
Mining Propositional Simplification Proofs for

Small Validating Clauses

Ian Wehrman and Aaron Stump
Computer Science and Engineering, Washington University in St. Louis

{iwehrman,stump}@cse.wustl.edu, http://cl.cse.wustl.edu/

Abstract

The problem of obtaining small conflict clauses in SMT systems has
received a great deal of attention recently. We report work in progress
to find small subsets of the current partial assignment that imply the
goal formula when it has been propositionally simplified to a boolean
value. The approach used is algebraic proof mining. Proofs from a
propositional reasoner that the goal is equivalent to a boolean value (in
the current assignment) are viewed as first-order terms. An equational
theory between proofs is then defined, which is sound with respect to
the quasi-order “proves a more general set theorems.” The theory is
completed to obtain a convergent rewrite system that puts proofs into
a canonical form. While our canonical form does not use the smallest
subset of the current assignment, it does drop many unnecessary parts
of the proof. The paper concludes with discussion of the complexity of
the problem and effectiveness of the approach.

1 Introduction

The problem of obtaining small conflict clauses, long known in the SAT
community to be crucial for high performance [8], has recently been of great
interest to the satisfiability modulo theories (SMT) community [5, 3]. This
paper reports work in progress to find small subsets of the current partial
assignment that imply the goal formula when it has been propositionally
simplified to a boolean value (true or false). We refer to clauses that imply
the goal formula as validating clauses. Validating clauses in the context of
validity correspond to conflict clauses in the context of satisfiability. The
techniques we propose can be applied to either problem, but we refer only
to the first case in the paper.

SMT tools like CVC [6] and CVC Lite [2] work (roughly) by first choos-
ing an atomic formula to case split on, followed by simplification of the
(non-clausal) goal. Splitting and simplification proceeds until the formula
simplifies to a boolean value. If that value is true, we would like to record

1

a subset of the current partial assignment as a validating clause. The cur-
rent assignment itself is not useful in guiding the search, but a small proper
subset can be. We hope to find such a small subset because incremental sim-
plification is often redundant in the following sense. Consider the formula
(χ ∨ ψ) ∧ φ. Simplification may proceed (left to right) as follows:

(χ ∨ ψ) ∧ φ
χ⇔F
99K ψ ∧ φ

ψ⇔T
99K φ

φ⇔T
99K T. (1)

Here, the assignment with domain χ,ψ,φ is a validating clause, implying
(χ ∨ ψ) ∧ φ ⇔ T . It is easy to see, however, that the first decision in this
assignment is redundant. If simplification had omitted the first decision,

(χ ∨ ψ) ∧ φ
ψ⇔T
99K φ

φ⇔T
99K T, (2)

the formula would still simplify to T , resulting in a smaller and potentially
more useful validating clause.

SMT tools such as CVC generate proofs of simplification. These proofs
correspond to the step-by-step simplification of the goal to a boolean value.
The main observation of this paper is that proofs can be transformed to
find smaller validating clauses. Given a formula φ and proof that φ ⇔ T
from simplification, we can reduce the proof using a term rewriting system
(TRS) to one using a smaller assignment — proofs as in (1) are reduced
to proofs as in (2). This is of potential value for systems that rely on
simplifying a non-clausal goal formula, such as CVC Lite which uses both
clausal and non-clausal forms of the goal, the former in order to obtain
validating clauses [1]. The method proposed in this paper could be used
to obtain small validating clauses without resorting to clausal form. In
addition, studying the transformation of proofs could pave the way for more
sophisticated proof mining techniques and applications.

The approach used is algebraic proof mining [7]. Proofs obtained from
propositional simplification are viewed as first-order terms. A (finite) equa-
tional theory between proofs is defined, which is sound with respect to the
quasi-order “proves a more general set of theorems.” The theory is com-
pleted to obtain a convergent TRS which puts proofs into a canonical form.
While our rewrite system does not result in a canonical form that uses the
smallest subset of the current assignment, it does remove clearly unnecessary
parts of the proof. These unnecessary parts correspond to the simplifications
performed, e.g., on the left side of a disjunction whose right side simplifies
to true. The simplifications performed on the left disjunct are unnecessary,
because the whole disjunction will simplify to true whether or not the left
disjunct is simplified.

In Sec. 2, we describe the propositional formulas and proofs under con-
sideration and, in Sec. 3, we present a term rewriting system for proof re-
duction.

2

2 Propositional Equivalence Formulas and Proofs

We begin by defining the propositional formulas considered in our system
and then describe a set of first-order terms that represent the proof rules.
Finally, we give an equational theory for simplifying proof terms, along with
a completed set of rewrite rules.

Let A be a countable set of propositional variables, V the set of boolean
values {T, F} and S the set of propositional formulas defined inductively by

S ::= A | (S ∨ S) | (S ∧ S) | ¬S.

Let D be the set of equivalence formulas and E be the set of boolean-valued
equivalence formulas defined inductively by

D ::= S ⇔ S | E
E ::= S ⇔ V.

Note that E ⊂ D and E only contains formulas of the form φ ⇔ T and
φ ⇔ F . We use the notation Var(φ) to denote the set of propositional
variables occurring in formula φ.

A decision u = 〈a, v〉 is associates a propositional variable a ∈ A with
a boolean value v ∈ V . An assignment U is any set of decisions that is
a partial function; its extension Û = {〈u, a ⇔ v〉 | u = 〈a, v〉 ∈ U} is the
relation between the decisions of an assignment and the respective theorems
they prove. We inductively define the set of equivalence proofs P with the
following grammar:

P ::= U | Trans(P,P) | Refl | NotFalse | NotTrue | OrTrue1 | OrTrue2 |
OrFalse1 | OrFalse2 | AndTrue1 | AndTrue2 | AndFalse1 | AndFalse2 |
CongrOr1(P) | CongrOr2(P) | CongrAnd1(P) | CongrAnd2(P) |
CongrNot(P).

The proof rules (if not their notation) should be familiar to the reader: Refl
denotes reflexivity of equivalence, Trans the transitivity of equivalence, etc.
A complete description of the rules is given in Fig. 1.

Let `D be the smallest relation on P × D that extends Û and denotes
the set of theorems proved by an equivalence proof, defined inductively by
the universal closures of the formulas in Fig. 1. Instead of 〈p, φ〉 ∈ `D we
write p `D φ (read “p proves φ”). The relation ` is the restriction of `D to
P × E .

We define the proof generality quasi-order as the smallest relation <D on
P×P such that p1 <D p2 iff ∀φ ∈ D. p1 `D φ⇒ p2 `D φ. Similarly, let < be
the relation on P ×P such that p1 < p2 iff ∀φ ∈ E . p1 ` φ⇒ p2 ` φ. Note <
is a subset of <D. We say p2 is more general than p1 if p1 < p2. For example,
Trans(CongrAnd1(p1),AndFalse2) < AndFalse2 because, if p1 ` φ⇔ φ′, both

3

u `D a⇔ v if a ∈ A, v ∈ V, u = 〈a, v〉 ∈ U
Trans(p1, p2) `D φ⇔ χ if p1 `D φ⇔ ψ, p2 `D ψ ⇔ χ

Refl `D φ⇔ φ
OrTrue1 `D T ∨ φ⇔ T
OrTrue2 `D φ ∨ T ⇔ T
OrFalse1 `D F ∨ φ⇔ φ
OrFalse2 `D φ ∨ F ⇔ φ

AndTrue1 `D T ∧ φ⇔ φ
AndTrue2 `D φ ∨ T ⇔ φ
AndFalse1 `D F ∧ φ⇔ F
AndFalse2 `D φ ∧ F ⇔ F

NotFalse `D ¬F ⇔ T
NotTrue `D ¬T ⇔ F

CongrOr1(p1) `D φ ∨ ψ ⇔ φ′ ∨ ψ if p1 `D φ⇔ φ′

CongrOr2(p1) `D φ ∨ ψ ⇔ φ ∨ ψ′ if p1 `D ψ ⇔ ψ′

CongrAnd1(p1) `D φ ∧ ψ ⇔ φ′ ∧ ψ if p1 `D φ⇔ φ′

CongrAnd2(p1) `D φ ∧ ψ ⇔ φ ∧ ψ′ if p1 `D ψ ⇔ ψ′

CongrNot(p1) `D ¬φ⇔ ¬φ′ if p1 `D φ⇔ φ′.

Figure 1: Proof Rules

prove φ ∧ F ⇔ F . However, the latter proves theorems of the form φ ∧ F
for any formula φ, while the former only holds for the particular formula φ
referenced in the disjunct.

Note that it is not the case that all syntactically well-formed proofs
prove a theorem. For example, Trans(CongrOr1(p),AndFalse1) — clearly,
CongrOr1(p) ` φ ∨ ψ ⇔ φ′ ∨ ψ is not compatible with the definition of
AndFalse1. We define P̂ as Dom(`), the set of all proofs that prove a theorem
of E .

3 Propositional Proof Reduction

Now that we have defined our proof rules as a set of first-order terms, we
turn to transformations of these terms. Consider p ∈ P̂ and φ ∈ S such
that p ` φ ⇔ T . Associated with p is a truth assignment whose domain
is the set of propositional variables that occur in φ. This truth assignment
corresponds to a validating clause for φ (a model under which the formula
simplifies to true). It is possible, however, that some of the assignments may
be redundant — i.e., a subset of the truth assignment validates the formula.
For example, the validating clause of the first proof in Fig. 2 comprises the
truth assignment for all propositional variables in Var(χ)∪Var(ψ). However,
it is clear that the decisions occurring in p1 are inconsequential because p2

4

(p1)
χ⇔ χ′

χ ∨ ψ ⇔ χ′ ∨ ψ
CongrOr1

(p2)
ψ ⇔ T

χ′ ∨ ψ ⇔ χ′ ∨ T
CongrOr2

χ′ ∨ T ⇔ T
OrTrue2

χ′ ∨ ψ ⇔ T
Trans

χ ∨ ψ ⇔ T
Trans

↓
(p2)
ψ ⇔ T

χ ∨ ψ ⇔ χ ∨ T CongrOr2
χ ∨ T ⇔ T

OrTrue2

χ ∨ ψ ⇔ T
Trans

Figure 2: Proof Reduction Example

`ψ ⇔ T and so only the decisions in p2 are needed to prove χ ∨ ψ ⇔ T .
We now present an equational theory for removing inconsequential deci-

sions contained within proofs. The basic reduction steps, presented as ori-
ented rewrite rules on the first-order terms of P̂, are given in Fig. 3. These
rules are used to transform the proofs from propositional simplification into
a canonical form (given in Sec. 3.1) with fewer unnecessary subproofs. E.g.,
if p `D φ∨T ⇔ T then any derivation that proves equivalences of φ proves a
subset of theorems of one that ignores φ (an instance of the first Deriv-Cut
rule). The following lemma expresses the fact that the universal closures of
the basic rules in Fig. 3 are sound w.r.t. <D.

Lemma 1 (Basic Rule Soundness). For all p1, p2 ∈ P̂, if p1 → p2, then
p1 <D p2.

Using the equational theorem proving tool Waldmeister [4], we can aug-
ment our basic rules using Knuth-Bendix completion, resulting in a conflu-
ent and terminating (i.e., convergent) rewrite system for reducing proofs.
The completed set of 58 rules is given in Sec. A in the appendix. It is
straightforward to verify, given the previous lemma and the correctness of
the completion procedure, that proof generality holds for reduction w.r.t.
the completed set of rewrite rules: for any p1, p2 such that p1 rewrites to p2

it is the case that p2 is more general than the p1. This yields the following
theorem, where we write ∗→ to denote the reflexive-transitive closure of →
over the completed TRS.

Theorem 1 (Soundness). For all p1, p2 ∈ P̂, if p1
∗→ p2 then p1 <D p2.

3.1 Canonical Form

We can describe the canonical form of proofs rewritten in this rewrite system
as follows. Consider proofs of formulas of the form φ ⇔ T . If φ := χ ∨ ψ,
then the canonical form will prove exactly one disjunct is equivalent to true

5

Right-Assoc
Trans(Trans(x1, x2), x3)→ Trans(x1,Trans(x2, x3))

Trans-Refl
Trans(Refl, x1)→ x1

Trans(x1,Refl)→ x1

Congr-Refl
CongrOr1(Refl)→ Refl
CongrOr2(Refl)→ Refl
CongrAnd1(Refl)→ Refl
CongrAnd2(Refl)→ Refl
CongrNot(Refl)→ Refl

Deriv-Cut
Trans(CongrOr1(x1),OrTrue2)→ OrTrue2
Trans(CongrOr2(x1),OrTrue1)→ OrTrue1
Trans(CongrAnd1(x1),AndFalse2)→ AndFalse2
Trans(CongrAnd2(x1),AndFalse1)→ AndFalse1

Congr-Drop
Trans(CongrOr2(x1),OrFalse1)→ Trans(OrFalse1, x1)
Trans(CongrOr1(x1),OrFalse2)→ Trans(OrFalse2, x1)
Trans(CongrAnd2(x1),AndTrue1)→ Trans(AndTrue1, x1)
Trans(CongrAnd1(x1),AndTrue2)→ Trans(AndTrue2, x1)

Congr-Pull
Trans(Trans(CongrOr1(x1),CongrOr2(x2)),Trans(CongrOr1(x3),CongrOr2(x4)))

→ Trans(CongrOr1(Trans(x1, x3)),CongrOr2(Trans(x2, x4)))
Trans(Trans(CongrAnd1(x1),CongrAnd2(x2)),Trans(CongrAnd1(x3),CongrAnd2(x4)))

→ Trans(CongrAnd1(Trans(x1, x3)),CongrAnd2(Trans(x2, x4)))
Trans(CongrNot(x1),CongrNot(x2))→ CongrNot(Trans(x1, x2))

Figure 3: Basic Reduction Rules

and use the appropriate cut-off rule to show φ is true (either OrTrue1 for χ or
OrTrue2 for ψ). If φ := χ∧ψ, then the canonical form first has a proof that
one side is true and then that the other side is true, using either AndTrue1 or
AndTrue2 (as appropriate) as the only intermediate step. If φ := ¬ψ, then
the canonical form has a proof that ψ is false and then uses the NotFalse
rule, proving ¬F ⇔ T . The form for false disjunctions, conjunctions and
negations is similar. The canonical form is completely characterized as a
context-free grammar in Fig. 4 and Lem. 2 (in the appendix) states that it
is a consequence of our rewrite system.

Unfortunately, although the rewrite system is convergent, not all proofs
that prove a theorem in common have the same canonical form. Consider
the formula φ ∨ ψ ⇔ T , where non-canonical proof p reduces both disjuncts

6

CT ::= U | CT∨1 | CT∨2 | CT∧1 | CT∧2 | CT¬
CF ::= U | CF∨1 | CF∨2 | CF∧1 | CF∧2 | CF¬
CT∨1 ::= Trans(CongrOr1(CT),OrTrue1)
CT∨2 ::= Trans(CongrOr2(CT),OrTrue2)
CF∨1 ::= Trans(CongrOr1(CF),Trans(OrFalse1, CF))
CF∨2 ::= Trans(CongrOr2(CF),Trans(OrFalse2, CF))
CF∧1 ::= Trans(CongrAnd1(CF),AndFalse1)
CF∧2 ::= Trans(CongrAnd2(CF),AndFalse2)
CT∧1 ::= Trans(CongrAnd1(CT),Trans(AndTrue1, CT))
CT∧2 ::= Trans(CongrAnd2(CT),Trans(AndTrue2, CT))
CT¬ ::= Trans(CongrNot(CF),NotFalse)
CF¬ ::= Trans(CongrNot(CT),NotTrue)

Figure 4: Canonical Form of Simplified Proofs

to true. In canonical form, one disjunct will be reduced and the other
discarded, but the choice is dependent on the exact form of the input proof.
A consequence of this is that we cannot prove that the rewrite system returns
a proof that uses the minimum number of decisions (i.e., the assignment with
the fewest unique literals) — to do so, it would have to choose the disjunct
that results in the globally smaller set of decisions.

However, while the rewrite system does not return the minimum number
of decisions in instances like the above formula (or one in which both sides of
a conjunction reduce to false), it will correctly prune portions of the proof for
which no “non-deterministic” choice is necessary. If one side of a conjunction
reduces to true and the other to false the rewrite system will always remove
the latter derivation. Furthermore, the problem of choosing the disjuncts
that result in the minimum-size set of decisions is NP-complete. This is seen
via a reduction from vertex-cover in which nodes of an input graph are
seen as atomic formulas and the graph itself as a conjunction of disjuncts
corresponding to pairs of vertices connected by an edge. The decisions
contained in a proof that an assignment implies the resulting formula (and
has the smallest number of unique decisions) corresponds to an optimal
cover. Our proof reduction system removes the obviously inconsequential
portions of the proof and makes an arbitrary choice in the other cases. The
authors believe that, in practice, this will result in a useful reduction in the
size of the assignment.

4 Conclusion and Future Work

We have presented a sound rewrite system for simplifying propositional
equivalence proofs to find small validating clauses. We have described the

7

canonical form of the proofs and explored the effectiveness of the algebraic
approach.

This is a work-in-progress and there are many avenues left to explore.
The authors intend to modify the rewrite system in such a way that disjunc-
tions whose disjuncts both simplify to true are preserved in the canonical
form (i.e., in this case neither side is eliminated). Then, a post-processing
choice could be made to find the proof with a globally smaller number of de-
cisions. Although this problem is NP-complete, if a suitable approximation
algorithm can be applied then a bound can be given on how much larger
the given validating clause is from an optimal one.1

References

[1] C. Barrett and J. Donham. Combining SAT Methods with Non-Clausal
Decision Heuristics. In S. Ranise and C. Tinelli, editors, Pragmatics of
Decision Procedures in Automated Reasoning, 2004.

[2] Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of
the cooperating validity checker. In R. Alur, editor, Proceedings of the
16th International Conference on Computer Aided Verification, 2004.

[3] L. de Moura, H. Rueß, and N. Shankar. Justifying Equality. Electronic
Notes in Theoretical Computer Science, 125(3):69–85, 2005. Appeared at
the 2nd International Workshop on Pragmatics of Decision Procedures
in Automated Reasoning (2004).

[4] B. Löchner and Th. Hillenbrand. A phytography of Waldmeister. AI
Communications, 15(2–3):127–133, 2002.

[5] R. Nieuwenhuis and A. Oliveras. Proof-producing Congruence Closure.
In J. Giesl, editor, 16th International Conference on Rewriting Tech-
niques and Applications, pages 453–468. Springer, 2005.

[6] A. Stump, C. Barrett, and D. Dill. CVC: a Cooperating Validity Checker.
In 14th International Conference on Computer-Aided Verification, pages
500–504, 2002.

[7] A. Stump and L.-Y. Tan. The Algebra of Equality Proofs. In Jürgen
Giesl, editor, 16th International Conference on Rewriting Techniques
and Applications, pages 469–483. Springer, 2005.

[8] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient Conflict
Driven Learning in Boolean Satisfiability Solver. In International Con-
ference on Computer Aided Design, pages 279–285, 2001.

1Thanks to Joel Brandt and Edwin Westbrook for their help on this project and to the
anonymous reviewers for their comments on an early draft.

8

A Completed Set of Reduction Rules

The rules on the next page are convergent for ordered rewriting using a
Knuth-Bendix ordering determined by the following weights and precedences,
and the subsequent equations:

Trans = 0, OrTrue1 = 1, AndFalse1 = 1, OrTrue2 = 1,

AndFalse2 = 1, OrFalse1 = 1, AndTrue1 = 1, OrFalse2 = 1,

AndTrue2 = 1, CongrNot = 1, CongrOr2 = 1, CongrAnd2 = 1,

CongrOr1 = 1, CongrAnd1 = 1, Refl = 1

Trans > OrTrue1 > AndFalse1 > OrTrue2 > AndFalse2 > OrFalse1 >

AndTrue1 > OrFalse2 > AndTrue2

AndTrue2 > CongrNot > CongrOr2 > CongrAnd2 > CongrOr1 > CongrAnd1 > Refl

Trans(CongrOr1(x1), CongrOr2(x2)) = Trans(CongrOr2(x2), CongrOr11(x1))
Trans(CongrAnd1(x1), CongrAnd2(x2)) = Trans(CongrAnd2(x2), CongrAnd1(x1))
Trans(CongrOr1(x1), Trans(CongrOr2(x2), x3)) = Trans(CongrOr2(x2), Trans(CongrOr1(x1), x3))
Trans(CongrAnd1(x1), Trans(CongrAnd2(x2), x3)) = Trans(CongrAnd2(x2), Trans(CongrAnd1(x1), x3))

9

Trans(Refl, x1)→ x1

Trans(x1,Refl)→ x1

Trans(Trans(x1, x2), x3)→ Trans(x1,Trans(x2, x3))

CongrAnd1(Refl)→ Refl
CongrAnd2(Refl)→ Refl
CongrNot(Refl)→ Refl
CongrOr1(Refl)→ Refl
CongrOr2(Refl)→ Refl

Trans(CongrAnd1(x1),AndFalse2)→ AndFalse2
Trans(CongrAnd1(x1),AndTrue2)→ Trans(AndTrue2, x1)
Trans(CongrAnd1(x1),CongrAnd1(x2))→ CongrAnd1(Trans(x1, x2))
Trans(CongrAnd1(x1),Trans(AndFalse2, x2))→ Trans(AndFalse2, x2)
Trans(CongrAnd1(x1),Trans(AndTrue2, x2))→ Trans(AndTrue2,Trans(x1, x2))
Trans(CongrAnd1(x1),Trans(CongrAnd1(x2), x3))→ Trans(CongrAnd1(Trans(x1, x2)), x3)
Trans(CongrAnd1(x1),Trans(CongrAnd2(x2),AndFalse2))→ Trans(CongrAnd2(x2),AndFalse2)
Trans(CongrAnd1(x1),Trans(CongrAnd2(x2),AndTrue2))→ Trans(CongrAnd2(x2),Trans(AndTrue2, x1))
Trans(CongrAnd1(x1),Trans(CongrAnd2(x2),CongrAnd1(x3)))→ Trans(CongrAnd1(Trans(x1, x3)),CongrAnd2(x2))
Trans(CongrAnd1(x1),Trans(CongrAnd2(x2),Trans(AndFalse2, x3)))→ Trans(CongrAnd2(x2),Trans(AndFalse2, x3))
Trans(CongrAnd1(x1),Trans(CongrAnd2(x2),Trans(AndTrue2, x3)))→ Trans(CongrAnd2(x2),Trans(AndTrue2,Trans(x1, x3)))
Trans(CongrAnd1(x1),Trans(CongrAnd2(x2),Trans(CongrAnd1(x3), x4)))→ Trans(CongrAnd1(Trans(x1, x3)),Trans(CongrAnd2(x2), x4))

Trans(CongrAnd2(x1),AndFalse1)→ AndFalse1
Trans(CongrAnd2(x1),AndTrue1)→ Trans(AndTrue1, x1)
Trans(CongrAnd2(x1),CongrAnd2(x2))→ CongrAnd2(Trans(x1, x2))
Trans(CongrAnd2(x1),Trans(AndFalse1, x2))→ Trans(AndFalse1, x2)
Trans(CongrAnd2(x1),Trans(AndTrue1, x2))→ Trans(AndTrue1,Trans(x1, x2))
Trans(CongrAnd2(x1),Trans(CongrAnd1(x2),AndFalse1))→ Trans(CongrAnd1(x2),AndFalse1)
Trans(CongrAnd2(x1),Trans(CongrAnd1(x2),AndTrue1))→ Trans(CongrAnd1(x2),Trans(AndTrue1, x1))
Trans(CongrAnd2(x1),Trans(CongrAnd1(x2),CongrAnd2(x3)))→ Trans(CongrAnd1(x2),CongrAnd2(Trans(x1, x3)))
Trans(CongrAnd2(x1),Trans(CongrAnd1(x2),Trans(AndFalse1, x3)))→ Trans(CongrAnd1(x2),Trans(AndFalse1, x3))
Trans(CongrAnd2(x1),Trans(CongrAnd1(x2),Trans(AndTrue1, x3)))→ Trans(CongrAnd1(x2),Trans(AndTrue1,Trans(x1, x3)))
Trans(CongrAnd2(x1),Trans(CongrAnd1(x2),Trans(CongrAnd2(x3), x4)))→ Trans(CongrAnd1(x2),Trans(CongrAnd2(Trans(x1, x3)), x4))
Trans(CongrAnd2(x1),Trans(CongrAnd2(x2), x3))→ Trans(CongrAnd2(Trans(x1, x2)), x3)

Trans(CongrNot(x1),CongrNot(x2))→ CongrNot(Trans(x1, x2))
Trans(CongrNot(x1),Trans(CongrNot(x2), x3))→ Trans(CongrNot(Trans(x1, x2)), x3)
Trans(CongrOr1(x1),CongrOr1(x2))→ CongrOr1(Trans(x1, x2))
Trans(CongrOr1(x1),OrFalse2)→ Trans(OrFalse2, x1)
Trans(CongrOr1(x1),OrTrue2)→ OrTrue2
Trans(CongrOr1(x1),Trans(CongrOr1(x2), x3))→ Trans(CongrOr1(Trans(x1, x2)), x3)
Trans(CongrOr1(x1),Trans(CongrOr2(x2),CongrOr1(x3)))→ Trans(CongrOr1(Trans(x1, x3)),CongrOr2(x2))
Trans(CongrOr1(x1),Trans(CongrOr2(x2),OrFalse2))→ Trans(CongrOr2(x2),Trans(OrFalse2, x1))
Trans(CongrOr1(x1),Trans(CongrOr2(x2),OrTrue2))→ Trans(CongrOr2(x2),OrTrue2)
Trans(CongrOr1(x1),Trans(CongrOr2(x2),Trans(CongrOr1(x3), x4)))→ Trans(CongrOr1(Trans(x1, x3)),Trans(CongrOr2(x2), x4))
Trans(CongrOr1(x1),Trans(CongrOr2(x2),Trans(OrFalse2, x3)))→ Trans(CongrOr2(x2),Trans(OrFalse2,Trans(x1, x3)))
Trans(CongrOr1(x1),Trans(CongrOr2(x2),Trans(OrTrue2, x3)))→ Trans(CongrOr2(x2),Trans(OrTrue2, x3))
Trans(CongrOr1(x1),Trans(OrFalse2, x2))→ Trans(OrFalse2,Trans(x1, x2))
Trans(CongrOr1(x1),Trans(OrTrue2, x2))→ Trans(OrTrue2, x2)

Trans(CongrOr2(x1),CongrOr2(x2))→ CongrOr2(Trans(x1, x2))
Trans(CongrOr2(x1),OrFalse1)→ Trans(OrFalse1, x1)
Trans(CongrOr2(x1),OrTrue1)→ OrTrue1
Trans(CongrOr2(x1),Trans(CongrOr1(x2),CongrOr2(x3)))→ Trans(CongrOr1(x2),CongrOr2(Trans(x1, x3)))
Trans(CongrOr2(x1),Trans(CongrOr1(x2),OrFalse1))→ Trans(CongrOr1(x2),Trans(OrFalse1, x1))
Trans(CongrOr2(x1),Trans(CongrOr1(x2),OrTrue1))→ Trans(CongrOr1(x2),OrTrue1)
Trans(CongrOr2(x1),Trans(CongrOr1(x2),Trans(CongrOr2(x3), x4)))→ Trans(CongrOr1(x2),Trans(CongrOr2(Trans(x1, x3)), x4))
Trans(CongrOr2(x1),Trans(CongrOr1(x2),Trans(OrFalse1, x3)))→ Trans(CongrOr1(x2),Trans(OrFalse1,Trans(x1, x3)))
Trans(CongrOr2(x1),Trans(CongrOr1(x2),Trans(OrTrue1, x3)))→ Trans(CongrOr1(x2),Trans(OrTrue1, x3))
Trans(CongrOr2(x1),Trans(CongrOr2(x2), x3))→ Trans(CongrOr2(Trans(x1, x2)), x3)
Trans(CongrOr2(x1),Trans(OrFalse1, x2))→ Trans(OrFalse1,Trans(x1, x2))
Trans(CongrOr2(x1),Trans(OrTrue1, x2))→ Trans(OrTrue1, x2)

10

