→
t] → C[t3 t ′ t ′′]

C DAPP

C[(open t ′ t ′′) :
−→
t] → C[t4 t ′ t ′′]

C DOPEN
C[(closevx t ′) :

−→
t] → C[t5 tt x t ′]

C DCLOSES

C[(veq t ′ t ′′) :
−→
t] → C[t6 t ′ t ′′]

C DVEQ
C[(closenx t ′) :

−→
t] → C[t5 ff x t ′]

C DCLOSED

C[(t ′ :
−→
t ′) :

−→
t] → C[t7 t ′ t ′1 t

′

2 t
′

3 t
′

4 t
′

5 t
′

6 t
′

7]
C DDECOMP

C[(λvx .t) :
−→
t] → C[t2 tt (λvx .t)]

C DCBV

Figure 5. Small-Step Semantics for (Revised) Archon, Decomp Rules

to match its original conventionθ.

open′ :=
λnx .λnx ′.open x (λny .λny ′.((λvx ′′.closevy x ′′) (x ′ y y ′)))

This term takes in a termx to open and a functionx′ to apply to the
bound variable and body ofx. It opensx, using a term which will
receive the bound variable ofx asy and the body asy′. It then calls
the original functionx′ on y andy′, obtaining the result asx′′. It
then re-bindsy around that resultx′′ usingclose.

For another example, Figure 6 shows how theswap operator
of HOSC-Archon can be implemented in revised Archon (we again
re-bind the two variables just asλn-abstractions, just for easier
readability; we could use decomposition to re-bind with theoriginal
conventionθ). The term given in the figure forswap takes in a
termx, assumed to be a doubly nestedλ-abstraction of the form
λθ

1y .λ
θ

2y
′.x ′′; opens it twice (that is, opens it and then opens its

body) to obtainy, y′, andx′′; and then closes the variables in the
reverse order (with a call-by-valueβ-redex binding variablex′′′ to
force evaluation of the firstclose-term). This results in the term
λny ′.λny .x ′′, which indeed has swapped the order of the bound
variables, as desired.

The fact that revised Archon can simulateswap from HOSC-
Archon shows that revised Archon is at least as expressive as
HOSC-Archon. To make this more precise, suppose we have de-
fined a translation| · | from HOSC-Archon terms to revised Ar-
chon terms, in the obvious way, using the definition of Figure6 for
swap. Then we have the following theorem:

THEOREM 1. If t ⇓ t′ in HOSC-Archon, then we also have|t| →∗

|t′| in revised Archon.

Proof. The proof is by straightforward induction on the structure of
the derivation of the HOSC-Archon evaluation judgment. It makes
use of the fact that ift ⇓ t′, thent′ is an HOSC-Archon value,
which translates to a revised Archon value. It also makes useof
a standard derived congruence lemma for revised Archon, stating
thatt →∗ t′ impliesC[t] →∗ C[t′]. End proof.

5. Types
Our goal is to devise a static type system for revised Archon,which
will ensure thatopen cannot be called on a term which is not aλ-
abstraction;veq can only be called on terms which are variables;
and where the free variables of terms can be tracked by the type
system. Note that we really do mean thatopen must be called on a
λ-abstraction, i.e. its first argument will not be evaluated,implying
that staging properties, although implicit, are nevertheless very
important. Tracking of free variables can be useful if one wished to
enforce statically some additional policy about free variables. For
example, we might want to require that in a top-level definition, the
defining term is closed; or we might want to disallow evaluation of

terms with free variables unless they are statically guaranteed to be
λ-abstractions.

As perhaps should not be surprising given the complexity of
the type systems in related works, it turns out to be quite subtle
to design a liberal but sound type system to meet the above goals.
Here, we highlight challenges and sketch ideas in that direction,
starting with some simple examples which such a type system
should allow or reject. Note that eventually, one would liketo
have a system of annotated (Church-style) terms with a decidable
type-checking problem; but for purposes of the examples below,
we work with unannotated (Curry-style) terms, as this allows us to
avoid attempting to define the syntax for types at this point.

5.1 Simple Examples

Basic swap example (accept).Let swap be as defined in Figure 6
above. Thenswap itself should be typable, with a type that reflects
that its argument should be a doubly-nestedλ-abstraction. So the
following term should be typable:

swap (λn

x .λn

y .x)

This term simply swaps variablesx andy. The type assigned to this
term should reflect the fact that the term is closed.

Indirect swap (accept).The term below should be typable where
the type ofx expresses that it is a doubly-nestedλ-abstraction:

λn

x .swap x

Furthermore, typing should probably express that the sets of free
variables of the input and output of thisλ-abstraction are the same.

Scoping and swap (reject).The following example should be
disallowed, even if theλ-abstraction is given a type like(T ⇒
T) ⇒ T ⇒ T :

swap (λn

x .x)

This is the most direct reflection of our desire forswap to be an
intensionaloperation.
Decomp and open (accept).Typing for decomposition should
use some kind of type refinement, so that in each branch of a
decomposition, typing can take into account that the scrutinee term
has a known form. Thus

t : a (λn

x .λn

y .open y t
′) b c d e f

should be typable, for typable scrutineet, a suitable termt′ to
apply to the bound variable and body oft, and suitable other
decomposition branchesa throughf .

Variables ranging over variables (accept).The following term
should be typable, with a type expressing that if the arguments
supplied forx andy are variables, then the result of applying the

swap := λnx .open x λny .λnx ′.open x ′ λny ′.λnx ′′.((λvx ′′′.closeny ′ x ′′′) (closeny x ′′))

Figure 6. Definition of swap Using Open and Close in Revised Archon

λ-abstraction is a boolean:

λn

x .λn

y .veq x y

Note that this requires the type system to be able to express the
idea that a variable (likex) ranges over free variables, since if a
term of a different form is supplied forx, the application of thisλ-
abstraction will have a stuck term (asveq t t ′ is stuck unless both
t andt′ are variables).
Application, variables and swap (reject). It is entirely possible
that a free variable has a type such that the left term below iswell-
typed, while the right term is not.

f x y swap f

While f representsa function of2 arguments, that does not imply
that isis a function of2 arguments.

5.2 Ideas on Typing

Shapes and types.One idea that seems promising is to incorporate
both shapes and types into the type system. A shape is a type-like
expression which expresses more about the intensional formof a
term. An example shape is(T1 ⇒ T2) T1. This shape expresses
(among other things) that the term in question is an application;
that property is usually not expressible in a type system. Here, we
expect ideas in an emerging line of research on “small-step typing”
to help, since there, terms are rewritten in a small-step fashion to
their types, passing through shapes as intermediary forms [4, 9, 13].

Tracking free variables. Since an open term fundamentally
depends on the names of the free variables that it contains, if
we wish to enforce any policy which depends on the presence
or absence of (certain) free variables, we need to track this. For
example, internalizing capture-avoiding substitution requires this
feature.Binders Unbound[14] gives other examples of the utility
of this feature.

Denotations of types.Since types are specifications, it can be
useful to define a semantics for types in a denotational style, as
a guide for a decidable type system. Such a semantics determines
what types are supposed to mean. A basic example is the following
for function typesT → T ′, from reducibility for normalization of
λ-calculi:

t ∈ [[T → T ′]] ⇔ ∀t′ ∈ [[T]]. t t′ ∈ [[T ′]]

This type thus expresses an extensional view of terms: a termt is
in the meaning of the typeT → T ′ iff for every input t′ in the
meaning ofT , the applicationt t′ is in the interpretation ofT ′. For
revised Archon, we anticipate needing types embodying thisexten-
sional viewpoint, but also ones with a more intensional character.
For the termsλnx .x andλnx .λny .(x y) are indistinguishable ex-
tensionally whenx is taken to range over functions; but we must
distinguish them somehow in order to allow the “indirect swap”
example above, while ruling out the “scoping and swap” example.

5.3 Other semantic differences

Open terms differ significantly from closed terms. For example,
x + 1 andλvx.x + 1 may at first seem quite similar1, since they
can be inter-derived viaclosevx (x + 1), andopen (λvx.x +
1) (λnv.λnb.b). Nevertheless, we assert thatx + 1 represents the
“add 1 concept”, whileλvx.x + 1 represents the action of adding
1. Another example is that we can easily add a constant which

1 in an obvious extension of revised Archon

represents the “halts” concept (as applied to terms), but wewould
be hard-pressed to instantiate it.

6. Conclusion
We believe that revised Archon has the “right” operational seman-
tics for a useful core calculus for (typed) meta-programming which
incorporates many useful features: binders, direct reflection, and
symbolic computation. Another significant advantage of direct re-
flection is thatpersistent codeis no longer an issue, unlike in most
other calculi. Our ongoing work makes us quite optimistic that by
combining a shape system, type refinement with free variabletrack-
ing will culminate in a static “type” system for revised Archon.

Acknowledgements: We wish to thank Marc Bender, Barry Jay,
and the anonymous PEPM ’12 reviewers for insightful comments.

References
[1] Robert Atkey, Sam Lindley, and Jeremy Yallop. Unembedding

domain-specific languages. InProceedings of the 2nd ACM SIGPLAN
symposium on Haskell, pages 37–48. ACM, 2009.

[2] Jacques Carette, Oleg Kiselyov, and Chung chieh Shan. Finally tag-
less, partially evaluated: Tagless staged interpreters for simpler typed
languages.J. Funct. Program., 19(5):509–543, 2009.

[3] Paul C. Gilmore. An intensional type theory: Motivationand cut-
elimination. J. Symb. Log., 66(1):383–400, 2001.

[4] M. Hills and G. Rosu. A Rewriting Logic Semantics Approach to
Modular Program Analysis. In C. Lynch, editor,Proceedings of RTA
2010, Edinburgh, Scotland, UK, pages 151–160, 2010.

[5] Barry. Jay.Pattern calculus : computing with functions and structures.
Springer, Berlin ; London :, 2009.

[6] Barry Jay and Thomas Given-Wilson. A combinatory account of
internal structure. Accepted toJournal of Symbolic Logic.

[7] Barry Jay and Jens Palsberg. Typed self-interpretationby pattern
matching. InProceeding of ICFP 2011, pages 247–258. ACM, 2011.

[8] Ik-Soon Kim, Kwangkeun Yi, and Cristiano Calcagno. A polymorphic
modal type system for lisp-like multi-staged languages. InPOPL
2006, pages 257–268. ACM, 2006.

[9] G. Kuan, D. MacQueen, and R. Findler. A rewriting semantics for
type inference. InProceedings of the 16th European conference on
Programming (ESOP), pages 426–440. Springer-Verlag, 2007.

[10] Tillmann Rendel, Klaus Ostermann, and Christian Hofer. Typed self-
representation. InProceedings of the 2009 ACM SIGPLAN conference
on Programming language design and implementation (PLDI), pages
293–303. ACM, 2009.

[11] Morten Rhiger. First-class Open and Closed Code Fragments. In
Marko C. J. D. van Eekelen, editor,Revised Selected Papers from
the Sixth Symposium on Trends in Functional Programming (TFP),
volume 6, pages 127–144, 2005.

[12] Aaron Stump. Directly Reflective Meta-Programming.Higher Order
and Symbolic Computation, 22(2):115–144, 2009.

[13] Aaron Stump, Garrin Kimmell, and Roba El Haj Omar. Type Preser-
vation as a Confluence Problem. In Manfred Schmidt-Schauß, editor,
Proceedings of RTA 2011, volume 10 ofLIPIcs, pages 345–360, 2011.

[14] Stephanie Weirich, Brent A. Yorgey, and Tim Sheard. Binders un-
bound. InProceeding of ICFP ’11, pages 333–345, New York, NY,
USA, 2011. ACM. doi: 10.1145/2034773.2034818.

