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Dependently typed languages are well known for having a problemwith code reuse. Traditional non-indexed
algebraic datatypes (e.g. lists) appear alongside a plethora of indexed variations (e.g. vectors). Functions are
often rewritten for both non-indexed and indexed versions of essentially the same datatype, which is a source
of code duplication.

We work in a Curry-style dependent type theory, where the same untyped term may be classified as both
the non-indexed and indexed versions of a datatype. Many solutions have been proposed for the problem of
dependently typed reuse, but we exploit Curry-style type theory in our solution to not only reuse data and
programs, but do so at zero-cost (without a runtime penalty). Our work is an exercise in dependently typed
generic programming, and internalizes the process of zero-cost reuse as the identity function in a Curry-style
theory.
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1 INTRODUCTION

Dependently typed languages (such asAgda [Norell 2007], Coq [The Coq Development Team2008],
Idris [Brady 2013], or Lean [de Moura et al. 2015]) can be used to define ordinary algebraic datatypes,
as well as indexed versions of algebraic datatypes that enforce various correctness properties. For
example, we can index lists by natural numbers to enforce that they have a particular length (i.e.
VecA : N→ ⋆). Similarly, we can index lists by two elements to enforce that they are ordered and
have a lower and upper bound (i.e. OListA,R : A → A → ⋆). We can even combine these two
forms of indexing to enforce that lists have all of the aforementioned correctness properties (i.e.
OVecA,R : A → A→ N→ ⋆).
Which datatype a programmer uses depends upon how much correctness they wish to enforce

at the time a function is written, versus proving correctness as a separate step sometime later
(corresponding to intrinsic and extrinsic correctness proofs of functions). Certain types tend to
be better suited to writing intrinsically correct functions than others, e.g. it is natural to define a
safe lookup function that takes a Vec as an argument, and a correct sort function that returns an
OList.
However, oncewe havewritten a function using a suitable indexed variant of a datatype, reusing

the function to define a corresponding version for the unindexed (or less indexed) datatype variants
can be painful. We may also wish to delay extrinsic verification, thereby suffering later while
reusing a function over unindexed (or less indexed) datatype variants to define a corresponding
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1:2 Larry Diehl, Denis Firsov, and Aaron Stump

function over more indexed indexed datatypes. We refer to the former direction as forgetful reuse,
and to the latter direction as enriching reuse.
One source of pain is manually writing functions over some datatypes by reusing functions

over differently indexed variants of the same underlying datatypes. Another source of pain is that
reusing functions involves linear time conversions between differently indexed types, resulting in
a runtime performance penalty incurred by practicing the good software engineering practice of
code reuse. In this paper we address both of these problems, for both the forgetful and enriching
directions of reuse, by:

(1) Defining generic combinators to incrementally attack the problem of reuse for various types,
where each combinator application results in simplified subgoals (similar to tactics).

(2) Ensuring that the combinators are closed operations with respect to a type abstraction,
which can be eliminated to obtain reused functions at zero-cost (i.e. no performance penalty).

Our primary contributions are:

(1) Section 4.2: Generic combinator solutions to zero-cost forgetful program reuse (combinator
allArr2arr, handling the type of non-dependent functions), and proof reuse (combinator
allPi2pi, handling the type of dependent functions).

(2) Section 4.3: Generic combinator solutions to zero-cost enriching program reuse (combinator
arr2allArrP, handling the type of non-dependent functions), and proof reuse (combinator
pi2allPiP, handling the type of dependent functions).

(3) Section 5.3: A generic combinator solution to zero-cost forgetful data reuse (combinator
ifix2fix, handling the type of fixpoints for generically encoded datatypes).

(4) Section 5.5: A generic combinator solution to zero-cost enriching data reuse (combinator
fix2ifix, handling the type of fixpoints for generically encoded datatypes).

The remainder of our paper proceeds as follows:

• Section 2: We review background material, covering the Curry-style type theory that our
results are developed within, and providing intuition for why zero-cost conversions are mo-
tivated by Curry-style type theory.

• Section 3: We explain the primary problems (linear time reuse of programs, proofs, and
data) we are solving through concrete examples, and provide manual solutions (zero-cost,
or constant time, reuse), which our primary contribution combinators generalize via generic
programming.

• Section 4: We generically solve the problems of (both forgetful and enriching) zero-cost
program and proof reuse (as combinators for the types of non-dependent and dependent
functions).

• Section 5: We generically solve the problems of (both forgetful and enriching) zero-cost data
reuse (as combinators for the type of fixpoints).

• Section 6: We compare what we have done with related work. This includes comparing our
results with the closely related work of dependently typed reuse via ornaments [McBride
2011] and dependent interoperability [Dagand et al. 2016], the primary difference being that
our work achieves zero-cost reuse.

• Section 7: We go over extensions that we have already made to our work, not covered herein,
as well as planned future work.

All of our results have been formalized in Cedille [Stump 2017, 2018], a dependently typed language
implementing the theory we work in (covered in Section 2.1).1

1 The Cedille code accompanying this paper is here:
https://github.com/larrytheliquid/generic-reuse
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Γ, x : T ′ ⊢ t : T x < FV(|t |)

Γ ⊢ Λ x :T ′
. t : ∀ x :T ′

.T

Γ ⊢ t : ∀ x :T ′
.T Γ ⊢ t ′ : T ′

Γ ⊢ t − t ′ : [t ′/x]T

Γ ⊢ t : T
Γ ⊢ β : t ≃ t

Γ ⊢ q : t1 ≃ t2 Γ ⊢ t : [t1/x]T

Γ ⊢ ρ q − t : [t2/x]T

Γ ⊢ q : t1 ≃ t2 Γ ⊢ t1 : T

Γ ⊢ ϕ q − t1{t2} : T

Γ ⊢ t1 : T Γ ⊢ t2 : [t1/x]T ′ |t1 | = |t2 |

Γ ⊢ [t1, t2] : ι x :T .T ′

Γ ⊢ t : ι x :T .T ′

Γ ⊢ t .1 : T
Γ ⊢ t : ι x :T .T ′

Γ ⊢ t .2 : [t .1/x]T ′

Fig. 1. Introduction and elimination rules for additional type constructs

|Λ x :T . t | = |t |

|t − t ′ | = |t |

|β | = λ x . x

|ρ q − t | = |t |

|ϕ q − t1{t2}| = |t2 |

|[t1, t2]| = |t1 |

|t .1| = |t |

|t .2| = |t |

Fig. 2. Erasure rules for additional type constructs

2 BACKGROUND

2.1 The Type Theory (CDLE)

We briefly summarize the type theory, the Calculus of Lambda Eliminations (CDLE), that the re-
sults of this paper depend on. For full details on CDLE, including semantics and soundness results,
please see the previous papers [Stump 2017, 2018]. The main metatheoretic property proved in
the previous work is logical consistency: there are types which are not inhabited. Cedille is an
implementation of CDLE, and all the code appearing in this paper is Cedille code.
CDLE is an extrinsic (i.e. Curry-style) type theory, whose terms are exactly those of the pure

untyped lambda calculus (with no additional constants or constructs). The type-assignment system
for CDLE is not subject-directed, and thus cannot be used directly as a typing algorithm. Indeed,
since CDLE includes Curry-style System F as a subsystem, type assignment is undecidable [Wells
1999]. To obtain a usable type theory, Cedille thus has a system of annotations for terms, where the
annotations contain sufficient information to type terms algorithmically. But true to the extrinsic
nature of the theory, these annotations play no computational role. Indeed, they are erased both
during compilation and before formal reasoning about terms within the type theory, in particular
by definitional equality (see Figure 1 and Figure 2).
CDLE extends the (Curry-style) Calculus of Constructions (CC)with implicit products, primitive

heterogeneous equality, and intersection types:

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: March 2018.
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• ∀ x : T. T', the implicit product type of Miquel [2001]. This can be thought of as the
type for functions which accept an erased input of type x : T, and produce a result of type
T'. There are term constructs Λ x. t for introducing an implicit input x, and t -t' for
instantiating such an input with t'. The implicit arguments exist just for purposes of typing
so that they play no computational role and equational reasoning happens on terms from
which the implicit arguments have been erased.

• t1 ≃ t2, a Curry-style heterogeneous equality type. The terms t1 and t2 are required to be
typed, but need not have the same type. We introduce this with a constant βwhich erases to
λ x. x (so our type-assignment system has no additional constants, as promised); β proves
t ≃ t for any typeable term t. Combinedwith definitional equality, β proves t1 ≃ t2 for any
β-equal t1 and t2 whose free variables are all declared in the typing context. We eliminate
the equality type by rewriting, with a construct ρ q - t. Suppose q proves t1 ≃ t2 and
we synthesize a type T for t, where T has several occurrences of terms definitionally equal
to t1. Then the type synthesized for ρ q - t is T except with those occurrences replaced by
t2. The construct φ q - t1{t2} casts a term t2 (of any type) to type T, provided that t1 has
type T and q proves t1 ≃ t2. The point of using the term φ q - t1{t2} at type T, instead of
the term t1, is that the φ term erases to |t2|. Note that the types of the terms are not part of
the equality type itself, nor does the elimination rule require that the types of the left-hand
and right-hand sides are the same to do an elimination.

• ι x : T. T', the dependent intersection type of Kopylov [2003]. This is the type for terms
t which can be assigned both the type T and the type [t/x]T', the substitution instance
of T' by t. In the annotated language, we introduce a value of ι x : T. T' by construct
[ t, t' ], where t has type T (algorithmically), t' has type [t/x]T', and the erasure |t|
is definitionally equal to the erasure |t'|. There are also annotated constructs t.1 and t.2
to select either the T or [t.1/x]T' view of a term t of type ι x : T. T'.

It is important to understand that the described constructs are erased before the formal reasoning
(e.g. when checking if 2 terms are definitionally equal), according to the erasure rules in Figure 2.

2.2 Curry-Style Typing

There is an intuitive explanation for why zero-cost (i.e. no performance penalty) conversion should
be possible between differently indexed data (i.e. List and Vec) and differently indexed programs
(i.e. appL and appV). In a Curry-style theory, the same underlying untyped term can be typed
multiple different ways. Therefore, if it is possible to type a term as both a list and a vector, then
there is actually no need to do any conversion at all because the same term can inhabit both types!
In a type-annotated (rather than type-assignement) setting, this translates to having 2 distinct
terms at two distinct types, whose erasures are equal.

Curry-StyleData. As an example of Curry-style data, consider the standard definitions of Church-
encoded lists and vectors below:

List ◭ ⋆ → ⋆ = λ A. ∀ X : ⋆. X → (A → X → X) → X.

nilL ◭ ∀ A : ⋆. List A = Λ A,X. λ cN,cC. cN.

consL ◭ ∀ A : ⋆. A → List A → List A =

Λ A. λ x,xs. Λ X. λ cN,cC. cC x (xs -X cN cC).

Vec ◭ ⋆ → Nat → ⋆ = λ A,n. ∀ X : Nat → ⋆.

X zero → (∀ n : Nat. A → X n → X (suc n)) → X n.

nilV ◭ ∀ A : ⋆. Vec A zero = Λ A,X. λ cN,cC. cN.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: March 2018.
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consV ◭ ∀ A : ⋆. ∀ n : Nat. A → Vec A n → Vec A (suc n) =

Λ A,n. λ x,xs. Λ X. λ cN,cC. cC -n x (xs -X cN cC).

Notice that the only difference between the list constructor terms (nilL and consL) and vector
constructor terms (nilV and consV) is the number of implicit abstractions (e.g. Λ n) and implicit
applications (e.g. -n). According to the erasure rules of Figure 2, this means that after erasure, nilL
and nilV share the same underlying untyped term (and the same holds for consL and consV):

|nilL| = |nilV| = λ cN,cC. cN

|consL| = |consV| = λ x,xs,cN,cC. cC x (xs cN cC)

Curry-Style Programs. As an example of Curry-style programs, consider the standard definitions
of the append function for Church-encoded lists and vectors below:

appL ◭ ∀ A : ⋆. List A → List A → List A

= Λ A. λ xs. xs -(List A → List A)

(λ ys. ys)

(Λ xs. λ x,ih,ys. consL -A x (ih ys)).

appV ◭ ∀ A : ⋆. ∀ n : Nat. Vec A n →

∀ m : Nat. Vec A m → Vec A (add n m)

= Λ A. λ xs. xs -(λ n. ∀ m : Nat. Vec A m → Vec A (add n m))

(Λ m. λ ys. ys)

(Λ n. Λ xs,x,ih. Λ m. λ ys. consV A -(add n m) x (ih -m ys)).

Like before, appL and appVdiffer by implicit abstractions and applications. An additional difference
is that appL uses consL in its second branch, while appV uses consV in its second branch. Because
(as seen above) the erasure |consL| is equal to the erasure |consV|, it follows that appL and appV
also share the same underlying untyped term:

|appL| = |appV| =

λ xs. xs (λ ys. ys) (λ x,ih,ys,cN,cC. cC x (ih ys cN cC))

2.3 Inductive Datatypes

The enriching direction of reuse requires dependent function types, which must be proven by in-
duction on their inputs using eliminators. The Church-encoded List and Vec datatypes of Section
2.2 do not support induction, due to a result by Geuvers [2001]. However, Stump [2018] shows that
the dependent intersection (using the ι-type from Figure 1) of an impredicative Church-encoded
type with a predicate, representing what it means for the type to be inductive, does support induc-
tion (or an eliminator):

List ◭ ⋆ → ⋆ = λ A. ι xs : ListChurch A. ListInductive A xs.

elimList ◭ ∀ A : ⋆. ∀ P : List A → ⋆.

P (nilL -A) →

(∀ xs : List A. Π x : A. P xs → P (consL -A x xs)) →

Π xs : List A. P xs

Above, ListChurch is the renamed definition of List from Section 2.2. Intersection-type versions
of the constructors nilL and consL can also be defined. We refer readers interested in the def-
initions of nilL, consL, and elimList to Stump [2018], as this section only depends on their
type-level interface (rather than their term-level implementation). We also assume a correspond-
ing ι-type definition of Vec (in terms of VecChurch), its constructors (nilV and consV), and its
eliminator (elimVec).

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: March 2018.



1:6 Larry Diehl, Denis Firsov, and Aaron Stump

An important thing to point out is that List is defined as the intersection of the ListChurch
and ListInductive types, and that intersection pairs (i.e. [t1, t2]) erase to their first components
(i.e. t1 of type ListChurch) by Figure 2. Hence, the erased ι-style nilL is the same as the erased
Church-style nilL (and the same holds for both styles of consL).

3 THE PROBLEM & MANUAL SOLUTION

Section 2.2 shows how differently indexed data (e.g. List and Vec) and programs (e.g. appL and
appV) can share the same erased untyped terms in a Curry-style dependent type theory. Now we
consider the problem of manually reusing data and programs, in both the forgetful (e.g. Vec to
List, and appV to appL) and enriching (e.g. List to Vec, and appL to appV) directions.

3.1 The Problem: Manual Linear Time Reuse

First, we review how to manually reuse data and programs using linear time conversions, which
is already possible in popular dependently typed languages. Then (in Section 3.2), we show how
Cedille lets us manually derive zero-cost (or constant time) conversions from the linear time con-
versions. To aid readability, from now on we omit implicit abstractions (e.g. Λ A) and implicit
applications (e.g. -A).2

Linear Time Forgetful Data Reuse. We can convert a vector to a list by iteration:

v2l ◭ ∀ A : ⋆. ∀ n : Nat. Vec A n → List A

= elimVec nilL (λ x,ih. consL x ih).

The conversion above only requires iteration, rather than induction, because the codomain List A

does not depend on the domain Vec A n. If we explicitly supplied the motive (or, predicate) P to
elimVec, it would ignore its argument (i.e. P = λ xs. List A).

Linear Time Enriching Data Reuse. We can convert a list to a vector by induction:

l2v ◭ ∀ A : ⋆. Π xs : List A. Vec A (len xs)

= elimList nilV (λ x,ih. consV x ih).

The conversion above requires induction, rather than iteration, because the codomain Vec A (len xs)

depends on the domain List A. If we explicitly supplied themotive P to elimList, it would depend
on its argument (i.e. P = λ xs. Vec A (len xs)).

Linear Time Forgetful Program Reuse. After defining the type synonyms AppL and AppV for the
types of list and vector append, respectively, forgetful reuse of vector append to define list append
corresponds to writing a function from AppV to AppL:

AppL ◭ ⋆ = ∀ A : ⋆. List A → List A → List A.

AppV ◭ ⋆ = ∀ A : ⋆. ∀ n : Nat. Vec A n →

∀ m : Nat. Vec A m → Vec A (add n m).

appV2appL ◭ AppV → AppL

= λ appV,xs,ys. v2l (appV (l2v xs) (l2v ys)).

The function appV2appL first reuses vector append (appV) by applying appV to the result of trans-
lating both list arguments (xs and ys) to vectors (via v2l). Then, it translates the result of appV
from a vector to a list (via v2l).

2 While we omit most implicit abstractions and applications in this paper, the current implementation of Cedille only
supports a limited form of type inference. Our accompanying Cedille formalization does not omit any implicits.
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Generic Zero-Cost Reuse for Dependent Types 1:7

Linear Time Enriching Program Reuse. Enriching reuse of list append to define vector append
is the difficult direction, which requires proving a lemma stating that once a vector has been
converted to a list (via v2l, or forgetful data reuse), the length of the output list is equal to (or,
preserves) the length index of the input vector:

v2lPresLen ◭ ∀ A : ⋆. ∀ n : Nat. Π xs : Vec A n. n ≃ len (v2l xs)

= elimVec β (λ x,ih. ρ ih - β).

Recall (from Section 2.1) that β is the reflexivity constructor of an equality of type t ≃ t for any
term t, and that ρ is a rewrite primitive that exchanges occurrences of twith occurrences of t' in
the goal, when given evidence that t ≃ t'. The proof of v2lPresLen is an easy induction, which
rewrites by the inductive hypothesis (ih) in the cons case of the input vector.
It is not possible to reuse function of type AppL to define a function of type AppV in general,

because the result of the second function has specific index requirements (namely, that the output
vector length is the sum of the input vector lengths). Enriching function reuse must be modulo
an additional premise, which establishes a relationship between the input and output datatype in-
dices.3 The premise necessary to define AppV in terms of AppL requires list length (len) to distribute
through list append (appL):

LenDistAppL ◭ AppL → ⋆ = λ appL. ∀ A : ⋆. Π xs,ys : List A.

add (len xs) (len ys) ≃ len (appL xs ys).

appL2appV ◭ Π appL : AppL. LenDistAppL appL → AppV

= λ appL,q,xs,ys. // Vec A (add n m)

ρ v2lPresLen xs - // Vec A (add (len (v2l xs)) m)

ρ v2lPresLen ys - // Vec A (add (len (v2l xs)) (len (v2l ys)))

ρ q (v2l xs) (v2l ys) - // Vec A (len (appL (v2l xs) (v2l ys)))

l2v (appL (v2l xs) (v2l ys)).

After binding the arguments to appL2appV, the initial goal type, and the resulting goal type after
each rewrite (using ρ), appears as a comment (i.e. to the right of the syntactic comment delimiter
// on each line).

Initially, the length of the goal vector is the sum of the lengths of both input vectors xs and
ys. First, we use the previously proven lemma v2lPresLen to state our goal in terms of the lists
resulting from converting input vectors xs and ys (via v2l). After reusing appL applied to both
converted list, we would like to convert the result to a vector (via l2v) and return it. However, the
dependent data reuse function l2v returns a vector indexed by the len of its input list, but the
current goal is stated in terms of a sum (i.e. add rather than len). Therefore, we must first rewrite
the goal using our premise that length distributes through append, so that we may finally return
the result of applying l2v.

3.2 Manual Solution: Zero-Cost Reuse

Nowwe derive zero-cost (constant time) data and program conversions from the linear time equiv-
alents of Section 3.1. Linear time reuse (e.g. in Section 3.1) is already possible in conventional
Church-style type theories, but zero-cost reuse is additionally possible in Curry-style type the-
ories. This is semantically motivated because a Curry-style term can inhabit multiple types, so
conversion is semantically unnecessary (as explained in Section 2.2). The zero-cost (data and pro-
gram) conversions in this section are all defined in 2 parts:

3 Enriching data reuse of a list (List) as a vector (Vec) does not require a premise, but in general enriching data reuse is
also modulo a premise. For example, a list can only be enriched to an ordered list (OList) modulo a premise that the list is
sorted (as discussed in Section 7).

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: March 2018.



1:8 Larry Diehl, Denis Firsov, and Aaron Stump

(1) An extensional identity proof about the corresponding linear-time conversion.
(2) The actual zero-cost conversion, defined using φ from Figure 1, the linear-time conversion,

and the extensional identity proof.

Zero-Cost Forgetful Data Reuse. First, we prove that the v2l conversion is extensionally the iden-
tity function:

v2lId ◭ ∀ A : ⋆. ∀ n : Nat. Π xs : Vec A n. v2l xs ≃ xs

= elimVec β (λ x,ih. ρ ih - β).

Next, we use the φ primitive (of Figure 1) to return the vector input xs at type List A, by appealing
to the proof (v2lId) that v2l xs is equal to xs.

v2l! ◭ ∀ A : ⋆. ∀ n : Nat. Vec A n → List A

= λ xs. φ (v2lId xs) - (v2l xs) {xs}.

The φ expression erases to the termwithin the braces ({xs}) by the erasure rules of Figure 2, hence
the erasure |v2l!| is the identity function. Thus, v2l! converts a vector to a list in constant time,
as applying v2l! is definitionally equal to applying the identity function in CDLE:

|v2l!| = λ xs. xs

By convention, we suffix a conversion function with a bang (!) to denote its zero-cost equivalent.

Zero-Cost Enriching Data Reuse. The enriching direction of zero-cost data reuse follows the same
pattern as the forgetful direction, by first proving an extensional identity (l2vId), and then using
it to define a zero-cost version (l2v!) via φ:

l2vId ◭ ∀ A : ⋆. Π xs : List A. l2v xs ≃ xs

= elimVec β (λ x,ih. ρ ih - β).

l2v! ◭ ∀ A : ⋆. Π xs : List A. Vec A (len xs)

= λ xs. φ (l2vId xs) - (l2v xs) {xs}.

And similarly, l2v! converts any list (xs) to a vector at zero-cost:

|l2v!| = (λ xs. xs)

Zero-Cost Forgetful Program Reuse. For zero-cost forgetful program reuse of vector append, we
prove the following extensional identity: Applying the conversion appV2appL to any implementa-
tion of vector append (f), and both list arguments, is equal to applying vector append (f) to both
list argument that have been zero-cost converted to vectors (via l2v!).

appV2appLId ◭ Π f : AppV. ∀ A : ⋆. Π xs,ys : List A.

appV2appL f xs ys ≃ f (l2v! xs) (l2v! ys)

= λ f,xs,ys. // v2l (f (l2v xs) (l2v ys)) ≃ f xs ys

ρ (l2vId xs) - // v2l (f xs (l2v ys))

ρ (l2vId ys) - // v2l (f xs ys)

ρ (v2lId (f xs ys)) - // f xs ys ≃ f xs ys

β

The right-side of the equality in the goal begins with f xs ys, because the zero-cost conversions
l2v! xs and l2v! ys definitionally reduce to xs and ys, respectively. We rewrite twice (for
xs and ys) by the extensional identity lemma for l2v (using l2vId). Then, we rewrite once (for
f xs ys) by the extensional identity lemma for v2l (using v2lId), after which our goal is solvable
by reflexivity (β).
We define the zero-cost conversion appV2appL! using φ and the identity lemma appV2appLId

applied to the vector append argument (f) and both list arguments (xs and ys):

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: March 2018.



Generic Zero-Cost Reuse for Dependent Types 1:9

appV2appL! ◭ AppV → AppL

= λ f,xs,ys. φ (appV2appLId f xs ys) -

(appV2appL f xs ys) {f (l2v! xs) (l2v! ys)}.

The erased zero-cost conversion appV2appL! also definitionally reduces to the identity function:

|appV2appL!| = λ f. λ xs,ys. |f (l2v! xs) (l2v! ys)|

= λ f. λ xs,ys. f xs ys

= λ f. f

The l2v! zero-cost conversions reduce to applications of the identity function. Then, the body
of the λ f abstraction η-contracts to f, such that the entire expression reduces to the identity
function.

Zero-Cost Enriching Program Reuse. The zero-cost enriching program reuse of list append re-
quires the following extensional identity: Applying the conversion appL2appV to any implementa-
tion of list append (f), a proof of the length distributivity premise (p), and both vector arguments,
is equal to applying list append (f) to both vector argument that have been zero-cost converted to
lists (via v2l!).

appL2appVId ◭ Π f : AppV. Π q : LenDistAppL f.

∀ A : ⋆. ∀ n,m : Nat. Π xs : Vec A n. Π ys : Vec A m.

appL2appV f q xs ys ≃ f (v2l! xs) (v2l! ys)

= λ f,q,xs,ys. // l2v (f (v2l xs) (v2l ys)) ≃ f xs ys

ρ (v2lId xs) - // l2v (f xs (v2l ys)) ≃ f xs ys

ρ (v2lId ys) - // l2v (f xs ys) ≃ f xs ys

ρ (l2vId (f xs ys)) - // f xs ys ≃ f xs ys

β

Once again, the zero-cost conversion (appL2appV!) is defined in terms of the linear time conver-
sion (appL2appV), φ, and the extensional identity (appL2appVId):

appL2appV! ◭ Π f : AppL. LenDistAppL f ⇒ AppV

= λ f. Λ q. λ xs,ys.

φ (appL2appVId f q xs ys) -

(appL2appV f q xs ys) {f (v2l! xs) (v2l! ys)}.

The implication (⇒) to the right of the premise (LenDistAppL appL) of appL2appV is syntax
for a non-dependent implicit (or, erased) product (i.e. a ∀ with no dependency on the quantified
variable). The fact that the zero-cost conversion appL2appV! uses an erased premise (compared to
the non-erased premise in the linear time conversion appL2appV) is crucial, allowing appL2appV!
to also erase to the identity function:

|appL2appV!| = (λ f. λ xs,ys. |f (v2l! xs) (v2l! ys)|)

= λ f. λ xs,ys. f xs ys

= λ f. f

The implicit abstraction Λ q is discarded by erasure, allowing the erasure |appL2appV!| to η-
contract to the identity function (similar to how |appV2appL!| reduces).

4 GENERIC PROGRAM & PROOF REUSE

Section 3.2 gives a zero-cost solution to the problem of linear time data and program reuse prob-
lem presented in Section 3.1. However, the reused definitions in Section 3.2 are manually derived.
Beginning with this section, and for the remainder of this paper, we solve the problem of zero-cost
reuse generically.
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In Section 4.1 we review the type of dependent identity functions (IdDep), which captures a
pattern appearing in the manual zero-cost solution to reuse (Section 3.2). The IdDep type is the
dependent generalization of the non-dependent Id type introduced by Firsov et al. [2018]. Section
4.2 generically solves the problem of forgetful program and proof reuse, which corresponds to
defining IdDep-closed combinators for the type of non-dependent functions (for program reuse),
and the type of dependent functions (for proof reuse). Section 4.3 defines 2 additional combinators
to generically solve the problem of enriching program and proof reuse.

4.1 Type of Dependent Identity Functions

As explained in Section 2.2, an (erased) term may have several possible types in a Curry-style
theory. Of particular importance to our work is that the identity function, represented by the
untyped lambda term (λ x . x ), can have many possible types. We have seen several examples of
this in Section 3.1, where the zero-cost conversions v2l!, l2v!, appV2appL!, and appL2appV! all
erase to the identity function. Thus, it makes sense to define a type of dependent identity functions

for any domain A : ⋆ and codomain B : A → ⋆. We informally denote the type of dependent
identity functions by (a : A) ≤ B a. Inhabitance of the type (a : A) ≤ B a represents the existence
of a term F , such that |F | = (λ x . x ), and the existence of a typing derivation for the judgement
Γ ⊢ F : Πa : A. B a.
Section 3.1 manually defines zero-cost conversions using a proof that the linear time conversion

is (after erasure) an identity operation. Hence, the zero-cost conversion depends on 2 parts:

(1) The linear time conversion.
(2) A proof that the linear time conversion is extensionally an identity function.

Now we formally derive the type of dependent identity functions (a : A) ≤ B a in Cedille as
IdDep A B, which abstractly represents both zero-cost conversion parts as a dependent function
(Π) returning a dependent pair (Sigma):4

IdDep ◭ Π A : ⋆. Π B : A → ⋆. ⋆

= λ A,B. Π a : A. Sigma (B a) (λ b. b ≃ a).

The type IdDep A B is defined when A is a type and B is a family of types indexed by A. Inhabitants
of IdDep A B take elements of (a : A) to elements of (b : B a), and a proof that b is propositionally
equal to a (using the heterogeneous equality type ≃ from Figure 1). We can represent the 2 parts
more explicitly by deriving an introduction rule that takes the (conversion) function f and its
extensional identity proof as arguments:

intrIdDep ◭ ∀ A : ⋆. ∀ B : A → ⋆.

Π f : (Π a : A. B a). (Π a : A. f a ≃ a) → IdDep A B

= λ f,q,a. pair (f a) (q a).

In practice, it is more convenient to introduce elements of IdDep directly in terms of the underlying
ΠΣ representation, rather than using intrIdDep.
Now we define the crucial elimination rule elimIdDep, which exposes the witness F at type

Π a : A. B a, whose erasure is the identity function:

elimIdDep ◭ ∀ A : ⋆. ∀ B : A → ⋆. IdDep A B → Π a : A. B a

= λ c,a. φ (proj2 (c a)) - (proj1 (c a)) {a}.

The elimination rule elimIdDep uses φ to return the input a, originally at type A, at type (B a)
using the extensional identity proof (proj2 (c a)), where c : IdDep A B. From the erasure rules

4 The dependent pair type Sigma can be derived in Cedille just like the inductive List and Vec types, as explained in
Section 2.3.
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of CDLE (in Figure 2), it follows that for any dependent identity function c of type IdDep A B,
|elimIdDep c| = |F | = (λ a. a).
Finally, notice how the definition of elimIdDep abstracts out a part (i.e. the use of φ and the

extensional identity proof) of the zero-cost conversion definitions (v2l!, l2v!, appV2appL!, and
appL2appV!) from Section 3.2. In subsequent sections we define IdDep-closed combinators, taking
IdDep inputs and producing an IdDep output. Because the combinators always return an IdDep,
well typed combinator definitions guarantee the existence of zero-cost conversions (whosewitness
we can always produce by applying elimIdDep).

We will also use non-dependent identity function counterparts Id, intrId, and elimId (of
IdDep, intrIdDep, and elimIdDep, respectively), where A : ⋆, but also B : ⋆ (rather than
B : A → ⋆). These are trivially derivable from the dependent versions, so we omit their defini-
tions. Note that our derived non-dependent Id type is isomorphic to the Id typed introduced by
Firsov et al. [2018].
Recall our informal notation of type IdDep A B as (a : A) ≤ B a. The informal notation

is inspired by Miquel [2001], who uses a non-dependent version of this notation (A ≤ B) for a
subtyping judgement derivable in a Curry-style theory with implicit products. Indeed, our Id A B

is inhabited when A is a subtype of B, and correspondingly all of our combinators can also be
understood as internalized subtyping inference rules (we discuss the relationship with subtyping
further in our related work, Section 6.1). When there is an identity function from A to B (i.e. Id A B),
and both A and B be are functions, it becomes confusing to talk about domains and codomains
(e.g. “domain” could refer to the identity function domain A, or the domain of the non-identity
function A, or the domain of the non-identity function B). To avoid confusion, and inspired by the
relationship with subtyping, we refer to the domain of an identity function as the subtype and the
codomain as the supertype (thus, we can non-ambiguously refer to the domain and codomain of
the subtype, and the same for the supertype).

4.2 Forgetful Reuse

Now we define generic solutions to the problem of forgetful program and proof reuse as IdDep-
closed combinators for the non-dependent and dependent function types, respectively. As a demon-
stration of using our generic solution, we redo the appV reuse example from Section 3.2 in terms
of our combinators (we also provide an additional example of reusing the proof of vector append
associativity).
The examples in this section assume the existence of identity functions (i.e. values of type IdDep)

to convert between lists and vectors:

v2l ◭ ∀ A : ⋆. ∀ n : Nat. Id (Vec A n) (List A)

l2v ◭ ∀ A : ⋆. IdDep (List A) (λ xs. Vec A (len xs))

We delay the task of defining v2l and l2v to Section 5, where we define both identity functions
as examples of using our generic data reuse combinators.

4.2.1 Program Reuse Combinator. All the names of our combinators are short descriptions of
their return types. For example, below, allArr2arrhas return type Id (∀ i : I. X i → X' i) (Y → Y').
Mnemonically, allArr2arr returns an identity function from allArr (∀ →) to (2) arr (→). We
define allArr2arr as:

allArr2arr ◭ ∀ I : ⋆. ∀ X : I → ⋆. ∀ X' : I → ⋆. ∀ Y : ⋆. ∀ Y' : ⋆.

Π r : Y → I.

Π c1 : IdDep Y (λ y. X (r y)).

Π c2 : ∀ i : I. Id (X' i) Y'.

Id (∀ i : I. X i → X' i) (Y → Y')
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= λ r,c1,c2,f. pair (λ y. elimId

(c2 -(r y))

(f -(r y) (elimIdDep c1 y))

) β.

The combinator allArr2arr is a generic solution to forgetful non-dependent function reuse (or,
forgetful program reuse). For example, it can solve a problem like the one below, where black
boxes (�) represent arbitrary (not necessarily the same) types:

Id (∀ n : Nat. Vec A n → �) (List A → �)

The domain of the subtype is an indexed type and the domain of the supertype is a non-indexed
type. For example, if we were to solve the problem above with allArr2arr, we would set index
type I to Nat, the type family X to Vec A, and the non-indexed type Y to List A. The codomains of
the subtype and supertype (i.e. the black boxes, or X' and Y', respectively) cannot depend on the
explicit domain arguments (i.e. X and Y), which is why we say that allArr2arr solves the problem
of non-dependent function reuse. However, the codomain of the subtype (X') can depend on the
implicit index argument (of type I). This covers all the implicit arguments of allArr2arr, and
now we explain the explicit arguments:

• The argument r is the refinement function, computing an index of type I from the non-
indexed type Y, e.g. len : List A → Nat.

• The argument c1 is the contravariant dependent identity function between domains. It enriches
the non-indexed supertype domain y : Y, e.g. xs : List A. to the indexed subtype domain
X (r y), e.g. Vec A (len xs). The index is the refinement of the non-indexed input y, e.g.
(len xs)).

• The argument c2 is the covariant non-dependent identity function between codomains. It for-
gets the indexed subtype codomain X' i as the non-indexed supertype codomain Y'.

Notice that c2 is parameterized by the index type i : I, e.g. Nat, rather than the non-indexed
type y : Y, e.g. List A. In the implementation of allArr2arr, we generate the type index I by
automatically applying the refinement function (r) to a value of the non-indexed type (y : Y),
making our combinator easier to use.

4.2.2 Program Reuse Example. Now we demonstrate zero-cost forgetful program reuse of vec-
tor append to define list append, in terms of allArr2arr. We produce an identity function (Id)
from AppV to AppL, called appV2appL below:

appV2appL ◭ Id AppV AppL

= // Id (∀ A : ⋆. �) (∀ A : ⋆. �)

copyType (Λ A.

// Id (∀ n : Nat. Vec A n → �) (List A → �)

allArr2arr (len -A) (l2v -A) (Λ n.

// Id (∀ m : Nat. Vec A n → �) (List A → �)

allArr2arr (len -A) (l2v -A) (Λ m.

// Id (Vec A (add n m)) (List A)

v2l -A -(add n m)

))).

Our example includes goal types in comments, where each goal above illustrates the part of the
problem solved by a combinator application below. The black boxes (�) hide the parts of the goals
that are not relevant to what is being solved by the combinators below. We begin by handling
the impredicative quantification ∀ A : ⋆., which is present in both AppV and AppL, using the
easy to define auxiliary definition copyType from Figure 3. Next, we apply allArr2arr twice to
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handle contravariantly enriching both arguments from lists to vectors. In these applications, r is
the length function (len), and c1 is the enriching data reuse function l2v. Additionally, c2 becomes
the remainder of the appV2appL definition, giving us access to index arguments n and m. Finally,
we covariantly forget the return type from a list to a vector using the forgetful data reuse function
v2l.

Note that appV2appL, above, simultaneously captures the linear time conversion function and
the extensional identity proof from Section 3.2 (i.e. the former appV2appL and appV2appLId). We
can recover the actual zero-cost conversion by applying elimId to our identity function:

appV2appL! ◭ AppV → AppL = elimId appV2appL.

Previously, we used a bang (!) suffix as a syntactic convention for defining a zero-cost conversion.
Now, we can also think of the elimination rule of identity functions (elimId) as a bang operator,
because applying it to any Id results in a zero-cost conversion. From now on we omit defining the
actual zero-cost conversions (like appV2appL!), because they can always be recovered by applying
the elimination rule for the type of identity functions.

4.2.3 Proof Reuse Combinator. The combinator allPi2pi is a generic solution to forgetful de-
pendent function reuse (or, forgetful proof reuse). For example, it can solve a problem like the one
below:

Id (∀ n : Nat. Π xs : Vec A n. �) (Π xs : List A. �)

The subtype codomain may depend on subtype (vector) domain, and the supertype codomain may
depend on the supertype (list) domain. The definition of allPi2pi follows:

allPi2pi ◭ ∀ I : ⋆. ∀ X : I → ⋆. ∀ X' : Π i : I. X i → ⋆.

∀ Y : ⋆. ∀ Y' : Y → ⋆. Π r : Y → I.

Π c1 : IdDep Y (λ y. X (r y)).

Π c2 : ∀ i : I. Id (X i) Y.

Π c3 : ∀ i : I. Π x : X i. Id (X' i x) (Y' (elimId (c2 -i) x))).

Id (∀ i : I. Π x : X i. X' i x) (Π y : Y. Y' y)

= λ r,c1,c2,c3,f. pair (λ y. elimId

(c3 -(r y) (elimIdDep c1 y))

(f -(r y) (elimIdDep c1 y))

) β.

Compared to allArr2arr, the I, X, Y, r, and c1 arguments are the same. However, now the subtype
codomain X'may depend on its indexed domain X i, and the supertype codomain Y'may depend
on its non-indexed domain Y. Now we explain the remaining explicit arguments to allPi2pi:

• The argument c2 is the covariant dependent identity function between domains. It forgets the
indexed subtype domain X i, e.g. Vec A n, as the non-indexed subtype domain Y, e.g. List A.
We use this additional covariant function between domains (compared to the contravariant
version c1) in the type of the c3 argument.

• The argument c3 is the covariant non-dependent identity function between codomains. It
forgets the indexed subtype codomain X' i x as the non-indexed supertype codomain
Y' (elimId (c2 -i) x). The Y index to Y' is zero-cost converted from x using the extra
covariant argument c2.

The need for the conversion above, and hence the additional covariant argument c2, stems from
the convenience of argument c3 being parameterized by index I and indexed type X i, rather than
non-indexed type Y. In other words, it is needed for argument c3 to assume that its parameter has
already been zero-cost converted via elimIdDep c1 y (as performed in the implementation of
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allPi2pi).Recall that allArr2arralready automated the refinement r y, and now allPi2pi addi-
tionally automates the zero-cost conversion elimIdDep c1 y, because the codomains of allPi2pi
can depend on the domains.

4.2.4 Proof Reuse Example. As an example of zero-cost proof reuse, we demonstrate how to
prove associativity of list append from the associativity of vector append.5 First, we create type
synonyms for the theorem of list append associativity (AssocL) and vector append associativity
(AssocV), parameterized by a definition of list append (AppL) and vector append (AppV), respec-
tively:

AssocL ◭ AppL → ⋆ = λ appL.

∀ A : ⋆. Π xs,ys,zs : List A.

appL (appL xs ys) zs ≃ appL xs (appL ys zs)).

AssocV ◭ AppV → ⋆ = λ appV.

∀ A : ⋆. ∀ n : Nat. Π xs : Vec A n.

∀ m : Nat. Π ys : Vec A m. ∀ o : Nat. Π zs : Vec A o.

appV (appV xs ys) zs ≃ appV xs (appV ys zs)).

Next, we reuse any proof of AssocV to prove AssocL at zero-cost:

assocV2assocL ◭ ∀ appV : AppV.

Id (AssocV appV) (AssocL (elimId appV2appL appV))

// Id (∀ A : ⋆. �) (∀ A : ⋆. �)

= copyType (Λ A.

// Id (∀ n : Nat. Π xs : Vec A n. �) (Π xs : List A. �)

allPi2pi (len -A) (l2v -A) (v2l -A) (Λ n. λ xs.

// Id (∀ m : Nat. Π ys : Vec A m. �) (Π ys : List A. �)

allPi2pi (len -A) (l2v -A) (v2l -A) (Λ m. λ ys.

// Id (∀ o : Nat. Π zs : Vec A o. �) (Π zs : List A. �)

allPi2pi (len -A) (l2v -A) (v2l -A) (Λ o. λ zs.

// Id (appV (appV xs ys) zs ≃ appV xs (appV ys zs)))

// (appV (appV xs ys) zs ≃ appV xs (appV ys zs)))

id

)))).

Notice that the identity function assocV2assocL is parameterized by any implementation (appV)
of the type of vector append (AppV). We apply the type synonym for vector append associativ-
ity (AssocV) directly to vector append (appV), but the type synonym for list append associativity
(AssocL) expects an implementation of list append (i.e. a value of type AppL). Hence, we apply
AssocL to the result of zero-cost converting appV to a list append, via elimId appV2appL appV,
which uses our previously defined identity function appV2appL.

Once again, we begin solving assocV2assocL by copying the type parameter A via copyType.
Next, we apply allPi2pi to handle the 3 primary arguments to the theorem. Compared to allArr2arr,
allPi2pi receives the additional covariant argument c2, e.g. (λ n. v2l -A -n). Also, the final
c3 argument gets to abstract over the indexed type, in addition to the index, e.g. λ n,xs. The
final goal is solvable by the auxiliary identity combinator for identity functions (id from Figure 3).
Before erasure, the supertype of the final goal has instances of elimId appV2appL appV, instead

5 The concept of proof reuse being “zero-cost” may seem odd, as systems like Coq erase proofs during program extraction.
However, proofs in intentional type theory may sometimes have computational content we wish to preserve, and hence it
can be valuable to zero-cost reuse such proofs.
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of appV. Similarly, before erasure, the final goal has instances of elimId v2l xs, instead of xs
(and the same for ys and zs). However, because these are zero-cost conversions, after erasure (as
depicted in the comment above) the goal is simply solvable by id.

4.3 Enriching Reuse

Now we generically solve enriching program and proof reuse as IdDep-closed combinators for
the non-dependent and dependent function types, respectively. Each forgetful program and proof
reuse (Section 4.2) combinator returns a non-dependent identity function (Id). In contrast, each
enriching version returns a dependent identity function (IdDep), where the dependency is used
to define the premise necessary for enrichment. We demonstrate our enriching combinators by
redoing the appL enriching program reuse example from Section 3.2.

4.3.1 Program Reuse Combinator. The combinator arr2allArrP is a generic solution to enrich-
ing non-dependent function reuse (or, enriching program reuse). Recall (from Section 3.2) that (in
general) enriching program reuse must be performed modulo a premise required for the enrich-
ment to be possible. For example, arr2allArrP can solve a problem like the one below:

IdDep (List A → �) (λ f. (Π xs : List A. �) ⇒ ∀ n : Nat. Vec A n → �)

Program enrichment returns a dependent identity function (IdDep).An additional implicit (erased)
premise argument (to the left of ⇒) appears in the supertype, and the premise has a dependent
domain whose type is equal to the subtype’s domain (e.g. List A). The codomain of the premise
can depend on the subtype (e.g. f), in addition to the domain of the premise (xs). The definition
of arr2allArrP follows:

arr2allArrP ◭ ∀ Y : ⋆. ∀ Y' : ⋆. ∀ P : Y → Y' → ⋆.

∀ I : ⋆. ∀ X : I → ⋆. ∀ X' : I → ⋆. Π r : Y → I.

Π c1 : ∀ i : I. Id (X i) Y.

Π c1' : ∀ i : I. Π x : X i. i ≃ r (elimId (c1 i) x).

Π c2 : Π y : Y. IdDep Y' (λ y'. P y y' ⇒ X' (r y)).

IdDep (Y → Y') (λ f. (Π y : Y. P y (f y)) ⇒ ∀ i : I. X i → X' i)

= λ r,c1,c1',c2,f. pair (Λ p,i. λ x. elimIdDep

(ρ (c1' -i x) - (c2 (elimId (c1 -i) x)))

(f (elimId (c1 -i) x))

-(p (elimId (c1 -i) x))

) β.

Enriching arr2allArrP shares the following implicit arguments with forgetful allArr2arr (from
Section 4.2): Y, Y', I, X, and X', as well as the following explicit arguments: r and c1. However, the
premise P appears as an additional implicit argument, which may depend on both the domain (Y)
and codomain (Y') of the subtype. Now we explain the differing explicit arguments:

• The argument c1' is the index preservation property. It requires the index i of the super-
type domain (x : X i) to equal the refinement (using refinement function r) of the zero-
cost converting x (using the identity function c1), e.g. n ≃ len (elimId c1 xs), where
xs : Vec A n.

• The argument c2 is the covariant dependent identity function between codomains. It enriches
the non-indexed subtype codomain Y' as the indexed supertype codomain X' i. The enrich-
ment codomain also gets an additional implicit premise argument P, which may depend on
both the subtype domain and codomain.

Notice that c2 is parameterized by the non-indexed type y : Y, e.g. List A, rather than the
index i : I, e.g. Nat. This makes arr2allArrP easier to use, as the implementation automatically
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rewrites by c1' (the index preservation property)! We point out the consequence of this automatic
rewrite in the following example.

4.3.2 Program Reuse Example. Below, we redo the enriching reuse of list append example from
Section 3.2. While our forgetful function type combinators attack 2 pieces at a time (the domains
of the supertype and subtype), the enriching function type combinators attack 3 (the additional
piece being the premise, whose type is duplicated from the subtype domain).

appL2appV ◭ IdDep AppL (λ appL. LenDistAppL appL ⇒ AppV)

// IdDep (∀ A : ⋆. �) (λ x. (∀ A : ⋆. �) ⇒ ∀ A : ⋆. �)

= copyTypeP (Λ A.

// IdDep (List A → �) (λ f. (Π xs : List A. �) ⇒ ∀ n : Nat. Vec A n → �)

arr2allArrP (len -A) (v2l -A) (v2lPresLen -A) (λ xs.

// IdDep (List A → �) (λ g. (Π ys : List A. �) ⇒ ∀ m : Nat. Vec A m → �)

arr2allArrP (len -A) (v2l -A) (v2lPresLen -A) (λ ys.

// IdDep (List A) (λ zs. len zs ≃ add (len xs) (len ys)

// ⇒ Vec A (add (len xs) (len ys)))

subst (l2v -A)

))).

We begin with the auxiliary copyTypeP combinator (from Figure 3), which is a version of
copyTypeP that also handles the premise (i.e. the 3rd piece). Next, we use our enriching combi-
nator arr2allArrP to handle both inductive arguments of append. This leaves leaves us with the
goal in the final comment, above. Finally, we discharge the premise by rewriting, via the auxiliary
combinator subst (from Figure 3). As an argument, subst takes the identity function to apply
after rewriting, which is the enriching data reuse l2v in this example.
The final goal type includes the sum of the lengths of both input vectors, rather than the sum

of two vector indices. This convenience is a result of the automatic rewriting performed in the
implementation of our arr2allArrP combinator! In contrast, the manual definition of appL2appV
in Section 3.2 needed to manually rewrite by v2lPresLen for both append inputs.

4.3.3 Proof Reuse Combinator. We include the definition of the enriching proof reuse combina-
tor (pi2allPiP), for reference, below. We do not describe it in detail, as the extensions to handle
the dependent arguments in codomains X' and Y', as well as the additional c1' through c3 argu-
ments, follow the same pattern as allPi2pi from Section 4.2.

pi2allPiP ◭ ∀ Y : ⋆. ∀ Y' : Y → ⋆. ∀ P : Π y : Y. Y' y → ⋆.

∀ I : ⋆. ∀ X : I → ⋆. ∀ X' : Π i : I. X i → ⋆. Π r : Y → I.

Π c1 : ∀ i : I. Id (X i) Y.

Π c1' : ∀ i : I. Π x : X i. i ≃ r x.

Π c2 : IdDep Y (λ y. X (r y)).

Π c3 : Π y : Y. IdDep (Y' y) (λ y'. P y y' ⇒ X' (r y) (elimIdDep c2 y)).

IdDep (Π y : Y. Y' y)

(λ f. (Π y : Y. P y (f y)) ⇒ ∀ i : I. Π x : X i. X' i x)

= λ r,c1,c1',c2,c3,f. pair (Λ p,i. λ x. elimIdDep

(ρ (c1' -i x) - (c3 (elimId (c1 -i) x)))

(f (elimId (c1 -i) x))

-(p (elimId (c1 -i) x))

) β.
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id ◭ ∀ A : ⋆. Id A A = λ a. pair a β.

copyType ◭ ∀ F : ⋆ → ⋆. ∀ G : ⋆ → ⋆.

(∀ A : ⋆. Id (F A) (G A)) →

Id (∀ A : ⋆. F A) (∀ A : ⋆. G A)

= λ c,xs. pair (Λ A. elimId (c -A) (xs -A)) β.

copyTypeP ◭ ∀ F : ⋆ → ⋆. ∀ P : Π A : ⋆. F A → ⋆. ∀ G : ⋆ → ⋆.

(∀ A : ⋆. IdDep (F A) (λ xs. P A xs ⇒ G A)) →

IdDep (∀ A : ⋆. F A) (λ xs. (∀ A : ⋆. P A (xs -A)) ⇒ ∀ A : ⋆. G A)

= λ c,xs. pair (Λ p,A. elimIdDep (c -A) (xs -A) -(p -A)) β.

subst ◭ ∀ Y : ⋆. ∀ I : ⋆. ∀ X : I → ⋆.

∀ r : Y → I. ∀ i : I.

IdDep Y (λ y. X (r y)) →

IdDep Y (λ y. r y ≃ i ⇒ X i)

= λ c,y. pair (Λ q. ρ ς q - elimIdDep c y) β.

Fig. 3. Auxiliary identity combinator, combinators to copy a shared impredicative quantification, and com-

binator to rewrite by an equality constraint.

We also omit the example of enriching proof reuse of list append associativity. It is very similar
to the forgetful proof reuse example of vector append associativity, because v2lPresLen becomes
an additional argument, making the premise the trivial Unit type.

5 GENERIC DATA REUSE

In this section we give the generic zero-cost solution to the problem of linear time data reuse
presented in Section 3.1, and manually solved in Section 3.2. In Section 5.1, we review a type of
least fixed points, used to generically encode datatypes. Section 5.3 covers generic forgetful data
reuse, and Section 5.3 covers generic enriching data reuse.

5.1 Type of Least Fixed Points

Section 2.3 reviews the work by Stump [2018] to manually derive induction principles for Church-
encoded datatypes via intersecting (using ι) with an inductivity predicate. Firsov and Stump [2018]
solved the same problem generically, by deriving a least fixed point type for any functor, composed
of 4 pieces:

(1) An object mapping (F ◭ ⋆ → ⋆).
(2) An arrow mapping (fmap ◭ ∀ X,Y : ⋆. (X → Y) → F X → F Y).
(3) The identity functor law.
(4) The composition functor law.

Firsov et al. [2018] improved the solution by deriving a least fixed point type that only requires
2 pieces:

(1) A type scheme (F ◭ ⋆ → ⋆).
(2) An identity mapping (imap ◭ ∀ X,Y : ⋆. Id X Y → Id (F X) (F Y)).

In type theory, the type scheme F is the same as the object mapping of the functor. However,
the identity mapping (imap) is a restriction of the arrow map (fmap), which only requires the
user to lift an identity function (Id from Section 4.1) between 2 types (X and Y) to an identity
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nilLF ◭ ∀ A,X : ⋆. ListF A X

consLF ◭ ∀ A,X : ⋆. A → X → ListF A X

elimListF ◭ ∀ A,X : ⋆. ∀ P : ListF A X → ⋆.

P nilLF →

(Π x : A. Π xs : X. P (consLF x xs)) →

Π xs : ListF A X. P xs

nilVF ◭ ∀ A : ⋆. ∀ X : Nat → ⋆. VecF A X zero

consVF ◭ ∀ A : ⋆. ∀ X : Nat → ⋆. ∀ n : Nat. A → X n → VecF A X (suc n)

elimVecF ◭ ∀ A : ⋆. ∀ X : Nat → ⋆. ∀ P : Π n : Nat. VecF A X n → ⋆.

P zero nilVF →

(∀ n : Nat. Π a : A. Π x : X n. P (suc n) (consVF x xs)) →

∀ n : Nat. Π xs : VecF A X n. P n xs

Fig. 4. Constructors and eliminators for list and vector schemes (ListF and VecF)

function between the scheme F applied to the same 2 types. Deriving a concrete datatype in terms
of the generic encoding of Firsov et al. [2018] takes less effort (compared to using the encoding of
Firsov and Stump [2018]), because imap is less onerous to define, and no laws need to be proved.
Furthermore, the class of datatypes representable by the Firsov et al. [2018] encoding expands

to include infinitary types and positive (not merely strictly-positive) types. Firsov et al. [2018] is
an “efficient” lambda-encoding (using Mendler-style F-algebras), in the sense that inductive types
support a constant time “predecessor” operation (e.g. pred for Nat, and tail for List), using only
linear space in the encoding. Expert readers may have noticed that the tail xs : List (where List
is Church-encoded) in the cons case of elimList from Section 2.3 is erased (i.e. quantified using
∀ rather than Π), hence computations cannot be defined with (unerased) access to the tail of the
list. Deriving induction for a concrete List type encoded via the work of Firsov et al. [2018], and
using Mendler-style F-algebras, solves this problem (allowing unerased quantification over the tail
via Π, accessible in constant time).

In this work we generically solve zero-cost data reuse by defining combinators for the fixpoint
type of Firsov et al. [2018], whose type is:

IdMapping ◭ (⋆ → ⋆) → ⋆ = λ F. ∀ X,Y : ⋆. Id X Y → Id (F X) (F Y).

Fix ◭ Π F : ⋆ → ⋆. IdMapping F → ⋆

This work derives the non-indexed fixpoint (Fix) in terms of an indexed fixpoint (IFix), over
indexed schemes and index-preserving identity mappings (IIdMapping).The non-indexed fixpoint
is the trivial case where the index is the Unit type (having the single inhabitant unit). Below,
we only give the type of the indexed fixpoint IFix, and its implementation is a straightforward
generalization of the non-indexed version by Firsov et al. [2018]:

IIdMapping ◭ Π I : ⋆. ((I → ⋆) → (I → ⋆)) → ⋆ = λ I,F.

∀ X,Y : I → ⋆. (∀ i : I. Id (X i) (Y i)) →

∀ i : I. Id (F X i) (F Y i).

IFix ◭ Π I : ⋆. Π F : (I → ⋆) → (I → ⋆).

Π imap : IIdMapping I F. I → ⋆
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5.2 Data Schemes and Identity Mappings

The examples in the remainder of this sectionwill demonstrate how data reuse combinators reduce
the problem of defining an identity function between fixpoints, to defining an identity function be-
tween schemes. This is amuch simpler problem, because schemes are essentially sums-of-products,
which do not have inductive arguments.

Our later examples will refer to the scheme for lists (ListF), and the scheme for vectors (VecF),
whose Church-encodings appear below:

ListF ◭ ⋆ → ⋆ → ⋆ = λ A,X.

∀ C : ⋆. C → (A → X → C) → C.

VecF ◭ ⋆ → (Nat → ⋆) → Nat → ⋆ = λ A,X,n.

∀ C : ⋆.

(n ≃ zero ⇒ C) →

(∀ m : Nat. n ≃ suc m ⇒ A → X m → C)

→ C.

Importantly, the impredicatively quantified return type (∀ C : ⋆) does not appear in the recursive
tail position of the cons case of either scheme. Intead, the non-indexed X appears there for ListF,
while the indexed X m appears there for VecF.

Another important detail is that the natural number n in VecF is a parameter, rather than an
index, because C is merely a type (⋆), rather than a family (Nat → ⋆).
Finally, notice that the nil and cons cases of VecF have additional implicit index equality con-

straint arguments. Because both the natural number (in the cons case of VecF) and the equality
constraints are implicit arguments, the constructors of ListF and VecF erase to the same under-
lying untyped terms. For reference, the type signatures for the ListF and VecF constructors and
eliminators appear in Figure 4. We assume an intersection-type encoding of ListF and VecF, using
the same technique as in Section 2.3, to make it possible to define the eliminators.6

Next, we define the identity mappings imapL (for ListF) and imapV (for VecF), whose definitions
only differ by which eliminator is used:

imapL ◭ ∀ A : ⋆. IdMapping (ListF A) = λ f. elimListF

(pair nilLF β)
(λ x,xs. pair (consLF x (elimId f xs) β)).

imapV ◭ ∀ A : ⋆. IIdMapping Nat (VecF A) = λ f. elimVecF

(pair nilVF β)
(λ x,xs. pair (consVF x (elimId f xs) β)).

The returned value is Sigma-type the codomain of Id fromSection 4.1, where the first component is
the supertype and second component is the equality witness. For both imapL and imapV, we mostly
rebuild the term with constructors. The interesting subterm is the tail argument (elimId f xs) of
the cons rebuilding (for both consLF and consVF). In the nil cases, the second component of the
pair (constructing Sigma) is obviously reflexivity (β) when rebuilding nilLFwith itself and nilVF
with itself. However, in the cons cases, the second component is also β. This is because the identity
function being mapped (f) is erased when zero-cost converting (i.e. |elimId f xs| = xs). Hence,
β is evidence of the cons rebuilding cases because |consLF x (elimId f xs)| = |consLF| x xs,
and |consVF x (elimId f xs)| = |consVF| x xs.

6 There is no predecessor problem to worry about when deriving schemes with induction principles (or, eliminators),
because schemes contain no inductive occurrences.
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5.3 Forgetful Reuse

5.3.1 Data Reuse Combinator. The combinator ifix2fix is a generic solution to forgetful fix-
point reuse (or, forgetful data reuse). For example, it can solve a problem like the one below:

Id (IFix Nat (VecF A) (imapV A) n) (Fix (ListF A) (imapL A))

Above, the subtype is an indexed fixpoint and the supertype is a non-indexed fixpoint (hence, this
the forgetful direction of data reuse). The type of ifix2fix follows:

ifix2fix ◭ ∀ I : ⋆. ∀ F : (I → ⋆) → (I → ⋆). ∀ G : ⋆ → ⋆.

Π imapF : IIdMapping I F.

Π imapG : IdMapping G.

Π c : ∀ X : I → ⋆. ∀ Y : ⋆.

(∀ i : I. Id (X i) Y) → ∀ i : I. Id (F X i) (G Y).

∀ i : I. Id (IFix I F imapF i) (Fix G imapG)

If we were to solve the problem above with ifix2fix, we would set index type I to Nat, the
indexed scheme X to VecF A, and the non-indexed scheme Y to ListF A. This covers all the
implicit arguments of ifix2fix, and now we explain the explicit arguments:

• The argument imapF is the index-preserving identity mapping for the indexed scheme F, e.g.
imapV A for VecF A.

• The argument imapG is the identity mapping for the non-indexed scheme G, e.g. imapL A for
ListF A.

• The argument c is the identity algebra. It forgets the indexed subtype scheme (F X i) as the
non-indexed supertype scheme (G Y), while assuming how to forget the abstract indexed
subtype (X) as the abstract non-indexed supertype (Y).

The type of ifix2fix is reminiscent of standard patterns appearing in generic programming
using fixpoint encodings of datatypes. If you define a non-recursive identity function between
schemes, where the “recursive” positions X i are abstract, and you have access to an abstract
forgetful identity function (from X i to Y), you are rewarded with a recursive identity function
between fixpoints of those schemes.
We omit the implementation of ifix2fix combinator since the exact details depend on a par-

ticular encoding of Mendler-style fixed points. Intuitively, the identity function from IFix to Fix

is developed by using the generic dependent elimination of IFix to apply the c argument on each
inductive level of the value. The premise of c, namely (∀ i : I. Id (X i) Y), is the inductive
hypothesis of the dependent elimination.

5.3.2 Data Reuse Example. Now we demonstrate zero-cost forgetful reuse of vector data as list
data. First, we establish type synonyms for the list and vector types, derived generically as the
fixpoints of their schemes and identity mappings:

List ◭ ⋆ → ⋆ = λ A. Fix (ListF A) (imapL A).

Vec ◭ ⋆ → Nat → ⋆ = λ A,n. IFix Nat (VecF A) (imapV A) n.

Next, we define an identity function (v2l) from Vec A n to List A by applying ifix2fix to the
identity mappings and an identity algebra. For legibility, we provide the identity algebra (vf2lf)
as a standalone definition:

vf2lf ◭ ∀ A : ⋆. ∀ X : Nat → ⋆. ∀ Y : ⋆.

Π c : ∀ n : Nat. Id (X n) Y.

∀ n : Nat. Id (VecF A X n) (ListF A Y)

= λ c. elimVecF

(pair nilLF β)
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(λ x,xs. pair (consLF x (elimId c xs) β)).

v2l ◭ ∀ A : ⋆. ∀ n : Nat. Id (Vec A n) (List A) =

ifix2fix imapV imapL vf2lf.

The identity algebra vf2lf is defined by constructing an identity function, and the construction is
very similar to howwe defined the identity mappings imapL and imapV in Section 5.2. This time, the
conversion changes the types (by going from indexed scheme VecF to scheme ListF), but β still suf-
fices as equality in both cases because the constructors of both schemes erase to the same untyped
terms. More concretely, |nilVF| = |nilLF| and |consVF x xs| = |consLF x (elimId c xs)|.
In the cons case, xs has (abstract vector) type X n, but this is zero-cost converted via c to (abstract
list) type Y. Hence, because we know that |consVF| = |consLF|, it follows that:

|consVF x xs| = |consVF| x xs = |consLF| x xs = |consLF x (elimId c xs)|

5.4 Mendler-Style Algebras

In generic developments using fixpoint-encodings of datatypes, it is common to define non-dependent
functions as the fold of an algebra. Our generic enriching data reuse combinator (in Section 5.5)
requires an algebra argument (which is folded in the dependent type signature of the combinator).
However, because our fixpoint type is defined using a Mendler-style encoding [Firsov et al. 2018],
our enriching combinator must take a Mendler-style algebra. Below, we give the definition of a
Mendler-style algebra (AlgM), and we include the more familiar Church-style algebra (AlgC) for
reference:

AlgC ◭ (⋆ → ⋆) → ⋆ → ⋆ = λ F,X. F X → X.

AlgM ◭ (⋆ → ⋆) → ⋆ → ⋆ = λ F,X. ∀ R : ⋆. Π rec : R → X. F R → X.

Mendler algebras (AlgM) exploit parametricity to abstractly hide inductive data via impredicative
quantification (∀ R : ⋆). However, a recursion function (Π rec : R → X) is provided to explicitly
make recursive calls on the hidden data. 7

Below, we give an example of defining the list length function (len) as the fold of a Mendler-
style length algebra (lenAlgM). We also provide the type of the Mendler-style foldM function for
reference.

lenAlgM ◭ ∀ X : ⋆. AlgM (ListF X) Nat

= λ rec. elimListF zero (λ x,xs. suc (rec xs)).

len ◭ ∀ A : ⋆. List A → Nat = foldM lenAlgM.

foldM ◭ ∀ F : ⋆ → ⋆. ∀ imap : IdMapping F. ∀ X : ⋆.

AlgM F X → Fix F imap → X

The length algebra (lenAlgM) case-splits (using elimListF) on the scheme (ListF) of the generi-
cally encoded list. The nil case returns zero, and the cons case returns the suc(essor) of the result
of applying the recursion function (rec) to the abstract recursive data (xs : R). Our example in
Section 5.5 uses both the length algebra (lenAlgM) and the length function (len) defined as its fold.

5.5 Enriching Reuse

The combinator we define in this section (fix2ifix) generically solves data enrichment, going
from a non-indexed to an indexed type, when the index can be computed as a total function from
the non-indexed type (e.g. going from List to Vec via the total function len : List A → Nat).

7 Mendler-style data hiding and explicit recursion is one of the ingredients used by [Firsov et al. 2018] to define constant-
time predecessor functions.
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5.5.1 Data Reuse Combinator. Next, we define the combinator fix2ifix, which is a generic
solution to enriching fixpoint reuse (or, enriching data reuse). For example, it can solve a problem
like the one below:

IdDep (Fix (ListF A) (imapL A))

(λ xs. IFix Nat (VecF A) (imapV A) (foldM lenAlgM xs))

Notice that fix2ifixmust return a dependent identity function, because the index of the output
vector is computed as the length (len) of the input list (xs). The type of fix2ifix follows:

fix2ifix ◭ ∀ I : ⋆. ∀ F : (I → ⋆) → (I → ⋆). ∀ G : ⋆ → ⋆.

Π imapF : IIdMapping I F.

Π imapG : IdMapping G.

Π ralg : AlgM G I.

Π c : ∀ X : I → ⋆. ∀ Y : ⋆. Π r : Y → I.

IdDep Y (λ y. X (r y)) →

IdDep (G Y) (λ xs. F X (ralg -Y r xs)).

IdDep (Fix G imapG)

(λ x. IFix I F imapF (foldM ralg x))

Both fix2ifix and ifix2fix (from Section 5.3) share the same implicit arguments, namely I,
F, and G, and they also share the explicit imapF and imapG arguments. However, fix2ifix has the
following differing explicit arguments:

• The argument ralg is the refinement algebra for the non-indexed scheme G, e.g. lenAlgM A

for ListF A.
• The argument c is the dependent identity algebra. It enriches the non-indexed subtype scheme
(xs : G Y) to the indexed supertype scheme (F X (ralg r xs)), while assuming how to
enrich the abstract non-indexed subtype (y : Y) as the abstract indexed supertype (X (r y)).

Similar to the c of forgetful ifix2fix, the c of enriching fix2ifix requires a non-recursive

identity function between schemes, while assuming access to an identity function between abstract
“recursive” positions. However, the identity function in c for fix2ifix are dependent. Hence, the
index of the assumed supertype (X) is computed from the non-indexed subtype (y : Y) by applying
an abstract refinement function (r). Correspondingly, the index of the produced supertype (F X) is
computed from the non-indexed subtype (xs : G Y) by applying the refinement algebra (ralg r),
while using r for the rec(ursive) function of the Mendler-style algebra.

The implementation of fix2ifix, just like ifix2fix, applies c to each inductive level. The
outcome is also similar, as fix2ifix allows the user to define a non-recursive identity algebra, and
it produces a recursive identity function between fixpoints. The primary difference is that fix2ifix
results in a dependent identity function. Hence, the index in the dependent result is computed by
folding the the Mendler-style algebra (ralg) over the inductive input x.

5.5.2 Data Reuse Example. Nowwe demonstrate zero-cost enriching reuse of list data as vector
data. The dependent identity function (l2v) from xs : List A to Vec A (len xs) is defined by
applying fix2ifix to the identity mappings and the dependent identity algebra lf2vf:

lf2vf ◭ ∀ A : ⋆. ∀ X : Nat → ⋆. ∀ Y : ⋆.

Π f : Y → Nat.

IdDep Y (λ y. X (f y)) →

IdDep (ListF A Y ) (λ xs. VecF A X (lenAlgM f xs))

= λ c. elimListF

(pair nilVF β)
(λ x,xs. pair (consVF x (elimIdDep c xs) β)).
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l2v ◭ ∀ A : ⋆. IdDep (List A) (λ xs. Vec A (len xs))

= fix2ifix imapV imapL lenAlgM lf2vf.

The Mendler-style algebra used by lf2vf is our previously defined length algebra (lenAlgM). The
definition of lf2vf is essentially the same as vf2lf from Section 5.3, but now we eliminate a
list scheme and produce vector scheme constructors. Because the vector and list scheme con-
structors erase to the same terms, the argument for why reflexivity (β) suffices as identity ev-
idence stays the same. Another difference is that the abstract tail is computed as a dependent

elimination (elimIdDep, rather than elimId). However, the dependent elimination is also erased
(|elimIdDep c xs| = xs).

6 RELATED WORK

6.1 Subtyping

Miquel [2001] shows that in a Curry-style type theory with implicit products, the subtyping judge-
ment can be derived as follows:

Γ ⊢ X ≤ Y , Γ, x : X ⊢ x : Y

The Id type can be seen as the internalization of this judgement, with IdDep a correspond-
ing dependent version (i.e. our informal syntax (x : X ) ≤ Y x , not covered by Miquel). Miquel
also showed that the subsumption rule of subtyping is admissible in the theory with the derived
judgement, and our elimination rule elimId corresponds to its internalization. Finally, all of our
combinators can also be translated to admissible subtyping rules in his theory. Miquel covers sev-
eral admissible subtyping rules, but not ones corresponding to our primary forgetful and enriching
combinators for program, proof, and data reuse. Our data reuse combinators may be of particu-
lar interest to the subtyping community, as they corresponds to Mendler-style datatype-generic
subtyping rules.
Inspired by the internalized subtyping judgement of Miquel, Barras and Bernardo [2008] show

how to derive zero-cost forgetful data reuse conversions for Church-encoded datatypes. This work
was extended by Diehl and Stump [2018] to the enriching direction. In Section 3.2, we derive zero-
cost data reuse in terms of a linear time conversion and its extensional identity proof, using ϕ.
In contrast, the zero-cost conversions of Barras and Bernardo [2008] and Diehl and Stump [2018]
require no extensional identity proof, as the conversions erase to the identity function by a clever
exploitation of η-equality, without needing a rule like ϕ. Our work can be seen as the generic
version of their manual zero-cost reuse. When working generically with abstract combinator def-
initions, an abstraction like IdDep is necessary, and hence also a rule like ϕ (used to eliminate
it).

6.2 Coercible in Haskell

Breitner et al. describe a GHC extension to Haskell (available starting with GHC 7.8) for a type
class Coercible a b, which allows casting from a to bwhen such a cast is indeed the identity func-
tion [Breitner et al. 2016]. The motivation is to support retyping of data defined using Haskell’s
newtype statement, which is designed to give programmers the power to erect abstraction barriers
that cannot be crossed outside of the module defining the newtype. Within such a module, how-
ever, Coercible a b and the associated function coerce : a -> b allow programmers to apply
zero-cost casts to change between a newtype and its definition.
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Coercible had to be added as primitive to GHC, along with a rather complex system of roles
specifying how coercibility of application of type constructors follows from coercibility of argu-
ments to those constructors. In contrast, in the present work, we have shown how to derive zero-
cost coercionswithin the existing type theory of Cedille (via IdDep, also derived in Cedille, which is
the dependent equivalent of Coercible).On the other hand, much of the complexity of Coercible
in GHC arises from (1) how it interoperates with programmer-specified abstraction (via newtype)
and (2) the need to resolve Coercible a b class constraints automatically, similarly to other class
constraints in Haskell. The present work does not address either issue. However, the present work
does allow for dependent casts between indexed variants of datatypes, which Coercible does not
cover (because Coercible is only equivalent to our non-dependent Id).

6.3 Dependent Interoperability

The field of dependent interoperability is concerned with reusing code between non-dependent
and dependent implementations of datatypes and functions. The goal is to support interaction
between non-dependent and dependent languages, like extracted OCaml and Coq. The most sim-
ilar work to ours in this field is that of Dagand et al. [2016]. Inspired by Homotopy Type Theory
(HoTT), Dagand et al. [2016] formalize partial equivalence types, simultaneously representing the
forgetful and enriching directions of reuse.
They also develop combinators that are closed with respect to their partial equivalence type.

For example, their HODepEquiv combinator is quite like our forgetful program reuse combinator
allArr2arr. However, their work primarily focuses on the forgetful direction of reuse for total
functions, as partial functions can be reused by inserting dynamic checks and failures using their
partial equivalence type. In contrast, we emphasize the total reuse of functions in the enriching
direction (like arr2allArrP),using premises tomake the total functions possible. Because they are
primarily interested in program reuse, not proof reuse, they do not provide dependent versions of
their reuse combinators. Additionally, they only provide combinators function types, not fixpoint
types, as their work assumes manual solutions to the problem of data reuse.
The class of datatypes reusable in their setting is larger, because isomorphic datatypes, with

different representations, can be related. In contrast, our work requires the erasures of the con-
structors of related types to be the same untyped terms. However, for the price of a smaller class
of reusable types, we gain the ability to perform conversions at zero-cost.
Finally, Dagand et al. [2016] automates the assembly of combinators to reuse programs by reg-

istering them as instances of Coq’s type class mechanism. Cedille does not currently have type
classes, but we could employ the same automation strategy if type classes get added to Cedille in
the future.

6.4 Ornaments

Ornaments [McBride 2011] are used to define refined version of types (e.g. Vec) from unrefined
types (e.g. List) by “ornamenting” the unrefined type with extra index information. In contrast,
our work establishes a relationship between Vec and List after-the-fact, by defining forgetful and
enriching IdDep values between the types. By defining vectors as natural-number-ornamented
lists, ornaments can be used to calculate the “patch” type necessary to adapt a function from one
type to another type [Dagand and McBride 2012]. For example, ornaments could calculate that
LenDistAppL is the premise necessary to adapt appL from lists to vectors (appV).
Although ornaments can be used to derive conversions between types in an ornamental rela-

tionship [Ko and Gibbons 2013; McBride 2011], they take linear time, rather than constant time
(i.e. the conversions are not zero-cost). Besides refining the indices of existing datatypes, orna-
ments also allow data to be added to existing datatypes. For example, vectors can be index-refined
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lists, but lists can also be natural numbers with elements added. Our work only covers the index
refinement aspect of ornaments.

6.5 Type Theory in Color

Type Theory in Color (TTC) [Bernardy and Guilhem 2013] generalizes the concept of erased ar-
guments of types to various colors, which may be erased optionally and independently according
to modalities in the type theory. In the vector datatype declaration, the index data can be colored.
If a vector is passed to a function expecting a list (whose modality enforces the lack of the index
data color), then a forgetful zero-cost conversion (using our parlance) is performed.
Lists can also be used as vectors, via an enriching zero-cost conversion in the other direction.

This works due to a mechanism to interpret lists as a predicate on natural numbers. The list pred-
icate is generated as the erasure of its colored elements (like ornaments, colors can add data in
addition to refining indices), which results in refining lists by the length function.
Our work can be used to define an enriching zero-cost conversion from natural numbers to the

datatype of finite sets (Fin). This is not possible with colors, because Fin is indexed by succes-
sor (suc) in both of its constructors, which would require generating a predicate on the natural
numbers from a non-deterministic function (or relation). Colors allow zero-cost conversions to be
generated and implicitly applied because colors erase types, as well as values, whereas implicit
products only erase values (e.g. Λ is erased, but not ∀). Thus, while zero-cost conversions need to
be explicitly crafted and applied in our setting, we are able to define zero-cost conversions (like
taking natural numbers to finite sets) for which there is no unique solution.

7 EXTENSIONS AND FUTUREWORK

7.1 Auxiliary Combinators

Our program and proof reuse combinators expect index arguments to appear next to their in-
dexed types in type signatures. For this reason, our combinators would not be directly applicable
if we wrote the type signature of vector append with the natural number indices of both vector
arguments at the beginning, followed by both vectors. However, it is straightforward to define an
auxiliary combinator that flips argument order, which Dagand et al. [2016] do for their partial type
equivalence abstraction.
If a subsequent indexed type argument depends on the same index as a previous argument,

rather than a new one, it also prevents our combinators from being applicable. Consider the ar-
tificial example of vector append where both input vectors must be the same length. This can
be solved via a straightforward auxiliary combinator that introduces a new index quantification,
along with an equality that constrains the new index to equal the old index.

7.2 Index-Index Combinators

In this paper we only considered relating non-indexed types (e.g. list) to indexed types (e.g. vector).
In general, we may want to relate an indexed type to a less indexed type, like relating vectors to
ordered vectors in the introduction. Our combinators straightforwardly generalize to 2 indexed
types, X : I → ⋆ and Y : J → ⋆, along with a function that translates the more refined index
to the less refined index (of type I → J). In fact, our formalization is defined using this more
general representation, and we derive the combinators of this paper using the Unit type as the
index type J of family Y.
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7.3 Dependent Premise Combinators

The class of datatypes enrichable by our data reuse combinator fix2ifix requires the index (I)
to be computable from the non-indexed type as a total function (the refining function r). This
excludes reusing datatypes where the index can be computed as a partial function from the non-
indexed type, plus extra data. We believe this would be possible by defining an enhanced data
enrichment combinator with an erased premise, that the supertype could depend on. We leave
this extension to future work, although we have already defined a dependent-premise version of
enriching program and proof reuse.

8 CONCLUSION

We have demonstrated how to reuse programs, proofs, and types at zero-cost, in both the forgetful
and enriching directions. We achieve this generically via combinators over the type of dependent
identity functions (IdDep). Because partially applying the elimination rule of IdDep results in the
term erasing to an identity function, any conversionmaking use of the result of elimIdDep requires
no runtime overhead.
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