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Abstract

Direct reflection is a form of meta-programming in which pro-
gram terms can intensionally analyze other program termes. P
vious work defined a big-step semantics for a directly reflect
language called Archon, with a conservative approach tialvir
scoping based on operations for opening a lambda-absinaatd
swapping the order of nested lambda-abstractions. In ltog pa-
per, we give a small-step semantics for a revised versiorrdian,
based on operations for opening and closing lambda akistnact
We then discuss challenges for designing a static type raykie
this language, which is our ultimate goal.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guage§ Applicative (functional) languages; F.3.1dgics and
Meanings of Progranjs Specifying and Verifying and Reasoning
about Programs

General Terms Languages, Types

Keywords Meta-Programming, Reflection, Small-Step Seman-
tics, Symbolic Computation

1. Introduction

We are interested ityped, directly reflective, meta-programming
languages with binderBy “directly reflective”, we mean that we
can not only inspect all terms, but decompose them all as. well
In other words, we would like a language in which all well-¢gb
terms are simultaneously extensional and intensionathEtmore,
we would like to do this for as small an extension of the clzasi
A-calculus as possible.

In previous work [12], the second author defined a directly re
flective language called Archon, via a big-step operatiseahan-
tics. This used a conservative approach to variable scdpisgd
on operations for opening a lambda-abstraction and swgghin
order of nested lambda-abstractions. Here, we give a stegise-
mantics for a revised version of Archon, based on operations
opening and closing lambda abstractions. Since type sgsszen
usually developed based on small-step semantics, thisim@or-
tant first step.

If we were interested in aombinatory calculugor this task,
we would adapt recent work of Jay and Palsberg [7], abouthwhic
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we will say more in the next section. From our point of vievgith
language is missing a crucial ingredient: binders. We wariiet
able to do direct reflection, in a hygienic manner, on ternth wi
binders. And, as the authors readily admit, their treatroétyiping
for the EZ combinator is unsatisfactory.

Our work belongs to a rich tradition of investigations on re-
flection, intensionality, open code, and typed meta-prognang,
thus we first give a (brief) overview of some of these straivds.
present two versions of Archon: first the one from [12], arehth
new one which we believe to be more convenient to work with. We
then present our work-in-progress on a type system for deeyi
Archon.

2. Related Work

Jay and Palsberg [7] achieve something closely relatedfdout
a combinatory calculus. They start from tipere factorisation
calculus[6], augmented with some usual combinators fromStie
combinatory calculus, as well as two new combinat@sand E,
respectively for blocking computation and for deciding &lify of
operators. They then proceed to add syntactic sugar fodémity
combinator, \-abstraction,let and let rec. They furthermore
add pattern-matching with path polymorphism [5], but tlig tan
be de-sugared. This is a remarkable piece of work. Unfotélyat
does not achieve our goals: while it is possible to prograthéir
system as if one were in &-calculus,introspectioncan only be
done at the level of the underlying combinatory calculussT$in
every way similar to the situation of introspection in Javagreby
one can only examine (and modify) thgte codeof a Java class,
but not its source code. And, as they mention in section Rd, t
typing of the E combinator is not entirely satisfactory.

Closer still to achieving part of what we want is the work
of Rendel, Ostermann and Hofer [10], who define a typell-
representatiorof the (pure)A-calculus. To achieve this, they first
leverage a technique from [2] whereby they abstract oveipa ty
constructor, and then repeat this at the type level (to dhice
kind-polymorphism). This necessitates an extension desy$.,,
which they callF;, with a rule which amounts tkind:kind While
this is not as bad agy/pe:type it is nevertheless quite discom-
forting. Furthermore, while they do indeed achieve typeli- se
interpretation, it is notlirect as they only interpretjuotedterms
(their terms are not self-quoting), nor do they allow reftatt

Another interesting strand conceritgensional logi¢ and in
particular the work of Paul Gilmore omtensional Type Theory
(ITT) [3]. Terms in ITT have two types, an extensional and an
intensional type; closed terms in ITT have these two typésade.
We see this as a very valuable insight.

There is a huge amount of work on typed staged languages,
which allow a restricted amount of code manipulation, but no
reflection, direct or indirect. Most influential on us has beke
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Figure 1. The Syntax of HOSC-Archon Terms
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swap T | My \z.R
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Figure 2. HOSC-Archon Rules for Open and Swap

work of Rhiger [11] on a typed language with first-class oped a
closed code fragments. He cleverly moves the typing cortést
the types, to allow for a very fine-grained tracking of depamay in
an explicitly staged language. Kim, Yi and Calcagno [8] atiadly
extend this with many more features, include variableo@pg
substitution at “higher levels”.

Atkey, Lindley and Yallop [1] take a different tack: rathéan
deal with self-representation, especially of embeddeduages,
they really work with language paif4.1, L2 ), with explicit equiva-
lences between the languages. They achieve reflectionseoae
language is always represented (in the host language) asta fir
order datatype, on which intensional analysis may be pedr
While quite pragmatic, this is theoretically unsatisfying

3. HOSC-Archon

Previous work of the second author defined a directly reflecti
meta-programming language called Archon [12]. We will refe
to that language as HOSC-Archon in this paper. The syntax for
HOSC-Archon terms is given in Figure 1. In this section, waire
the same syntax as in [12] , though in the next section we wpkdit
from this somewhat. Here, the constructs for call-by-namei-
abstraction, while\ is reserved for call-by-value abstraction. The
vcomp construct is for comparing two variables for equality. The
: construct is for intensional case-analysis, caliedomposition
on the form of an unevaluated term, and includes terms to/dppl
each of the seven possible forms (one for each syntactid¢roetys

of the scrutinized term to the left of the colon. Colon is a kviam

of pattern-matching which, by construction, is always etiae.

We will give a full semantics for our revised version of tras#
guage in the next section. First, for comparison, we congiue
semantics of HOSC-Archonispen andswap, in Figure 2. Eval-
uation of aswap-term (the rule E-8APLAM) evaluates the sub-
termT and then, if it is a consecutively nest&ehbstraction, swaps
the order of the\-bindings. The E-®@ENLAM shows the situation
whereopen has an unevaluatektabstraction X* indicates either
A or )\), and evaluation applies a terfa to the bound variable and
the body of that\-abstraction. It is assumed that variables are re-
named before tha-abstraction is opened, so that the variablis
not free inT5. After evaluation of that application completes, the
result is rebound withz, thus preventing variables from escaping
their scopes. It is this behavior we will relax in the nexttget It
is possible to define highly intensional meta-programmipgra-
tions like testing terms for alpha-equivalence, or MogerSeott
decoding and encoding functions, in HOSC-Archon [12].

4. Revised Archon: Syntax and Semantics

Figure 3 gives the syntax for terms in our revised version of A
chon. Contextg are defined for the operational semantics, defined

convention 0 v|n

term t = z|tt'|A\z.t|opentt

| close?z t | veqtt'|t:t
context C = x|Ct|hC|(A\z.t)C
concreteValue v == Nzt |h
headValue h = z|hv

Figure 3. Syntax for (Revised) Archon Terms

in Figures 4 and 5. As usual for reduction defined with corstekie
clauses defining contextsshow where reduction may take place
in a term; so we may reduce in an argument to a call-by-value
abstraction, but not a call-by-name one. We allymbolic com-
putationin both HOSC-Archon and revised Archon, so the notion
of valueswv includes (viaheadValug applications of variables to
values. We use (calling) convention markér®o indicate whether
A-abstractions are call-by-name)(or call-by-value ¢). The most
important change, of course, is that we have remaewealp and re-
placed it withclose. The motivation is threefoldswap seems less
fundamental tharlose, close gives us finer control over scoping,
andopen/close exhibit a more pleasant natural symmetityand

ff denote the usual Church encodings of booleans and false.

C_BETAV

Cl(Avz.t) v] — C[[v/z]t]

C_BETAN

Cl(wz.t) ] — C[[t'/a]{]

¥ £ FV(C[tt])
Clopen (M\z.t) t'] — C[((¢' z’) [z /z]¢)]

C_OPEN

C_CLOSE

Clclose’z t] — C[A0x.1)

z#x

C_VARD
Clveqz z'] — C[ff] ARDIFF

Clveqz z] — C[tt] C-VARSAME

Figure 4. Small-Step Semantics for (Revised) Archon, Non-
Decomp Rules

The rules of Figures 4 and 5 define a small-step operational
semantics for Archon termsi’ denotestitatstatststs. This se-
mantics bans variable capture during substitution, just HOSC-
Archon, but it now permits variables to escape their scopesf
we havet —T #/, then it can happen that the $&t(¢') of free vari-
ables oft’ is not a subset dfFV(¢). New free variables may appear
during reduction, because unlike in HOSC-Archon, revisezh&n
does not insist that a variablewhich is freed byopen must al-
ways be re-bound around a resulting term which might contain
free. One could certainly implement this re-binding difici on
top ofopen andclose: one can just require all terms to uspen’
defined as follows. For simplicity we always re-bind the able as
call-by-name; using decomposition one could re-bind théaiste
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C_DCBN C_DAPP

-
Cla: ] — Clt =] Cl(Amz.t): 1] — Cltz £ (Anz.1)] Cl(tt): £] = Clts t/ 7]
C_DOPEN — C_DCLOSES
Cllopent' t"): t] — C[ta t' t"'] Cl(closez t'): t] — C[ts tt z ¢/]
C_DVEQ C_DCLOSED

Cl(veqt' t"): T] — Clts t' t]

C_.DDEcomP

Cl(close™z t'): _t>] = CltsfFz t']

C_DCsvV

7

cl(t 7): — Cltr t/ 8]ttt 1L 1] 1]

ClWvVz.t): €] — Clta tt (A\Vz.1)]

Figure 5. Small-Step Semantics for (Revised) Archon, Decomp Rules

to match its original conventiof.

open’
APz A%z openz (A\"y. A"y . (A\Vz" .close¥y ') (z' y y')))

This term takes in a termto open and a function’ to apply to the
bound variable and body of. It opensz, using a term which will
receive the bound variable afasy and the body ag’. It then calls
the original functionz’ ony andy’, obtaining the result ag”. It
then re-bindg, around that result” usingclose.

For another example, Figure 6 shows how $keap operator
of HOSC-Archon can be implemented in revised Archon (weragai
re-bind the two variables just as-abstractions, just for easier
readability; we could use decomposition to re-bind withdhiginal
conventiond). The term given in the figure faswap takes in a
term x, assumed to be a doubly nesteebstraction of the form
My A%y’ .2""; opens it twice (that is, opens it and then opens its
body) to obtainy, ', andz”; and then closes the variables in the
reverse order (with a call-by-valygredex binding variable”’ to
force evaluation of the firstlose-term). This results in the term
A%y" A\"y.z”, which indeed has swapped the order of the bound
variables, as desired.

The fact that revised Archon can simulat@ap from HOSC-

Archon shows that revised Archon is at least as expressive as

terms with free variables unless they are statically guasthto be
A-abstractions.

As perhaps should not be surprising given the complexity of
the type systems in related works, it turns out to be quitélsub
to design a liberal but sound type system to meet the abovs.goa
Here, we highlight challenges and sketch ideas in that tinec
starting with some simple examples which such a type system
should allow or reject. Note that eventually, one would like
have a system of annotated (Church-style) terms with a dblgd
type-checking problem; but for purposes of the examplesviel
we work with unannotated (Curry-style) terms, as this alas to
avoid attempting to define the syntax for types at this point.

5.1 Simple Examples

Basic swap example (accept).et swap be as defined in Figure 6
above. Theswap itself should be typable, with a type that reflects
that its argument should be a doubly-nespedbstraction. So the
following term should be typable:

swap (\"z.\"y.1)

This term simply swaps variablesandy. The type assigned to this
term should reflect the fact that the term is closed.

HOSC-Archon. To make this more precise, suppose we have de-Indirect swap (accept). The term below should be typable where

fined a translatior} - | from HOSC-Archon terms to revised Ar-
chon terms, in the obvious way, using the definition of Fighifer
swap. Then we have the following theorem:

THEOREML. If ¢ |} ¢ in HOSC-Archon, then we also haje —*
[t’| in revised Archon.

Proof. The proof is by straightforward induction on the structuire o
the derivation of the HOSC-Archon evaluation judgment. #kes
use of the fact that if | t/, thent’ is an HOSC-Archon value,
which translates to a revised Archon value. It also makesofise
a standard derived congruence lemma for revised Archotingta
thatt —* ¢’ impliesC[t] —* C[t']. End proof.

5. Types

Our goal is to devise a static type system for revised Arctdrich
will ensure thabpen cannot be called on a term which is noka
abstractionyeq can only be called on terms which are variables;
and where the free variables of terms can be tracked by the typ
system. Note that we really do mean thgien must be called on a
A-abstraction, i.e. its first argument will not be evaluaiethlying
that staging properties, although implicit, are nevegbelvery
important. Tracking of free variables can be useful if onsheid to
enforce statically some additional policy about free valga. For
example, we might want to require that in a top-level defanitithe
defining term is closed; or we might want to disallow evalof

the type ofr expresses that it is a doubly-neste@dbstraction:
A\'z.swap z

Furthermore, typing should probably express that the detee
variables of the input and output of thisabstraction are the same.

Scoping and swap (reject).The following example should be
disallowed, even if the\-abstraction is given a type k&' =
T)=T="1T:

swap (\"z.z)

This is the most direct reflection of our desire favap to be an
intensionaloperation.

Decomp and open (accept)Typing for decomposition should
use some kind of type refinement, so that in each branch of a
decomposition, typing can take into account that the soeetierm

has a known form. Thus

t:a(\"z.\"y.openyt)bcdef

should be typable, for typable scrutinéea suitable termt’ to
apply to the bound variable and body tf and suitable other
decomposition branchesthrough .

Variables ranging over variables (accept).The following term
should be typable, with a type expressing that if the argusnen
supplied forz andy are variables, then the result of applying the



swap := A"z.openz A\"y.\"z".openz’ \*y' A\*z".(A\Vz"".close™y’ z"") (close™y z"))

Figure 6. Definition of swap Using Open and Close in Revised Archon

A-abstraction is a boolean:
ANz A"y.veqzy

Note that this requires the type system to be able to exphess t
idea that a variable (like) ranges over free variables, since if a
term of a different form is supplied fat, the application of this\-
abstraction will have a stuck term (a&eq ¢ ¢’ is stuck unless both

t andt’ are variables).

Application, variables and swap (reject) It is entirely possible
that a free variable has a type such that the left term belavels
typed, while the right term is not.

fzy swap f

While f represents function of2 arguments, that does not imply
that isis a function of2 arguments.

5.2

Shapes and typesOne idea that seems promising is to incorporate
both shapes and types into the type system. A shape is aikgoe-|
expression which expresses more about the intensional déren
term. An example shape {§1 = 72) T1. This shape expresses
(among other things) that the term in question is an applicat
that property is usually not expressible in a type systenmeHee
expect ideas in an emerging line of research on “small-si@pd”
to help, since there, terms are rewritten in a small-stepidasto
their types, passing through shapes as intermediary fatnds 13].

Tracking free variables. Since an open term fundamentally
depends on the names of the free variables that it contdins, i
we wish to enforce any policy which depends on the presence
or absence of (certain) free variables, we need to track Eus
example, internalizing capture-avoiding substitutioquiees this
feature.Binders Unbound14] gives other examples of the utility
of this feature.

Denotations of types.Since types are specifications, it can be
useful to define a semantics for types in a denotational ,sage
a guide for a decidable type system. Such a semantics detsmi
what types are supposed to mean. A basic example is the fotjow
for function typesl” — T”, from reducibility for normalization of
A-calculi:

Ideas on Typing

te[T—-T7 & v e[T].tt €[T']

This type thus expresses an extensional view of terms: a#tésm
in the meaning of the typ& — T iff for every inputt’ in the
meaning ofl", the applicatiort ¢’ is in the interpretation of”. For
revised Archon, we anticipate needing types embodyingetttisn-
sional viewpoint, but also ones with a more intensional abizr.
For the terms\"z.z and A" z.\"y.(z y) are indistinguishable ex-
tensionally whene is taken to range over functions; but we must
distinguish them somehow in order to allow the “indirect piva
example above, while ruling out the “scoping and swap” examp

5.3 Other semantic differences

Open terms differ significantly from closed terms. For eximp

x + 1 and\Vz.z + 1 may at first seem quite simifarsince they
can be inter-derived vialose'z (z + 1), andopen (A\Vz.z +

1) (\"v.A"b.b). Nevertheless, we assert that- 1 represents the
“add 1 concept”, whileAYz.x + 1 represents the action of adding
1. Another example is that we can easily add a constant which

Lin an obvious extension of revised Archon

represents the “halts” concept (as applied to terms), buvawdd
be hard-pressed to instantiate it.

6. Conclusion

We believe that revised Archon has the “right” operatioreahan-
tics for a useful core calculus for (typed) meta-prograngwifich
incorporates many useful features: binders, direct réflecend
symbolic computation. Another significant advantage oédcdire-
flection is thatpersistent codés no longer an issue, unlike in most
other calculi. Our ongoing work makes us quite optimistiatthy
combining a shape system, type refinement with free vartadut&-
ing will culminate in a static “type” system for revised A
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