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Cedille is a relatively recent tool based on a Curry-style pure type theory, without a primitive datatype
system. Using novel techniques based on dependent intersection types, inductive datatypes with their
induction principles are derived. One benefit of this approach is that it allows exploration of new or
advanced forms of inductive datatypes. This paper reports work in progress on one such form, namely
higher-order abstract syntax (HOAS). We consider the nature of HOAS in the setting of pure type
theory, comparing with the traditional concept of environment models for lambda calculus. We see
an alternative, based on what we term Kripke function-spaces, for which we can derive a weakly
initial algebra in Cedille. Several examples are given using the encoding.

1 Introduction

Modern constructive type theory is based on a decades-long development of formal systems, culminating
in current tools like Coq and Agda, to name two of the most widely used [32, 31]. To summarize
the relevant history: in the 1980s Coquand and Huet proposed the Calculus of Constructions (CC) as
a synthesis of impredicative type theory as independently proposed by Girard and Reynolds [9, 22],
and dependent type theory as found in de Bruijn’s Automath and further developed by Martin-Löf [3,
13]. What was initially believed by researchers working on CC was confirmed in the early 2000s by
Geuvers: induction is not derivable in CC (although note that technically, Geuvers’s theorem is about
just the second-order fragment of CC) [8]. So in the late 1980s and early 1990s, researchers explored
various ways of adding primitive inductive datatypes to CC [18, 20]. At the same time, Luo analyzed an
extension of CC with an ω-indexed predicative hierarchy of universes [12], still found in Coq today. A
practically viable solution to the problem of inductive datatypes was reached in Werner’s development
of the Calculus of Inductive Constructions (CIC), which added a specific class of inductive datatypes to
CC (note that the predicative hierarchy is not included in CIC as analyzed by Werner) [36]. Subsequent
work on the theory and practice of Coq has built upon these results, resulting in a tool that is both widely
used and rightly generally considered a great success.

Despite these excellent achievements, there are two notable issues with CIC’s solution to the problem
of datatypes in type theory:

1. The class of datatypes is fixed as part of the definition of the theory.

2. The core theory upon which the complex edifice of the rest of the proof assistant is built must
include support for that class of inductive datatypes, as they are primitive to the theory.

(1) is an issue because it means that subsequent discoveries and proposals for advanced forms of datatypes
are excluded from CIC. One would have to rework the entire metatheory of CIC to add them. Or one
could adopt the approach taken in Agda, which is to extend the datatype system without requiring full
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metatheoretic justification. While this facilitates exploration of advanced forms of datatypes, it comes at
the risk of introducing inconsistency into the theory (through a novel form of datatype that would turn out
to be logically unsound). (2) is an issue because it means that the trusted computing base of a tool like
Coq is rather large. At present, for example, the kernel of Coq – the internal code which one must trust
when the type-checker accepts a theorem (this does not count parsers and printers; cf. [37]) – is just over
30k lines of OCaml. This includes powerful features like byte-code compilation for faster conversion-
checking, which could be excluded from the line count just for core typing; but even the files for inductive
types (indtypes.ml and inductive.ml) total just under 2200 lines (see https://github.com/coq).
It would be very nice to have a core checker under, say, 1000 lines of functional code.

Cedille is a recently released proof assistant based on a novel minimalistic extension of CC, which al-
lows derivation of inductive datatypes with their induction principles. So the core theory does not include
a primitive notion of inductive datatype, and indeed can be checked in under 1000 lines of Haskell [29].
Cedille is briefly described in Section 2. The focus of the current paper is on work in progress deriving
an advanced form of datatype in Cedille, namely higher-order abstract syntax (HOAS) [19]. Section 3
discusses what HOAS should be taken to mean in the context of pure lambda calculus (where every term
is encoded functionally), considering (and rejecting) the traditional environment models for algebraic
semantics of lambda calculus. Section 4 presents an alternative implemented in Cedille, for which we
have a weakly initial algebra. This approach uses what we term Kripke function spaces to allow con-
struction of an encoded nested λ -abstraction. It turns out that for what has been achieved so far, the
full power of Cedille is not needed, and the code can also be written in Haskell with a few language
extensions (Section 5). Section 8 discusses a possible way to extend this to obtain induction, based on
parametricity.

2 Cedille and its Type Theory

We briefly summarize the type theory of Cedille, called the Calculus of Lambda Eliminations (CDLE).
The system has evolved from an initial version [26], to its current form [28]. Several other works demon-
strate applications of the theory to derivation of inductive datatypes [6, 7, 27], and to zero-cost coercions
between related datatypes [5]. The main metatheoretic property proved in previous work is logical con-
sistency: there are types which are not inhabited. All the code appearing in this paper can be checked
using Cedille 1.0. (Cedille 1.1 adds datatypes which elaborate down to the pure type theory of CDLE,
but we do not make use of this feature here.)

CDLE is an extrinsic (i.e. Curry-style) type theory, whose terms are exactly those of the pure untyped
lambda calculus (with no additional constants or constructs). The type-assignment system for CDLE is
not subject-directed, and thus cannot be used directly as a typing algorithm. Indeed, since CDLE includes
Curry-style System F as a subsystem, type assignment is undecidable [35]. To obtain a usable type
theory, Cedille combines bidirectional checking [21] with a system of annotations for terms, to obtain
algorithmic typing. But true to the extrinsic nature of the theory, these annotations play no computational
role, and are erased both during compilation and before formal reasoning about terms within the type
theory, in particular by definitional equality. We summarize the central rules and clauses of the erasure
function in Figure 1 and following text. As this is, by necessity of space, quite brief, please see a report
for full details, including semantics and soundness results [28].

CDLE extends the (Curry-style) Calculus of Constructions (CC) with a primitive intensional un-
typed equality, intersection types, and implicit products (in the following explanation we use tt fonts to
introduce the concrete syntax, very close to the mathematical one, expected by Cedille):

https://github.com/coq
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Γ,x : T ′ ` t⇐ T x 6∈ FV(|t|)
Γ ` Λx. t⇐∀x :T ′.T

Γ ` t⇒∀x :T ′.T Γ ` t ′⇐ T ′

Γ ` t -t ′⇒ [t ′/x]T

Γ ` FV(t)⊆ dom(Γ)

Γ ` β{t ′}⇐ {t ' t}
Γ ` t ′⇒ t1 ' t2 Γ ` t⇔ [t1/x]T

Γ ` ρ t ′ - t⇒ [t2/x]T

Γ ` t⇐ T Γ ` t ′⇐ [t/x]T ′ |t|=βη |t ′|
Γ ` [t, t ′]⇐ ι x :T.T ′

Γ ` t⇒ ι x :T.T ′
Γ ` t.1⇒ T

Γ ` t⇒ ι x :T.T ′

Γ ` t.2⇒ [t.1/x]T ′
Γ ` T ⇐ ? Γ ` t⇐ T T ∼= T ′

Γ ` χ T - t⇐ T ′

Γ ` T ⇐ ? Γ ` t⇒ T ′ T ∼= T ′

Γ ` χ T - t⇒ T
Γ ` t⇒{t ′ ' t ′′} Γ ` t ′⇔ T

Γ ` φ t - t ′{t ′′}⇔ T

|Λx :T. t| = |t|
|t -t ′| = |t|
|β{t}| = |t|
|ρ t ′ - t| = |t|
|φ q - t1{t2}| = |t2|
|[t1, t2]| = |t1|
|t.1| = |t|
|t.2| = |t|

Figure 1: Introduction, elimination, and erasure rules for additional type constructs. Note that⇐ is for
checking mode,⇒ is for synthesizing, and⇔ refers to either mode.

• { t1 ' t2 }, an intensional equality type between terms t1 and t2 which need not be typable at
all. We introduce this with a constant β{t} which erases to erasure of t (so our type-assignment
system has no additional constants, as promised); β{t} proves { t’ ' t’ } for any term t’

with free variables all in scope. Combined with definitional equality, β{t} proves { t1 ' t2 }

for any βη-equal t1 and t2 whose free variables are all declared in the typing context. If the
term t is omitted from β{t}, then it is assumed to be λ x. x. We eliminate the equality type by
rewriting, with a construct ρ t’ - t. Suppose t’ proves { t1 ' t2 } and we are checking the
ρ-term against a type T, where T has several occurrences of terms definitionally equal to t1. Then
bidirectional typing proceeds by checking t against type T except with those occurrences replaced
by t2. We also adopt a strong form of Nuprl’s direct computation rules [4]: if we have a term
t ′ of type T and a proof t that {t ′ ' t ′′}, then we may conclude that t ′′ has type T by writing the
annotated term φ t - t ′{t ′′}, which erases to t ′′.

• ι x : T. T’, the dependent intersection type of Kopylov [11]. This is the type for terms t

which can be assigned both the type T and the type [t/x]T’, the substitution instance of T’ by
t. There are constructs t.1 and t.2 to select either the T or [t.1/x]T’ view of a term t of type
ι x : T. T’. We introduce a value of ι x : T. T’ by construct [t1, t2], where t1 has type
T, t2 has type [t1/x]T’, and t1 and t2 must have the same erasure (as the intersection type is
intended as to represent two typings of the same underlying erased term).

• ∀ x : T. T’, the implicit product type of Miquel [16]. This can be thought of as the type for
functions which accept an erased input of type x : T, and produce a result of type T’. There are
term constructs Λ x. t for introducing an implicit input x, and t -t’ for instantiating such an
input with t’. This use of a dash in the notation should not be confused with the uses of dash in the
notations for ρ and φ terms, where it is just punctuation intended to help separate subexpressions.
The implicit arguments exist just for purposes of typing so that they play no computational role
and equational reasoning happens on terms from which the implicit arguments have been erased.
Note that similar notation is used for quantifications ∀X : κ.T over types (more generally, type
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constructors), although we use notation t ·T instead of t-T to indicate instantiating the quantified
type of t with type T (that is, for ∀-elimination). These notations bind tighter than function space.
If variable x is not free in T ′, we write just T ⇒ T ′ for ∀x :T.T ′.

3 HOAS and semantics

The well-known central idea of higher-order abstract syntax (HOAS) is to encode object-language binders,
like λ in untyped λ -calculus, with meta-language binders. In a pure type theory, without introduc-
tion of special constructs explicitly for representation of binders (as in [15]), but rather using only λ -
abstractions, some puzzles arise:

1. In pure type theory, all data must be λ -encoded (e.g., Church-encoded), and hence object-language
binders would seem automatically to be transformed to λ -abstractions, since all data are. So it is
not clear what could distinguish HOAS from a first-order approach to encoding binders.

2. Using λ -abstractions to encode object-language binders appears too strong, as the set of functions
even under a strong typing discipline will be much larger than the set of weak functions intended
to represent the bodies of object-language abstractions.

Washburn and Weirich proposed a solution to (2): use parametric polymorphism to ensure that,
for example, the functions intended to represent bodies of object-language abstractions cannot pattern-
match on their inputs (which would not correspond to any object-language abstraction under the usual
approach to binding syntax) [34]. They connect their approach to an earlier work of Schürmann et al.,
which used modal types to enable similarly restricting the function space [24]. We will adopt Washburn
and Weirich’s idea below (Section 4), though a twist is required to obtain a (weakly) initial algebra.

For (1), we may compare with the traditional approach to algebraic semantics of λ -calculus (as object
language), based on what are sometimes called environment λ -models (see Definition 15.3 of [10], and
cf. [25]). Such a model is a structure 〈D,•, [[−]]−〉, where D is a set of cardinality at least two, consisting
of some mathematical objects to be the interpretations of λ -terms; • is a binary operation on D intended
to model application; and [[−]]− is an interpretation function mapping (object-language) terms t and
valuations ρ ∈ Vars→ D to D. The interpretation function is required to satisfy various conditions,
which suffice to ensure that the usual equational theory λβ of λ -calculus is sound with respect to [[−]]−:
if ` t =β t ′, then [[t]]ρ = [[t ′]]ρ for any valuation ρ . One of these conditions, central to soundness of the β

axiom (scheme), is that semantic application of the interpretation of a λ -abstraction must be the same as
evaluating the body with an updated environment: [[λ x. t]]ρ •d = [[t]]ρ[x 7→d].

If we are looking to universal algebra for ideas on λ -encoding HOAS – as indeed it is profitable to
do for encoding first-order datatypes (see [33] for a tutorial, or previous work using Cedille like [7]) –
we will be misled at this point. For environment models presuppose a first-order approach to syntax, so
that they can model instantiation of a λ -bound variable by environment update. And here, even if we
functionally encode valuations, variables, and terms, we will have not achieved anything beyond usual
first-order representations of terms. To λ -encode HOAS, we need a new approach to the semantics of
λ -calculus that does not use environments.

Categorically, given a endofunctor F on a category C , it is standard to consider the category of F-
algebras whose objects are as C -morphisms from F A to A for C -objects A (the carrier of the algebra),
and whose morphisms are C -morphisms h from A to B that form a commuting square (in C ) with the
F A to A morphisms, and an F A to F B morphism derived from h. An initial algebra is then an initial
object in this category, for which various appealing properties can be proved, in particular that its carrier
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C is the least carrier isomorphic to F C. From such developments induction principles are then readily
derived. The difficulty with HOAS is that the type scheme F one wishes to use is not a functor, due to a
negative occurrence of X in F X .

4 An encoding of lambda-terms in Cedille

The basic Church-encoding of inductive types can be carried out in a type theory like Cedille’s, following
the categorical perspective. Given a functorial type scheme F , define (within the type theory) the type
Alg ·A for algebras over type A as F A→ A (recall that in Cedille we use center dot for applying an
expression to a type). Then the carrier C of a weakly initial algebra has type ∀A :?.(F ·A→ A)→ A. In
the following discussion, let us write CA for the type (F ·A→ A)→ A. As an example of the definition of
C: if F is the functor for the type of natural numbers (and allowing ourselves infix notation for sum and
later product types, and 1 for unit type), we obtain the type ∀A :?.(1+A→ A)→ A (let us abbreviate
this Nat), which is isomorphic to the usual type ∀A :?.A→ (A→ A)→ A for Church-encoded natural
numbers. The main effort is then to define the algebra itself (not just its carrier), which in general must
have type Alg ·C. In the case of Nat, we need something of type Alg ·Nat, which is easily obtained: from
1+Nat return Church-encoded zero in the first case, and Church-encoded successor of the given Nat in
the second.

4.1 Starting from Washburn and Weirich

The approach by Washburn and Weirich, which is not (directly) based on this perspective, does not allow
definition of this algebra. Their separate definitions of constructor for object-language λ -abstractions and
applications can be seen in our terms as constituting, for the functor F for λ -terms (which is λ X :?.(X→
X)+(X×X)), a function of type ∀A:?.F ·CA→CA. But this is not the type needed for the weakly initial
algebra, which instead should be ∀A :?.F ·C→C. Without a definition of a weakly initial algebra, there
is no hope, on the categorical perspective, to define an initial algebra with induction principle (nor is this
claimed in [34]).

But we may still make use of the basic insight of Washburn and Weirich that parametricity can be
used to restrict the function spaces intended to represent bodies of object-language abstractions. To
simplify the discussion (and Cedille code), we consider from here on a reduced syntax of λ -terms that
omits applications. So one may only form terms of the form λ x1. · · ·λ xn.y (and closed terms require
y ∈ {x1, . . . ,xn}). This reduced syntax focuses attention on binding and variable occurrences; adding
applications back in should be completely straightforward.

To return to parametricity: what should be the type of a function lam constructing the encoding of an
object-language λ -abstraction? The more fundamental question is, what should the form Alg of algebras
be, which will allow construction of a weakly initial algebra Alg ·Trm, where Trm is the desired carrier
for encodings of λ -terms (without applications)? It is almost immediately clear that we cannot use the
same notion of algebra as for the Church encoding. The type scheme F (it is not a functor) in question is
simply X → X , and thus to inhabit Alg ·Trm we would have to construct a (meta-language) term of type
(Trm→ Trm)→ Trm (corresponding to F ·C→C in our general discussion above), and this seems to be
impossible.

Drawing inspiration from Selinger’s idea of adjoining indeterminates to an algebra to represent free
variables [25], let us think of a binder as introducing a new constructor for the Trm datatype. So an
algebra should be given, for an encoded lambda abstraction, not just a subterm for the body, but rather a
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subterm possibly using a new constructor. We use parametric polymorphism to enforce that this binder
is abstract. So we would like to give our X-algebras a function f of type ∀Y :?.Y → TrmY , and obtain
from the algebra then a value of type X . Note that this requires some form of recursive type so that the
type for algebras for Trm can reference Trm. As will be described in a future work (but see also [6]),
these are derivable in Cedille. We elide calls to fold and unfold these in the following. The (candidate)
weakly initial algebra would then have type

(∀Y :?.Y → TrmY )→ Trm (1)

But there is a problem with this definition. A requirement we should impose for the encoding of any
datatype is that elements of the datatype can be built up by successive applications of the constructors of
the datatype (as 3 can be built by three applications of the successor constructor to zero). But if we use
Type 1, we will not be able to represent object-language λ -terms like λ x.λ y.x. For Type 1 requires that
the body of the abstraction construct a TrmY from a Y , where Y is abstract. So the representation of λ y.x
is not well-typed, because x has some first abstract type Y , while y has a second Z, and the body requires
a TrmZ . There is no way to convert x of type Y to Z to embed in a TrmZ .

4.2 A solution using Kripke function spaces

Seen as just considered, we need a way to embed the type of some outer encoded binder into the types of
inner ones. This is quite reminiscent of the Kripke semantics for intuitionistic logic, where implication
is interpreted as a modal operator: for T → T ′ to be true at the current world w, it must be the case
that for all future worlds w′ where T holds, T ′ also holds. An X-algebra needs the ability to move the
body of the encoded λ -abstraction to any world reachable from X . To make the structure of the positive-
recursive type more clear, let us first define a notion like CA above, but where the notion of algebra is
also a parameter:

Trmga = λ Alg :?→ ?.λ X :?.Alg ·X → X

We may then give the following positive-recursive definition of algebra:

Alg = (∀Y :?.(X → Y )→ Y → Trmga ·Alg ·Y )→ X (2)

What we are terming Kripke function space rooted at X is a type of the form ∀Y :?.(X → Y )→ T . It is
the type for functions that can be moved to any type Y reachable from X .

This is not the final definition of algebra, though, because as formulated so far, there is no support
for iteration. So the encoding would be more like a Scott encoding than a Church encoding (see [30]
for a comparison). To support iteration, the algebra must be given a way to evaluate the value of type
Trmga ·Alg ·Y returned by its input. For this, we use Mendler’s technique of polymorphically abstracting
problematic type occurrences, to allow an algebra to take in a type-abstracted version of itself [14].

Alg = ∀Alga :?→ ?.(∀Y :?.(X → Y )→ Y → Trmga ·Alga ·Y )
Alga ·X →
(Cast2 ·Alg ·Alga)⇒
X

(3)

Here, we have introduced a universal quantification over the type Alga of algebras (one may think of
these as algebra candidates, similar to Girard’s reducibility candidates). This allows an algebra to be
given an input of type Alga ·X ; with just Alg ·X this would not be possible as it occurs at a negative
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position in the recursive definition of Alg. The final input to an algebra is a second-order cast from Alg
to Alga. Eliding the details, this allows us to embed any Alg ·X to an Alga ·X . This provides the critical
ability for an algebra to interpret encoded terms it is given, possibly using a different algebra.

Based on this final notion of algebra, we define:

Trm = ∀X :?.Trmga ·Alg ·X.

Evaluation of a term using an algebra is then trivial; terms are functions from algebras to carriers, and so
we just apply the term (t below) to the algebra (alg):

fold : ∀X :?.Alg ·X → Trm→ X = ΛX .λ alg.λ t. t alg.

More interestingly, we may now define the following algebra with carrier Trm, which we will prove
below (Section 7) is weakly initial:

lamAlg : Alg ·Trm = ΛAlga.λ f .Λemb.λ talg.
ΛX .λ alg.alg ·Alga (ΛY.λ mx. f ·Y (λ t.mx (t alg))) -emb (cast2 -emb alg).

All the components discussed above are required here. We use the ability to change algebras to invoke
alg at abstract type Alga, and to make use of alg rather than talg. We can notice that talg is not even
used (note that in the application mx (t alg), we have t applied to alg, not talg). So rather than recursing
through the body of the encoded λ -abstraction as given by f using the algebra which is being given to
lamAlg, lamAlg instead switches algebras to use the one being given to the Trm which it (lamAlg) is
being asked to produce. A cast changes the type of alg to the instance Alga ·X of the abstracted algebra.

For use in nested construction of terms, the following variant of lamAlg is needed:

lam : ∀X :?.(∀Y :?.(X → Y )→ Y → Trmga ·Alg ·Y )→ Trmga ·Alg ·X
= ΛX .λ f .λ alg.alg ·Alg f -(castId2 ·Alg) alg

The difference from lamAlg is that here the Kripke function space is rooted at any type X , where lamAlg
is rooted at Trm. Quantifying over the root of the Kripke function space allows nested applications of
lam, as in the encoding of the second-projection function (first defining a convenience function place):

place : ∀X :?.X → Trmga ·Alg ·X = ΛX .λ x.λ algx.

proj2 : Trm = ΛO. lam (ΛX .λ mo.λ x.
lam (ΛY.λ mx.λ y.place (mx x)))

Notice how the outer meta-language bound variable x is used inside the (meta-language) binding of y,
using mx to move it from X to Y .

The inspiration of Kripke semantics for semantics of lambda calculus may also be found in works
like Mitchell and Moggi’s [17]. There, explicit environments are used to interpret terms, and so the
semantics fails to be a suitable basis for a higher-order encoding, for the reasons discussed above.

5 Haskell listing

The above development actually does not make use of the special features of Cedille beyond (deriv-
able) positive-recursive types. In fact, it can be carried out in any language supporting impredicative
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module WeaklyInitialHoas where

type Trmga alg x = alg x -> x

newtype Alg x =

MkAlg { unfoldAlg :: forall (alga :: * -> *) .

(forall (y :: *) . (x -> y) -> y -> Trmga alga y) ->

(forall (z :: *) . Alg z -> alga z) ->

alga x -> x}

newtype Trm = MkTrm { unfoldTrm :: forall (x :: *) . Alg x -> x}

fold :: Alg a -> Trm -> a

fold alg t = unfoldTrm t alg

lamAlg :: Alg Trm

lamAlg = MkAlg (\ f embed talg ->

MkTrm (\ alg ->

unfoldAlg alg (\ mx -> f (\ t -> mx (unfoldTrm t alg)))

embed (embed alg)))

lam :: forall (x :: *) .

(forall (y :: *) . (x -> y) -> y -> Trmga Alg y) -> Trmga Alg x

lam = \ f alg -> unfoldAlg alg f (\ x -> x) alg

place :: forall (x :: *) . x -> Trmga Alg x

place = \ x -> \ alg -> x

Figure 2: Haskell definitions for the Cedille code above

quantification and positive recursive types, such as Haskell (impredicativity has to be mediated by in-
ductive datatypes in a certain way, but is essentially present). To aid the reader more familiar with
Haskell than Cedille, Figure 2 gives a Haskell listing of the functions discussed above. This requires
Haskell LANGUAGE extensions KindSignatures, ExplicitForAll, and RankNTypes. Some uses of
implicit function space in the Cedille code have been converted to the regular (explicit) function spaces
of Haskell. Impressively, Haskell’s type inference is powerful enough to allow us to avoid type annota-
tions except for marking the places where universal generalization (with constructors MkAlg and Trm)
and instantiation (with eliminators unfoldAlg and unfoldTrm) occur.

6 Examples

Based on the Haskell implementation of Figure 2, let us consider several examples of algebras. For
testing, we will use the following simple term, representing λ x.λ y.x:

test :: Trm

test = MkTrm (lam (\ mo x ->

lam (\ mx y -> place (mx x))))
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sizeAlg :: Num a => Alg a

sizeAlg = MkAlg (\ f embed alg -> 1 + f id 1 alg)

Figure 3: An algebra for the size of a term

vars :: Int -> [String]

vars n = ("x" ++ show n) : vars (n + 1)

printTrmAlg :: Alg ([String] -> String)

printTrmAlg =

MkAlg (\ f embed alg vars ->

let x = head vars in

"\\ " ++ x ++ ". " ++ f id (\ vars -> x) alg (tail vars))

printTrm :: Trm -> String

printTrm t = fold printTrmAlg t (vars 1)

Figure 4: Algebra and related functions for converting a term to a string

6.1 Size

Figure 3 gives an algebra for computing the size of a term. The algebra is given the body f, the embedding
embed from Alg to abstract type Alga (which is not needed for this example), and the algebra itself under
the abstract type. Interpreting a λ -abstraction (as is done by this and all algebras) is done by interpreting
the body using alg, where 1 is given as the value to use for the bound variable. The use of the id

(identity function in Haskell) is to map trivially from the carrier of the algebra to the type at which we
are interpreting the body, namely also the carrier.
Interpreting our test term with sizeAlg gives us the following interaction using ghci:
*WeaklyInitialHoas> fold sizeAlg test

3

This is as expected, size we count one for each λ and then one for the use of the variable x.

6.2 Converting to strings

Figure 4 defines an algebra printTrmAlg for use in converting a term to a string. The carrier of the
algebra is [String] -> String; a term is interpreted as a function from a stream of variable names
(the [String]) to a String representation of the term. The algebra simply peels off the first name
(x in the code) from the stream and uses it for the binding occurrence of the variable. For any bound
occurrences in the body f, the algebra passes to f the function \ vars -> x as the interpretation for the
variable. This function (of type [String] -> String) simply discards the stream of names it is given
and returns x as the interpretation (i.e., the string representation) of the bound variable.

For printTerm, we fold the algebra over the input term, and then apply the resulting function to the
simple stream of variable names vars 1. For our test term, we can observe the following result with
ghci:

*WeaklyInitialHoas> putStrLn (printTrm test)

\ x1. \ x2. x1
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data Dbtrm = Lam Dbtrm | Var Int deriving Show

toDebruijnAlg :: Alg (Int -> Dbtrm)

toDebruijnAlg = MkAlg (\ f embed alg -> \ v ->

let v’ = v + 1 in Lam (f id (\ n -> Var (n - v’)) alg v’))

Figure 5: An algebra for converting to de Bruijn notation

IsHom : Π X1 : ? . (Alg · X1) →
Π X2 : ? . (Alg · X2) →
Π h : X1 → X2 . ? =

λ X1 : ? . λ alg1 : Alg · X1 .

λ X2 : ? . λ alg2 : Alg · X2 .

λ h : X1 → X2 .

∀ Alga : ? → ? .

∀ f : ∀ Y : ? . (X1 → Y) → Y → Trmga · Alga · Y .

∀ c : Cast2 · Alg · Alga .

{ h (alg1 f alg1) ' alg2 (λ mx . f (λ a . mx (h a))) alg2 }.

Figure 6: Definition of homomorphism

6.3 Converting to de Bruijn notation

Figure 5 defines a datatype Dbtrm for untyped λ -terms in de Bruijn notation (without application, simi-
larly to our running example). The figure also defines an algebra for converting a term to a Dbtrm. More
precisely, the carrier of the algebra is Int -> Dbtrm; the algebra converts a term to a function which
takes in the number v to use as the current depth of nesting within λ -abstractions. The algebra interprets
the body with the successor nesting depth v’. It supplies the function \ n -> Var (n - v’) for the
interpretation of the bound variable. This function takes in the current depth n and subtracts off v’,
which is one plus the depth at which the binding occurrence of the variable was encountered (subtracting
one ensures that the starting de Bruijn index is zero). For the test term, we confirm the expected result
with ghci:

*WeaklyInitialHoas> fold toDebruijnAlg test 1

Lam (Lam (Var 1))

7 Weak initiality of lamAlg

We would now like to consider the above development from a categorical perspective, as is standard for
simpler classes of inductive datatypes like those arising from polynomial functors (see [2] for a summary
in service of functional programming). Given two algebras alg1 and alg2 with carriers X1 and X2, we
must first define what it means for a function h : X1 → X2 to be a homomorphism from the first
algebra to the second. The definition is given, in Cedille notation, in Figure 6. It states that such an h is a
homomorphism iff for all components required by alg1 – that is, for all algebra candidates Alga, bodies
f, and embeddings c – the following equation holds:

{ h (alg1 f alg1) ' alg2 (λ mx . f (λ a . mx (h a))) alg2 }



64 Towards HOAS in Cedille

IdHom : ∀ X : ? . ∀ alg : Alg · X .

IsHom · X alg · X alg (λ x . x)

ComposeHom : ∀ X1 : ? . ∀ alg1 : Alg · X1 .

∀ X2 : ? . ∀ alg2 : Alg · X2 .

∀ X3 : ? . ∀ alg3 : Alg · X3 .

∀ h1 : X1 → X2 .

∀ h2 : X2 → X3 .

IsHom · X1 alg1 · X2 alg2 h1 →
IsHom · X2 alg2 · X3 alg3 h2 →
IsHom · X1 alg1 · X3 alg3 (λ x . h2 (h1 x))

foldHom : ∀ X : ? . ∀ alg : Alg · X .

IsHom · Trm lamAlg · X alg (fold alg)

Figure 7: Algebras form a category with lamAlg as a weakly initial object

This is an adaptation of the usual commutation condition one desires for homomorphisms. It says that
applying the homomorphism and then alg1 (to f) is the same as applying alg2 to a modified version of
f, which applies h internally.

Using this definition of homomorphism, we can prove (in Cedille) the theorems shown in Figure 7.
The first says that λ x . x is a homomorphism from any algebra to itself. The second states that ho-
momorphisms compose. The third is the main result of the paper. It states that lamAlg (defined in
Section 4.2 above) is a weakly initial algebra: for any algebra alg, the function fold alg is a homo-
morphism from lamAlg to alg. These theorems have short simple proofs, as one would anticipate.

8 Conclusion

In this paper, we have seen how to derive a weakly initial algebra for a very simple datatype using higher-
order abstract syntax. The crucial next step of this work in progress is to extend the development to derive
an initial (not just weakly initial) algebra, for the Trm datatype. The strategy I am following for this is to
form a dependent intersection of Trm as defined above with a statement of unary parametricity [23]. It
should be possible to do this for any type (and hence for Trm), as studied by Bernardy and Lasson [1]).
And with a reflection principle that can hopefully be baked into the definition of the datatype, unary
parametricity implies induction. The next bigger step is to try to give a generic development of induction
with HOAS, for any type scheme satisfying certain (as yet to be delineated) restrictions. The final goal is
to extend Cedille’s datatype notations to allow HOAS, and elaborate those notations down to the generic
version of induction for HOAS.
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