
Electronic Notes in Theoretical Computer Science 70 No. 2 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume70.html 13 pages

Producing Proofs from an Arithmetic Decision
Procedure in Elliptical LF

Aaron Stump, Clark W. Barrett, and David L. Dill

Computer Systems Laboratory, Stanford University, Stanford, CA 94305, USA
E-mail: {stump,barrett,dill}@cs.stanford.edu

Phone: +1 650 725 3646, Fax: +1 650 725 6949

Abstract

Software that can produce independently checkable evidence for the correctness of
its output has received recent attention for use in certifying compilers and proof-
carrying code. CVC (“a Cooperating Validity Checker) is a proof-producing validity
checker for a decidable fragment of first-order logic enriched with background the-
ories. This paper describes how proofs of valid formulas are produced from the
decision procedure for linear real arithmetic implemented in CVC. It is shown how
extensions to LF which support proof rules schematic in an arity (“elliptical” rules)
are very convenient for this purpose.

1 Introduction

The ability for automated reasoning systems to produce easily verifiable proofs
has been widely recognized as valuable (see, e.g., [14,4]). Recently, applica-
tions like proof-carrying code and proof-carrying authentication have created
a new need for proofs [9,1]. The Edinburgh Logical Framework (LF) [7] has
emerged as a widely used meta-language for representing proof systems for
these applications. The representation is such that proof checking is reduced
to LF type checking.

CVC (“a Cooperating Validity Checker”) is a system based on the Nelson-
Oppen method for combining decision procedures (DPs) for certain quantifier-
free first-order classical theories [13]. CVC produces proofs for formulas it
claims are valid. Each subsidiary DP produces proofs for all the reasoning
it performs. The proofs are represented in an extended version of LF, called
LFnat . In LFnat , lists can be represented in a direct way. The goal of
this paper is to show how the features of LFnat make it convenient to pro-
duce proofs from a fairly complex decision procedure, the DP for linear real
arithmetic.

The organization is as follows. Section 2 presents selected parts of the DP
for the theory of linear real arithmetic. Section 3 discusses some difficulties

c©2002 Published by Elsevier Science B. V.

Stump, Barrett, and Dill

that arise using pure LF for representing proofs. Section 4 describes LFnat ,
and Section 5 shows how proof rules corresponding to the steps of reasoning
in the decision procedure are represented in LFnat . Some familiarity with LF
or other type theories with dependent types must be assumed (see, e.g., [10]).
This paper describes work in progress.

2 Deciding linear real arithmetic in CVC

In linear real arithmetic, terms are built using binary function symbols +, ∗,
and /; a unary function symbol −; numerals 0, 1, 2, etc.; and variables from
a countably infinite set V. Variables range over the reals. The restriction of
linearity is that no term may contain a subterm of the form t ∗ t′, where t
and t′ both contain a variable. Also, we restrict divisors to non-zero numerals.
Atomic formulas are then equations t = t′ and inequalities t < t′ between
terms. As usual, literals are atomic formulas or their negations.

In CVC, propositional reasoning is separated from theory-specific reason-
ing (see [2]). To describe a DP for a theory, it is sufficient to present an
algorithm for testing a set of literals for satisfiability. In CVC, such a set of
literals is presented to the DP one literal at a time. The DP is responsible for
notifying the rest of the system whenever the set of literals it has been given
so far is unsatisfiable. Giving a literal to a DP is called asserting the literal
to the DP.

It suffices then to show how the DP for linear real arithmetic handles each
literal that may be asserted to it. The DP consists of three main components:
a canonizer for arithmetic terms, a solver for asserted equations, and a compo-
nent that implements Fourier-Motzkin variable elimination to handle asserted
inequalities. We will now describe the canonizer and solver in detail. The
section about the solver explains how disequalities t �= t′ are handled. We will
not describe how inequalities and negated inequalities are handled, for reasons
of space.

2.1 Canonizer for terms

It is convenient to put terms into a canonical form for use by the solver and
the Fourier-Motzkin component. This section describes how this canonization
of terms is performed.

Let ≺ be an arbitrary fixed total ordering of the set V of variables. A
constant arithmetic term is in coprime form iff it is of the form N/D, where
N and D are relatively prime numerals, and D is positive. A natural canonical
form for a linear arithmetic term is as a polynomial c + c1 ∗ x1 + . . . cn ∗ xn,
where

(i) c, c1, . . . , cn are constant arithmetic terms in coprime form

(ii) x1, . . . , xn ∈ V
2

Stump, Barrett, and Dill

(iii) for all 1 ≤ i < j ≤ n, xi ≺ xj

We consider now how to implement an algorithm in the CVC system to put
linear arithmetic terms into such a form.

The natural and convenient internal implementation of polynomials in
CVC is as applications of an n-ary addition operator to monomials: e.g.,
3∗x+4∗y+z is represented as (+ (3∗x) (4∗y) z). This is a good representa-
tion because in the CVC infrastructure, any immediate child of an expression
may be accessed in constant time. In constrast, if polynomials were repre-
sented as nested applications of a binary addition operator, accessing the i’th
monomial of a polynomial would take O(i) time. So it is more efficient to rep-
resent polynomials in this flattened form as applications of an n-ary addition
operator. The first step in canonizing a linear arithmetic term is to put it into
flattened form.

2.1.1 Reducing to flattened form

This section shows how a linear arithmetic term is put into the flattened form
(+ c (c1 ∗ x1) . . . (cn ∗ xn)), where c, c1, . . . , cn are constant arithmetic terms
and x1, . . . , xn ∈ V, but like terms (ci ∗ xi and cj ∗ xj with xi ≡ xj) are not
yet combined nor monomials sorted according to the ordering ≺ on variables.
The latter operations happen in the next step of canonization. Several special
cases of flattened form are for constant terms c, where the flattened form (+ c)
has n equal to 0; and for variables, where the flattened form is (+ 0 (1 ∗ v)).
It simplifies the statement of the flattening algorithm to put constants and
variables temporarily into these forms.

The main rewriting engine in CVC is a simplifier that rewrites literals
bottom-up, before they are asserted to subsidiary DPs. Theory-specific rewrites
may be registered for that theory’s function and predicate symbols. Those
rewrites will be called by the simplifier to try to rewrite subterms after the
subterms’ children have been fully simplified. The algorithm to put a term
in flattened form is implemented in a theory-specific rewrite registered for the
arithmetic function symbols (+, ∗, /, and −). It consists in the rewrites given
in Figure 2.1.1, which assume that the immediate subexpressions of the term
being rewritten are already in flattened form. There are two rules for plus: the
first is for when there are two summands, and the second is for when there are
more than two (assume m > 0 in that rule). The rules for multiplication and
division assume that the left multiplicand and the divisor, respectively, are
constant arithmetic terms. We omit the similar rule for multiplication where
the right multiplicand is a constant term.

2.1.2 Completing the canonization

Once a term is in flattened form, canonization may be completed by sorting
the monomials so that c ∗ x comes before d ∗ y if x ≺ y. In the resulting
polynomial, all like terms c1 ∗ x, . . . , cn ∗ x with the same variable will appear

3

Stump, Barrett, and Dill

[uminus] −(+ c (c1 ∗ x1) . . . (cn ∗ xn)) −→
(+ (−c) (−c1 ∗ x1) . . . (−cn ∗ xn))

[mult] c′ ∗ (+ c (c1 ∗ x1) . . . (cn ∗ xn)) −→
(+ (c′ ∗ c) ((c′ ∗ c1) ∗ x1) . . . ((c′ ∗ cn) ∗ xn))

[division] (+ c (c1 ∗ x1) . . . (cn ∗ xn)) / c
′ −→

(+ (c/c′) ((c1/c′) ∗ x1) . . . ((cn/c
′) ∗ xn))

[addition] (+ (+ c (c1 ∗ x1) . . . (cn ∗ xn)) (+ d (d1 ∗ y1) . . . (dn′ ∗ yn′)))

−→ (+ (c+ d) (c1 ∗ x1) . . . (cn ∗ xn) (d1 ∗ y1) . . . (dn′ ∗ yn′))

[addition] (+ t1 . . . tm

(+ c (c1 ∗ x1) . . . (cn ∗ xn)) (+ d (d1 ∗ y1) . . . (dn′ ∗ yn′)))

−→ (+ t1 . . . tm

(+ (c+ d) (c1 ∗ x1) . . . (cn ∗ xn) (d1 ∗ y1) . . . (dn′ ∗ yn′)))

[constant] c −→ (+ c)

[variable] v −→ (+ 0 (1 ∗ v))

Fig. 1. Rewrites to flatten a linear arithmetic term

next to each other. Those terms may be combined by replacing them in the
polynomial with (c1 + . . . cn) ∗ x. To complete the canonization, constant
arithmetic terms like 2/4+ 3/6 are put into coprime form. Finally, the trivial
cases of flattened forms are rewritten:

(+ (1 ∗ v) 0) −→ v (+ c) −→ c

2.2 Solver

We consider now how to handle an asserted equation t = t′, where t and t′ are
in canonical form.

4

Stump, Barrett, and Dill

2.2.1 Canonizing equations

The equation is first put into a canonical form t̂ = 0, where t̂ is the canonical
form of the term t+(−t′). If t̂ is a (canonical) constant arithmetic term, then if
t̂ ≡ 0 this equation is equivalent to TRUE and can be dropped; and otherwise,
it is equivalent to FALSE, and the DP reports that the set of asserted literals
is unsatisfiable. If t̂ is not a constant term, then solving proceeds on t̂ = 0 by
isolating a variable.

2.2.2 Isolating a variable

The equation at this point is in the form

(+ c (c1 ∗ x1) . . . (cn ∗ xn)) = 0

A variable is chosen from the left hand side of the equation to isolate. Cur-
rently, the variable xi with the shortest notify list (a list of tasks to perform
when an equation with xi as its left hand side is asserted) is chosen. Then the
equation is rewritten to

xi = (+ d (d1 ∗ x1) . . . (di−1 ∗ xi−1) (di+1 ∗ xi+1) . . . (dn ∗ xn)),

where for all j ∈ {1, . . . , i− 1, i+1, . . . n}, dj is the coprime form of (−cj/ci);
and d is the coprime form of (−c/ci). This equation is then committed to
a database of equalities, maintained by the infrastructure of CVC. This will
cause xi to be replaced by the right hand side of the equation in all literals
in the arithmetic theory. This eliminates the variable xi from those literals.
Literals asserted subsequently will have this replacement applied to them as
well.

2.2.3 Handling disequalities

Disequalities like t �= t′ are handled by simply replacing x with y in the
disequality (if the disequality contains x) whenever an equation x = y is
committed to the database of equalities in CVC. Any time the disequality
is updated in this way and also when it is first asserted, the canonizer for
equations (described just above) is run on t = t′, to make sure that it does
not canonize to TRUE. If it does canonize to TRUE, then the DP reports that
the set of literals asserted so far is unsatisfiable.

3 Producing proofs

Now that the canonizer and solver from the DP for linear real arithmetic
have been described, we turn to the problem of producing proofs. The basic
approach we follow is to instrument the code for the DP so that every time
a step of reasoning is performed, the appropriate inference is added to the
proof. CVC’s infrastructure is already instrumented to produce proofs. For
example, the simplifier glues together the proofs produced for single steps
of theory-specific rewriting. The proofs are glued together using proof rules

5

Stump, Barrett, and Dill

for transitivity and congruence of equality. Also, the database of equalities
expects and stores a proof for each equality that is committed to it.

The more challenging part of the problem of proof production is how to
describe the inference rules for the decision procedure in LF. In our case,
if we use pure LF, difficulties arise right away with the representation of
polynomials. As discussed above (Section 2.1), the DP works with polyno-
mials that are applications of an n-ary addition operator. LF does not pro-
vide direct support for arity-polymorphic operators like this, so a polynomial
must be represented less directly in LF. It could be encoded as either nested
applications of a binary addition operator (e.g., (+ 5 (+ (3 ∗ x) (4 ∗ y))))
or as an application of an addition operator to a list of monomials (e.g.,
(+ (cons 5 (cons (3 ∗ x) (cons (4 ∗ y) null))))). Both representations are in-
direct, in the sense that a single function application (of n-ary addition) in
the object language is represented by an asymptotically greater number (n)
of function applications in LF.

With indirect representations of polynomials, simple inferences in the DP
also require an indirect representation. For example, with an indirect rep-
resentation of polynomials, isolating the i’th monomial of a polynomial first
requires proving that isolated monomial is indeed the i’th monomial. Con-
sider, for example, the isolation

(+ 5 (3 ∗ x) (4 ∗ y)) = 0 −→ −4 ∗ y = (+ 5 (3 ∗ x)).
If the first equation is represented as something like (eq (+ (cons 5 (cons (3 ∗
x) (cons (4∗y) null)))) 0), then the most natural LF encoding for the isolation
of the i’th monomial will require something like the following rule (we use the
concrete LF syntax of Twelf [11], where λ x : A.M is written [x : A]M and
Π x : A.B is written {x : A}B):

isolate eq : { L : list } { L’ : list }
{ t : trm real } { i : natural }
{ P : (remove ith i L t L’) }
(pf (eq (eq (+ L) 0) (eq (minus t) (+ L’))))

This rule says, assuming suitable other declarations, that isolating the i’th
monomial t in an equation (+ L) = 0 yields an equation −t = (+L′), as long
as it can be proved that removing the i’th monomial from L yields the term
t, as well as the version L′ of L that has t removed. The problem with this
rule is that it requires a proof of (remove ith i L t L′), which can be proved
most naturally only with a proof of size O(i). It is possible that less natural
representations would yield a proof of size O(1), but coming up with such
a representation places an additional burden on the proof producer. If the
natural approach is used, additional C++ code will be required to generate
the proof of (remove ith i L t L′). While this additional code may not be a
very heavy burden, it is desirable to try to minimize the amount of extra code
required to produce proofs from the decision procedure.

Frank Pfenning pointed out at the LFM ’02 workshop that lists (in this

6

Stump, Barrett, and Dill

case, of monomials) could be appended without encoding proof rules for ap-
pend, if the lists were represented as functions taking in the rest of the mem-
bers of the list. So a list [a, b, c] could be represented as

λ r : list.(cons a (cons b (cons c r)))

A list L1 of type list → list can then be appended to list L2 of the same
type by forming λ r : list.(L1 (L2 r)). This technique does not readily make it
possible, however, to extract the i’th element of a list, as is needed for isolating
a monomial of an equation.

4 Elliptical LF

We consider now an extension of LF called LFnat , which helps make the
natural representation of proofs from the arithmetic DP more convenient.
LFnat is supported by a tool called flea, which ships with CVC. LFnat adds
to LF a basic type nat of natural numbers and numerals of type nat. There are
also subrange types [l..u] which are subtypes of nat. This makes it possible
to model a list of n elements as a function with domain [1..n]. The basic
arithmetic operations of addition and subtraction are convenient to add, as
well as arithmetic inequality. We can add multiplication and division if we
allow arithmetic operators to operate on a supertype real of nat. We can then
either require our subrange type constructor to accept reals (and perhaps
represent the set of nats in that range), or else enforce that subrange types
can only be built from nats. As mentioned just below, LFnat is work in
progress, and a number of issues like these have yet to be completely resolved.

LFnat also adds an if-then-else construct, so that an actual list like [a, b, c]
can be modeled as

λ i : nat. if (i = 1) then a else if (i = 2) then b else c end end

The concrete syntax of flea allows this λ-abstraction to be denoted [[a, b, c]].
The guarding formula of an if-then-else is required to be either an equation
or an inequality between terms of type nat. It is also convenient to allow
polytypic lists. If a : A, b : B, and c : C, we might like the list [[a, b, c]] to have
type corresponding to something like [A,B,C]. We can achieve this by making
the type of an if-then-else expression also be an if-then-else expression:

if φ then M else M ′ end : if φ then A else A′ end,

where φ implies M : A and ¬φ implies M ′ : A′. Then the type of [[a, b, c]] is:

Π i : nat. if (i = 1) then A else if (i = 2) then B else C end end.

The concrete syntax of flea allows this Π-abstraction to be denoted {{A,B,C}}.

4.1 Metatheory

The study of LFnat is work in progress. Just giving a formal description
of the system is quite complex. The system of Dependent Predicate Logic

7

Stump, Barrett, and Dill

(DPL) of [8], which adds predicate logic on top of a dependent type theory,
could be a starting point. Difficulties may arise, because it appears that in
DPL, the form of sequents is such that a classification X : Y is not allowed
to depend on a logical assumption. This may make it difficult to formulate
suitable rules for if-then-else. A more fundamental issue that remains unclear
is the treatment of the partiality of functions which are declared to have a
type that is a proper subtype; in particular, how to make the treatment of
partiality follow that proposed for bivalent logics of partial terms [3,6,5].

One thing that is known is that just adding the type nat and subrange
types to LF makes type-checking undecidable in general. This result can be
proved by reducing the word problem to typability in LFnat . The crucial
idea is that by declaring certain types to be inhabited, we can add a logical
assumption of the form ∀x : nat. t = t′, where t and t′ are built from x and
function symbols of type nat→ nat. We just add the typing declarations:

g1 : Π x : nat. [t..t′].

g2 : Π x : nat. [t′..t].

The only way Π x : nat. [t..t′] and Π x : nat. [t′..t] can both be inhabited is if
∀x : nat. t = t′. Adding a logical assumption of this form is the crucial step
in reducing the word problem to typability.

4.2 Consequences for checking proofs from CVC

Since LFnat is undecidable, it might seem hopeless to use it as a logical
framework for checking proofs from CVC. But undecidability is not as serious
a problem as one might expect in this particular case, for the following reason.
Suppose the only objects (including bound variables) of type nat in some
expression E are numerals or of type [n..m], for numerals n and m. Suppose
that the types of all declared function symbols are such that no term of type
natmay be formed by application from those function symbols. Type-checking
can then be decided using only evaluation of constant arithmetic expressions
and possibly trying all values of finite types like [3..5]. The latter is used when
a bound variable declared to have such a finite type is added to the context
by the usual (lam) rule for classifying lambda abstractons.

The typing declarations corresponding to the proof rules for CVC will not
always satisfy these conditions which make type-checking in LFnat decidable.
But the proof system is designed so that every actual proof object produced
by CVC for a valid formula will. This means that while it may not be possible
to check the types of the encodings of CVC’s proof rules, it will always be
possible to check the type for an actual proof. This is good enough for CVC’s
purposes.

8

Stump, Barrett, and Dill

5 Representing arithmetic proofs in LFnat

This section presents the encoding of the proof rules used by the arithmetic
DP described in Section 2. The syntax used is that of flea, which extends the
syntax for Twelf in the ways mentioned in the previous section. The focus is
on representing each step of reasoning performed by the DP in as direct a way
as possible, using the features of LFnat . Deriving the rules from a simpler
set of axioms is not considered. We begin with a few standard declarations,
which are used in the representation of arithmetic.

sort : type.
trm : sort -> type.
BOOLEAN : sort.
o = (trm BOOLEAN).
EQ : {S:sort} (trm S) -> (trm S) -> o.
TRUE : o.
FALSE : o.

As usual, proofs of a theorem F will be represented as objects of type
(pf F):

pf : o -> type.

Now we turn to the representation of the reasoning for the arithmetic DP.
We first represent the terms and atomic formulas of the language. Inequality
is omitted, because we consider only the rules for the canonizer and solver.
PLUS is declared to take in a natural number n and a list of n REAL terms,
where the list is modeled as a function from [1..n] to (trm REAL):

REAL : sort.
PLUS : {n:nat} ([1..n] -> trm REAL) -> trm REAL.
MULT : trm REAL -> trm REAL -> trm REAL.
DIVIDE : trm REAL -> trm REAL -> trm REAL.
UMINUS : trm REAL -> trm REAL.

We embed reals as REAL terms, and we add an abbreviation for polyno-
mials

(+ c (c1 ∗ t1) . . . (cn ∗ tn)),
where c, c1, . . . , cn are (embeddings) of reals, and t1, . . . , tn are REAL terms.
For the benefit of the actual proof-production code in CVC, it is convenient
if we can use this abbreviation with a list of ordered pairs (ci, ti). The type
{{real, (trm REAL)}} is the type used for these pairs (for the “{{ }}” notation,

9

Stump, Barrett, and Dill

see Section 4 just above).

n2I : nat -> (trm REAL).
CPLUS =
[n:nat] [C : nat]
[c : [1..n] -> {{real, (trm REAL)}}]
(PLUS (n+1) [i:[1..n+1]]

if i == 1 then (n2I C)
else MULT (n2I (c (i - 1) 1)) (c (i - 1) 2)
end).

So the representation of (+ 5 (5 ∗ x) (5 ∗ y)) can be written as

(CPLUS 2 5 [[[[5,x]], [[5,y]]]]),

which normalizes to:

(PLUS 3 [[(n2I 5), (MULT (n2I 5) x), (MULT (n2I 5) y)]]).

The rewrite rule from Figure 2.1.1 for flattening an application of unary
minus is represented as follows ([x : A]M is Twelf syntax for λ x : A.M):

arith canon uminus :
{n:nat} {C : nat} {c : [1..n] -> {{real, (trm REAL)}} }
(pf (EQ REAL

(UMINUS (CPLUS n C c))
(CPLUS n (-C)

[i:[1..n]] [[(- (c i 1)), (c i 2)]]))).

Notice that the built-in unary minus operation of LFnat is used. The effect
is that polynomials are represented modulo constant arithmetic. So constant
arithmetic terms with the same value have equal representations in LFnat .
An example application of this rule is:

(arith canon uminus 2 4 [[[[1,c]] [[-1,d]]]]),

which has type

(pf (EQ REAL
(UMINUS (PLUS 3 [[(n2I 4), (MULT (n2I 1) c),

(MULT (n2I -1) d)]]))
(PLUS 3 [[(n2I -4), (MULT (n2I -1) c),

(MULT (n2I 1) d)]])))

One inference performed by the solver is: given an equation t = 0, where
t is a polynomial in canonical form whose j’th monomial (not counting the
initial constant in the polynomial) is D ∗ x, isolate x on the left hand side of

10

Stump, Barrett, and Dill

the equation. This inference is represented as follows:

isolate var :
{n : nat} {C : nat} {c : [1..n] -> {{real, trm REAL}} }
{j : [1..n]} {D : real} {x : trm REAL}
(pf (EQ BOOLEAN

(EQ REAL (CPLUS n C
[i:[1..n]] if i == j then [[D, x]]

else (c i) end)
(n2I 0))

(EQ REAL x
(UMINUS (DIVIDE (CPLUS (n - 1) C

[i: [1..(n - 1)]]
if i < j then (c i)
else (c (i + 1)) end)

(n2I D)))))).

Notice how if-then-else is used first to say that the j’th non-constant mono-
mial is D ∗x, and then to say that in the equation with x isolated, the sum in
the right hand side skips over that j’th term. Notice also that the rule cannot
be fully applied when n equals 0, because there will be no j of type [1..0], since
that type is empty. This is assuming that the typing context is consistent, in
the sense that it does not declare empty types to be inhabited.

As a final example, we include a representation of the inference in the
canonizer which sorts the terms of a polynomial. It is quite undesirable from
an engineering perspective to instrument a sorting routine to produce a proof.
Without any modification to the sorting routine, however, we can use an
auxiliary data structure to recover the permutation relating the unsorted and
sorted lists. We can then give a rule which says that applying a permutation
p to a list c of summands yields an equal sum. In addition to the permutation
p, the rule takes in p’s inverse, ip. It then requires a proof dp that p composed
with ip is the identity. This guarantees that p is really a permutation (and
that ip really is its inverse). The rule says that dp must be of type composition
== identity ; flea allows == to be used as a type. flea then just checks that
the two expressions are actually equal according to the definitional equality
of LFnat . flea requires a placeholder argument “**” to be supplied as the
argument corresponding to the == type.

sort summands :
{n:nat} {c : [1..n] -> trm REAL}
{p : [1..n] -> [1..n]}
{ip : [1..n] -> [1..n]}
{dp : (([i:[1..n]] (ip (p i))) == ([i:[1..n]] i)) }
(pf (EQ REAL

(PLUS n c)
(PLUS n [k:[1..n]] c (p k)))).

11

Stump, Barrett, and Dill

An example application of this rule (assuming a, b, and c of type (trm REAL))
is

(sort summands 3
[[a, b, c]] [[3, 1, 2]] [[2, 3, 1]] **),

which is of type

(pf (EQ REAL
(PLUS 3 [[a, b, c]])
(PLUS 3 [[c, a, b]]))).

6 Conclusion

The canonizer and solver from CVC’s proof-producing decision procedure for
linear real arithmetic have been described. The proofs produced are repre-
sented in LFnat , an extension of LF with numerals, subrange types, arith-
metic operations, and if-then-else. LFnat makes it more convenient to model
the reasoning in this and other decision procedures in CVC than in pure LF.
Much work remains if a rigorous understanding of the metatheory of LFnat is
to be obtained. Even though LFnat is undecidable in general, it can still cor-
rectly check the proofs produced by CVC. Arity-polymorphic proof rules may
fail to be checked by flea, but all actual proofs of formulas CVC claims are
valid can be checked. It may be that the proof rules used by CVC fall into a
decidable fragment of LFnat , but this remains to be seen.

This work was supported under ARPA/Air Force contract F33615-00-C-
1693 and NSF contract CCR-9806889.

References

[1] A. Appel and E. Felten. Proof-carrying authentication. In 6th ACM Conference
on Computer and Communication Security, 1999.

[2] C. Barrett, D. Dill, and A. Stump. Checking Satisfiability of First-Order
Formulas by Incremental Translation to SAT. In 14th International Conference
on Computer-Aided Verification, 2002.

[3] M. Beeson. Foundations of Constructive Mathematics: Metamathematical
Studies. Springer, 1985.

[4] S. Berghofer and T. Nipkow. Proof terms for simply typed higher order logic
. In Theorem Proving in Higher Order Logics, 13th International Conference,
volume 1869 of LNCS, 2000.

[5] W. Farmer and J. Guttman. A Set Theory with Support for Partial Functions.
Logica Studia, 66(1):59–78, 2000.

[6] S. Feferman. Definedness. Erkenntnis, 43:295–320, 1995.

12

Stump, Barrett, and Dill

[7] R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics.
Journal of the Association for Computing Machinery, 40(1):143–184, January
1993.

[8] B. Jacobs. Categorical Logic and Type Theory. Elsevier, 1999.

[9] G. Necula. Proof-Carrying Code. In 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 106–119, January
1997.

[10] F. Pfenning. Logical Frameworks, chapter XXI. In Robinson and Voronkov
[12], 2001.

[11] F. Pfenning and Carsten Schürmann. System Description: Twelf — A Meta-
Logical Framework for Deductive Systems. In 16th International Conference
on Automated Deduction, 1999.

[12] A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning.
Elsevier and MIT Press, 2001.

[13] A. Stump, C. Barrett, and D. Dill. CVC: a Cooperating Validity Checker. In
14th International Conference on Computer-Aided Verification, 2002.

[14] W. Wong. Validation of HOL Proofs by Proof Checking. Formal Methods in
System Design, 14(2):193–212, 1999.

13

