
Noname manuscript No.
(will be inserted by the editor)

SMT Proof Checking Using a Logical Framework

Aaron Stump · Duckki Oe · Andrew
Reynolds · Liana Hadarean · Cesare
Tinelli

Received: date / Accepted: date

Abstract Producing and checking proofs from SMT solvers is currently the most
feasible method for achieving high confidence in the correctness of solver results.
The diversity of solvers and relative complexity of SMT over, say, SAT means that
flexibility, as well as performance, is a critical characteristic of a proof-checking
solution for SMT. This paper describes such a solution, based on a Logical Frame-
work with Side Conditions (LFSC). We describe the framework and show how it
can be applied for flexible proof production and checking for two different SMT
solvers, clsat and cvc3. We also report empirical results showing good perfor-
mance relative to solver execution time.

Keywords Satisfiability Modulo Theories · Proof Checking · Edinburgh Logical
Framework, LFSC

1 Introduction

Solvers for Satisfiability Modulo Theories (SMT) are currently at the heart of
several formal method tools such as extended static checkers [16,3], bounded and
unbounded model-checkers [1,21,14], symbolic execution tools [25], and program
verification environments [10,49]. The main functionality of an SMT solver is to
determine if a given input formula is satisfiable in the logic it supports—typically
some fragment of first-order logic with certain built-in theories such as integer
or real arithmetic, the theory of arrays and so on. Most SMT solvers combine
advanced general-purpose propositional reasoning (SAT) engines with sophisti-
cated implementations of special-purpose reasoning algorithms for built-in theo-
ries. They are rather complex and large tools, with codebases often between 50k

This work was partially supported by funding from the US National Science Foundation, under
awards 0914877 and 0914956.

A. Stump, D. Oe, A. Reynolds, C. Tinelli
E-mail: {aaron-stump,duckki-oe,andrew-reynolds,cesare-tinelli}@uiowa.edu

L. Hadarean
E-mail: lsh271@nyu.edu

2 Aaron Stump et al.

and 100k lines of C++. As a consequence, the correctness of their results is a long-
standing concern. In an era of tour-de-force verifications of complex systems [24,
27], noteworthy efforts have been made to apply formal verification techniques to
algorithms for SAT and SMT [29,18]. Verifying actual solver code is, however, still
extremely challenging [28] due to the complexity and size of modern SMT solvers.

One approach to addressing this problem is for SMT solvers to emit inde-
pendently checkable evidence of the results they report. For formulas reported as
unsatisfiable, this evidence takes the form of a refutation proof. Since the relevant
proof checking algorithms and implementations are much simpler than those for
SMT solving, checking a proof provides a more trustworthy confirmation of the
solver’s result. Interactive theorem proving can benefit as well from proof produc-
ing SMT solvers, as shown recently in a number of works [12,11]. Complex subgoals
for the interactive prover can be discharged by the SMT solver, and the proof it
returns can be checked or reconstructed to confirm the result without trusting the
solver. Certain advanced applications also strongly depend on proof production.
For example, in the Fine system, Chen et al. translate proofs produced by the
Z3 solver [32] into their internal proof language, to support certified compilation
of richly typed source programs [13]. For Fine, even a completely verified SMT
solver would not be enough since the proofs themselves are actually needed by the
compiler. Besides Z3 other examples of proof-producing SMT solvers are clsat,
cvc3, Fx7, and veriT [38,6,31,15].

A significant enabler for the success of SMT has been the SMT-LIB standard
input language [5], which is supported by most SMT solvers. So far, no stan-
dard proof format has emerged. This is, however, no accident. Because of the ever
increasing number of logical theories supported by SMT solvers, the variety of de-
ductive systems used to describe the various solving algorithms, and the relatively
young age of the SMT field, designing a single set of axioms and inference rules
that would be a good target for all solvers does not appear to be practically feasi-
ble. We believe that a more viable route to a common standard is the adoption of
a common meta-logic in which SMT solver implementors can describe the partic-
ular proof systems used by their solver. With this approach, solvers need to agree
just on the meta-language used to describe their proof systems. The adoption of a
sufficiently rich meta-logic prevents a proliferation of individual proof languages,
while allowing for a variety of proof systems. Also, a single meta-level tool suffices
to check proofs efficiently on any proof system described in the meta-language.
A fast proof checker can be implemented once and for all for the meta-language,
using previously developed optimizations [43,50,44, e.g.]. Also, different proof sys-
tems can be more easily compared, since they are expressed in the same meta-level
syntax. This may help identify in the future a common core proof system for some
significant class of SMT logics and solvers.

In this paper we propose and describe a meta-logic, called LFSC, for “Logical
Framework with Side Conditions”, which we have developed explicitly with the
goal of supporting the description of several proof systems for SMT, and enabling
the implementation of very fast proof checkers. In LFSC, solver implementors can
describe their proof rules using a compact declarative notation which also allows
the use of computational side conditions. These conditions, expressed in a small
functional programming language, enable some parts of a proof to be established
by computation. The flexibility of LFSC facilitates the design of proof systems
that reflect closely the sort of high-performance inferences made by SMT solvers.

SMT Proof Checking Using a Logical Framework 3

The side conditions feature offers a continuum of possible LFSC encodings of proof
systems, from completely declarative at one extreme, using rules with no side con-
ditions, to completely computational at the other, using a single rule with a huge
side condition. We argue that supporting this continuum is a major strength of
LFSC. Solver implementors have the freedom to choose the amount of computa-
tional inference when devising proof systems for their solver. This freedom cannot
be abused since any decision is explicitly recorded in the LFSC formalization and
becomes part of the proof system’s trusted computing base. Moreover, the abil-
ity to create with a relatively small effort different LFSC proof systems for the
same solver provides an additional level of trust even for proof systems with a
substantial computational component—since at least during the developing phase
one could also produce proofs in a more declarative, if less efficient, proof system.

We have put considerable effort in developing a full blown, highly efficient
proof checker for LFSC proofs. Instead of developing a dedicated LFSC checker,
one could imagine embedding LFSC in declarative languages such as Maude or
Haskell. While the advantages of prototyping symbolic tools in these languages
are well known, in our experience their performance lags too far behind carefully
engineered imperative code for high-performance proof checking. This is especially
the case for the sort of proofs generated by SMT solvers which can easily reach
sizes measured in megabytes or even gigabytes. Based on previous experimental
results by others, a similar argument could be made against the use of interactive
theorem provers (such as Isabelle [37] or Coq [8]), which have a very small trusted
core, for SMT-proof checking. By allowing the use of computational side conditions
and relying on a dedicated proof checker, our solution seeks to strike a pragmatic
compromise between trustworthiness and efficiency.

We introduce the LFSC language in Section 2 and then describe it formally in
Section 3. In Section 4 we provide an overview of how one can encode in LFSC
a variety of proof systems that closely reflect the sort of reasoning performed by
modern SMT solvers. Building on the general approaches presented in this section,
we then focus on a couple of SMT theories in Section 5, with the goal of giving a
sense of how to use LFSC’s features to produce compact proofs for theory-specific
lemmas. We then present empirical results for our LFSC proof checker which
show good performance relative to solver-execution times (Section 6). Finally,
Section 7 touches upon a new, more advanced application of LFSC: the generation
of certified interpolants from proofs.

The present paper builds on previously published workshop papers [45,38–40]
but it expands considerably on the material presented there. A preliminary release
of our LFSC proof checker, together with the proof systems and the benchmark
data discussed here are available online.1

1.1 Related Work

SMT proofs produced by the solver Fx7 for the AUFLIA logic of SMT-LIB have
been shown to be checked efficiently by an external checker in [31]. Other ap-
proaches [19,17] have advocated the use of interactive theorem provers to certify

1 At http://clc.cs.uiowa.edu/lfsc/. The release’s README file clarifies a number of
minor differences with the concrete syntax used in this paper.

4 Aaron Stump et al.

proofs produced by SMT solvers. The advantages of using those theorem provers
are well known; in particular, their trusted core contains only a base logic and a
small fixed number of proof rules. While recent works [11,2] have improved proof
checking times, the performance of these tools still lags behind C/C++ checkers
carefully engineered for fast checking of very large proofs. Besson et al. have re-
cently proposed a similar meta-linguistic approach, though without the intention
of providing a formal semantics for user-defined proof systems [9]. We are in dis-
cussion with authors of that work on how to combine LFSC with the approach
they advocate.

1.2 Notational Conventions

This paper assumes some familiarity with the basics of type theory and of auto-
mated theorem proving, and will adhere in general to the notational conventions in
the field. LFSC is a direct extension of LF [22], a type-theoretic logical framework
based on the λΠ calculus, in turn an extension of the simply typed λ-calculus.
The λΠ calculus has three levels of entities: values; types, understood as collec-
tions of values; and kinds, families of types. Its main feature is the support for
dependent types which are types parametrized by values.2 Informally speaking,
if τ2[x] is a dependent type with value parameter x, and τ1 is a non-dependent
type, the expression Πx:τ1.τ2[x] denotes in the calculus the type of functions that
return a value of type τ2[v] for each value v of type τ1 for x. When τ2 is itself a
non-dependent type, the type Πx:τ1.τ2 is just the arrow type τ1 → τ2 of simply
typed λ-calculus.

The current concrete syntax of LFSC is based on Lisp-style S-expressions, with
all operators in infix format. For improved readability, we will often write LFSC
expressions in abstract syntax instead. We will write concrete syntax expressions in
typewriter font. In abstract syntax expressions, we will write variables and meta-
variables in italics font, and constants in sans serif font. Predefined keywords in
the LFSC language will be in bold sans serif font.

2 Introducing LF with Side Conditions

LFSC is based on the Edinburgh Logical Framework (LF) [22]. LF has been used
extensively as a meta-language for encoding deductive systems including logics,
semantics of programming languages, as well as many other applications [26,7,
33]. In LF, proof systems can be encoded as signatures, which are collections of
typing declarations. Each proof rule is a constant symbol whose type represents
the inferences allowed by the rule. For example, the following transitivity rule for
equality

t1 = t2 t2 = t3
t1 = t3

eq trans

can be encoded in LF as a constant eq trans of type

Πt1:term. t2:term. t3:term. Πu1:holds (t1 = t2). Πu2:holds (t2 = t3). holds (t1 = t3) .

2 A simple example of dependent types is the type of bit vectors of (positive integer) size n.

SMT Proof Checking Using a Logical Framework 5

The encoding can be understood intuitively as saying: for any terms t1, t2 and t3,
and any proofs u1 of the equality t1 = t2 and u2 of t2 = t3, eq trans constructs a
proof of t1 = t3. In the concrete, Lisp-style syntax of LFSC, the declaration of the
rule would look like

(declare eq_trans (! t1 term (! t2 term (! t3 term
(! u1 (holds (= t1 t2)) (! u2 (holds (= t2 t3))
(holds (= t1 t3))))))))

where ! represents LF’s Π binder, for the dependent function space, term and
holds are previously declared type constructors, and = is a previously declared
constant of type Πt1:term. t2:term. term (i.e., term→ term→ term).

Now, pure LF is not well suited for encoding large proofs from SMT solvers,
due to the computational nature of many SMT inferences. For example, consider
trying to prove the following simple statement in a logic of arithmetic:

(t1 + (t2 + (. . .+ tn) . . .))− ((ti1 + (ti2 + (. . .+ tin) . . .) = 0 (1)

where ti1 . . . tin is a permutation of the terms t1, . . . , tn. A purely declarative proof
would need Ω(n logn) applications of an associativity and a commutativity rule
for +, to bring opposite terms together before they can be pairwise reduced to 0.

Producing, and checking, purely declarative proofs in SMT, where input for-
mulas alone are often measured in megabytes, is unfeasible in many cases. To
address this problem, LFSC extends LF by supporting the definition of rules with
side conditions, computational checks written in a small but expressive first-order
functional language. The language has built-in types for arbitrary precision inte-
gers and rationals, inductive datatypes, ML-style pattern matching, recursion, and
a very restricted set of imperative features. When checking the application of an
inference rule with a side condition, an LFSC checker computes actual parameters
for the side condition and executes its code. If the side condition fails, because it
is not satisfied or because of an exception caused by a pattern-matching failure,
the LFSC checker rejects the rule application. In LFSC, a proof of statement (1)
could be given by a single application of a rule of the form:

(declare eq_zero (! t term (^ (normalize t) 0) (holds (= t 0))))

where normalize is the name of a separately defined function in the side condition
language that takes an arithmetic term and returns a normal form for it. The ex-
pression (^ (normalize t) 0) defines the side condition of the eq zero rule, with
the condition succeeding if and only if the expression (normalize t) evaluates to
0. We will see more about this sort of normalization rules in Section 5.2.

3 The LFSC Language and its Formal Semantics

In this section, we introduce the LFSC language in abstract syntax, by defining
its formal semantics in the form of a typing relation for terms and types, and
providing an operational semantics for the side-condition language. Well-typed
value, type, kind and side-condition expressions are drawn from the syntactical
categories defined in Figure 1 in BNF format. The kinds typec and type are used
to distinguish types with side conditions in them from types without.

6 Aaron Stump et al.

(Kinds) κ ::= type | typec | kind | Πx:τ. κ (Types) τ ::= k | τ t | Πx:τ1[{s t}]. τ2
(Terms) t ::= x | c | t:τ | λx[:τ]. t | t1 t2 (Patterns) p ::= c | c x1 · · ·xn+1

(Programs) s ::= x | c | −s | s1 + s2 | c s1 · · · sn+1 | let x s1 s2 | fail τ | markvar s |
ifmarked s1 s2 s3 | ifneg s1 s2 s3 | match s (p1 s1) · · · (pn+1 sn+1)

Fig. 1 Main syntactical categories of LFSC. Letter c denotes term constants (including
rational ones), x denotes term variables, k denotes type constants. The square brackets are
grammar meta-symbols enclosing optional subexpressions.

Program expressions s are used in side condition code. There, we also make use
of the syntactic sugar (do s1 · · · sn s) for the expression (let x1 s1 · · · let xn sn s)
where x1 through xn are fresh variables. Side condition programs in LFSC are
monomorphic, simply typed, first-order, recursive functions with pattern match-
ing, inductive data types and two built-in basic types: infinite precision integers
and rationals. In practice, our implementation is a little more permissive, allow-
ing side-condition code to pattern-match also over dependently typed data. For
simplicity, we restrict our attention here to the formalization for simple types only.

The operational semantics of the main constructs in the side condition language
could be described informally as follows. Expressions of the form (c s1 · · · sn+1)
are applications of either term constants or program constants (i.e., declared func-
tions) to arguments. In the former case, the application constructs a new value; in
the latter, it invokes a program. The expressions (match s (p1 s1) · · · (pn+1 sn+1))
and (let x s1 s2) behave exactly as their corresponding matching and let-binding
constructs in ML-like languages. The expression (markvar s) evaluates to the value
of s if this value is a variable. In that case, the expression has also the side effect
of toggling a Boolean mark on that variable.3 The expression (ifmarked s1 s2 s3)
evaluates to the value of s2 or of s3 depending on whether s1 evaluates to a marked
or an unmarked variable. Both markvar and ifmarked raise a failure exception if
their arguments do not evaluate to a variable. The expression (fail τ) always raises
that exception, for any type τ .

The typing rules for terms and types, given in Figure 2, are based on the rules
of canonical forms LF [47]. They include judgments of the form Γ ` e ⇐ T for
checking that expression e has type/kind T in context Γ , where Γ , e, and T are
inputs to the judgment; and judgments of the form Γ ` e ⇒ T for computing a
type/kind T for expression e in context Γ , where Γ and e are inputs and T is
output. The contexts Γ map variables and constants to types or kinds, and map
constants f for side condition functions to (possibly recursive) definitions of the
form (x1 : τ1 · · · xn : τn) : τ = s, where s is a term with free variables x1, . . . , xn,
the function’s formal parameters.

The three top rules of Figure 2 define well-formed contexts. The other rules,
read from conclusion to premises, induce deterministic type/kind checking and
type computation algorithms. They work up to a standard definitional equality,
namely βη-equivalence; and use standard notation for capture-avoiding substitu-
tion ([t/x]T is the result of simultaneously replacing every free occurrence of x in
T by t, and renaming any bound variable in T that occurs free in t). Side con-

3 For simplicity, we limit the description here to a single mark per variable. In reality, there
are 32 such marks, each with its own markvar command.

SMT Proof Checking Using a Logical Framework 7

· Ok
Γ Ok Γ ` τ ⇒ κ

Γ, y : τ Ok

Γ, x1 : τ1, . . . , xn : τn, f : k1 → · · · → kn → k Ok
Γ, x1 : τ1, . . . , xn : τn, f : k1 → · · · → kn → k ` s⇒ k

Γ, f(x1 : k1 · · · xn : kn) : k = s Ok

Γ Ok
Γ ` type⇒ kind

Γ Ok
Γ ` typec ⇒ kind

Γ Ok y : τ ∈ Γ
Γ ` y ⇒ τ

Γ ` t⇐ τ
Γ ` t : τ ⇒ τ

Γ ` τ ⇐ type Γ, x : τ ` T ⇒ α α ∈ {type, typec, kind}
Γ ` Πx:τ. T ⇒ α

Γ ` τ ⇒ Πx:τ1. κ Γ ` t⇐ τ1

Γ ` (τ t)⇒ [t/x]κ

Γ ` τ1 ⇐ type Γ, x : τ1 ` τ2 ⇒ type Γ, x : τ1 ` s⇒ τ Γ, x : τ1 ` t⇒ τ

Γ ` Πx:τ1{s t}. τ2 ⇒ typec

Γ ` t1 ⇒ Πx:τ1. τ2 Γ ` t2 ⇐ τ1

Γ ` (t1 t2)⇒ [t2/x]τ2

Γ ` τ1 ⇒ type Γ, x : τ1 ` t⇒ τ2

Γ ` λx:τ1. t⇒ Πx:τ1. τ2

Γ ` t1 ⇒ Πx:τ1{s t}. τ2 Γ ` t2 ⇐ τ1 |Γ | ` ε; [t2/y]s ↓ [t2/y]t; σ

Γ ` (t1 t2)⇒ [t2/x]τ2

Γ, x : τ1 ` t⇒ τ2

Γ ` λx. t⇐ Πx:τ1. τ2

Fig. 2 Bidirectional typing rules and context rules for LFSC. Letter y denotes vari-
ables and constants declared in context Γ , letter T denotes types or kinds. Letter ε denotes
the state in which every variable is unmarked.

ditions occur in type expressions of the form Πy:τ1{s t}. τ2, constructing types
of kind typec. The premise of the last rule, defining the well-typedness of appli-
cations involving such types, contains a judgement of the form ∆ ` σ; s ↓ s′; σ′
where ∆ is a context consisting only of definitions for side condition functions, and
σ and σ′ are states, i.e., mappings from variables to their mark. Such judgment
states that, under the context ∆, evaluating the expression s in state σ results
in the expression s′ and state σ′. In the application rule, ∆ is |Γ | defined as the
collection of all the function definitions in Γ . Note that the rules of Figure 2 en-
force that bound variables do not have types with side conditions in them—by
requiring those types to be of kind type, as opposed to kind typec. An additional
requirement is not formalized in the figure. Suppose Γ declares a constant d with
type Πx1:τ1. · · ·Πxn:τn. τ of kind typec, where τ is either k or (k t1 · · · tm).
Then neither k nor an application of k may be used as the domain of a Π-type.
This is to ensure that applications requiring side condition checks never appear
in types. Similar typing rules, included in the appendix, define well-typedness for
side condition terms, in a fairly standard way.

A big-step operational semantics of side condition programs is provided in
Figure 3 using ∆ ` σ; s ↓ s′; σ′ judgements. For brevity, we elide “∆ `” from the
rules when ∆ is unused. Note that side condition programs can contain unbound
variables, which evaluate to themselves. States σ (updated using the notation
σ[x 7→ v]) map such variables to the value of their Boolean mark. If no rule
applies when running a side condition, program evaluation and hence checking
of types with side conditions fails. This also happens when evaluating the fail
construct (fail τ), or when pattern matching fails. Currently, we do not enforce
termination of side condition programs, nor do we attempt to provide facilities to
reason formally about the behavior of such programs.

Our implementation of LFSC supports the use of the wildcard symbol in
place of an actual argument of an application when the value of this argument is

8 Aaron Stump et al.

σ1; c ↓ c; σ1 σ1; x ↓ x; σ1

σ1; s ↓ x; σ2

σ1; (markvar s) ↓ x; σ2[x 7→ ¬σ2(x)]

σ1; s1 ↓ r; σ2 r < 0 σ2; s2 ↓ s′2; σ3

σ1; (ifneg s1 s2 s3) ↓ s′2; σ3

σ1; s1 ↓ r; σ2 r ≥ 0 σ2; s3 ↓ s′3; σ3

σ1; (ifneg s1 s2 s3) ↓ s′3; σ3

σ1; s1 ↓ x; σ2 σ2(x) σ2; s2 ↓ s′2; σ3

σ1; (ifmarked s1 s2 s3) ↓ s′2; σ3

σ1; s1 ↓ x; σ2 ¬σ2(x) σ2; s3 ↓ s′3; σ3

σ1; (ifmarked s1 s2 s3) ↓ s′3; σ3

σ1; s1 ↓ s′1; σ2 σ2; [s′1/x]s2 ↓ s′2; σ3

σ1; (let x s1 s2) ↓ s′2; σ3

∀i ∈ {1, . . . , n}, (σi; si ↓ s′i; σi+1)

σ1; (c s1 · · · sn) ↓ (c s′1 · · · s′n); σn+1

σ1; s ↓ (c s′1 · · · s′n); σ2 ∃i pi = (c x1 · · · xn) σ2; [s′1/x1, . . . , s
′
n/xn]si ↓ s′; σ3

σ1; (match s (p1 s1) · · · (pm sm)) ↓ s′; σ3

∀i ∈ {1, . . . , n} (∆ ` σi; si ↓ s′i; σi+1)

(f(x1 : τ1 · · · xn : τn) : τ = s) ∈ ∆ ∆ ` σn+1; [s′1/x1, . . . , s
′
n/xn]s ↓ s′; σn+2

∆ ` σ1; (f s1 · · · sn) ↓ s′; σn+2

Fig. 3 Operational semantics of side condition programs. We omit the straightforward
rules for the rational operators − and +.

determined by the types of later arguments. This feature, which is analogous to
implicit arguments in theorem provers such as Coq and programming languages
such as Scala, is crucial to avoid bloating proofs with redundant information. In
a similar vein, the concrete syntax allows a form of lambda abstraction that does
not annotate the bound variable with its type when that type can be computed
efficiently from context.

We conclude by pointing out that LFSC’s type system is a refinement of LF’s,
in the following sense. Let ||τ || denote the type obtained from τ by erasing any
side condition constraints from the Π-abstractions in τ ; let ||typec|| be type; and
extend this notation to contexts in the natural way. Then, we have the following.

Theorem 1 For all Γ , t and τ , if Γ ` t:τ in LFSC, then ||Γ || ` t:||τ || in LF.

Proof. By a straightforward induction on LFSC typing derivations. �

4 Encoding propositional and core SMT reasoning in LFSC

In this section and the next, we illustrate the power and flexibility of LFSC for
SMT proof checking by discussing a number of proof systems relevant to SMT,
and their possible encodings in LFSC. Our goal is not to be exhaustive, but to
provide representative examples of how LFSC allows one to encode a variety of
logics and proof rules while paying attention to proof checking performance issues.
Section 6 focuses on the latter by reporting on our initial experimental results.

Roughly speaking, proofs generated by SMT solvers, especially those based on
the DPLL(T) architecture [36], are two-tiered refutation proofs, with a proposi-
tional skeleton filled with several theory-specific subproofs [20]. The conclusion, a
trivially unsatisfiable formula, is reached by means of propositional inferences ap-
plied to a set of input formulas and a set of theory lemmas. These are disjunctions

SMT Proof Checking Using a Logical Framework 9

(declare var type)
(declare lit type)
(declare pos (! x var lit))
(declare neg (! x var lit))

(declare clause type)
(declare cln clause)
(declare clc (! l lit (! c clause clause)))

Fig. 4 Definition of propositional clauses in LFSC concrete syntax.

of theory literals proved from no assumptions mostly with proof rules specific to
the theory or theories in question—the theory of real arithmetic, of arrays, etc.

Large portions of the proof’s propositional part consist typically of applications
of some variant of the resolution rule. These subproofs are generated similarly to
what is done by proof-producing SAT solvers, where resolution is used for conflict
analysis and lemma generation [51,20]. A proof format proposed in 2005 by Van
Gelder for SAT solvers is based directly on resolution [46]. Input formulas in SMT
differ from those given to SAT solvers both for being not necessarily in Conjunctive
Normal Form and for having non-propositional atoms. As a consequence, the rest
of the propositional part of SMT proofs involve CNF conversion rules as well
as abstraction rules that uniformly replace theory atoms in input formulas and
theory lemmas with Boolean variables. While SMT solvers usually work just with
quantifier-free formulas, some of them can reason about quantifiers as well, by
generating and using selected ground instances of quantified formulas. In these
cases, output proofs also contain applications of rules for quantifier instantiation.

In the following, we demonstrate different ways of representing propositional
clauses and SMT formulas and lemmas in LFSC, and of encoding proof systems
for them with various degrees of support for efficient proof checking. For simplic-
ity and space constraints, we consider only a couple of individual theories, and
restrict our attention to quantifier-free formulas. We note that encoding proofs
involving combinations of theories is more laborious but not qualitatively more
difficult; encoding SMT proofs for quantified formulas is straightforward thanks
to LFSC’s support for higher-order abstract syntax which allows one to represent
and manipulate quantifiers as higher-order functions, in a completely standard
way.4

4.1 Encoding propositional resolution

The first step in encoding any proof system in LFSC (or LF for that matter) is to
encode its formulas. In the case of propositional resolution, this means encoding
propositional clauses. Figure 4 presents a possible encoding, with type and type
constructor declarations in LFSC’s concrete syntax. We first declare an LFSC type
var for propositional variables and then a type lit for propositional literals. Type lit
has two constructors, pos and neg, both of type Πx:var. lit5 which turn a variable
into a literal of positive, respectively negative, polarity. We use these to represent
positive and negative occurrences of a variable in a clause. The type clause, for

4 For instance ∀x:τ. φ can be represented as (forall λx:τ. φ) where forall is a constant of type
(τ → formula)→ formula. Then, quantifier instantiation reduces to (lambda-term) application.

5 Recall that the ! symbol in the concrete syntax stands for Π-abstraction.

10 Aaron Stump et al.

(declare holds (! c clause type))

(program resolve ((c1 clause) (c2 clause) (v var)) clause
(let pl (pos v) (let nl (neg v)

(do (in pl c1) (in nl c2)
(let d (append (remove pl c1) (remove nl c2))

(drop_dups d))))))

(declare R (! c1 clause (! c2 clause (! c3 clause
(! u1 (holds c1) (! u2 (holds c2) (! v var (^ (resolve c1 c2 v) c3)

(holds c3))))))))

Fig. 5 The propositional resolution calculus in LFSC concrete syntax.

propositional clauses, is endowed with two constructors that allow the encoding of
clauses as lists of literals. The constant cln represents the empty clause (2). The
function clc intuitively takes a literal l and a clause c, and returns a new clause
consisting of l followed by the literals of c. For an example, a clause like P ∨ ¬Q
can be encoded as the term (clc (pos P) (clc (neg Q) cln)).

Figure 5 provides LFSC declarations that model binary propositional resolution
with factoring. The type holds, indexed by values of type clause, represents the type
of proofs for clauses. Intuitively, for any clause c, values of type (holds c) are proofs
of c. The side-condition function resolve takes two clauses and a variable v, and
returns the result of resolving the two clauses together with v as the pivot6, after
eliminating any duplicate literals in the resolvent. The constructor R encodes the
resolution inference rule. Its type

Πc1:clause. Πc2:clause. Πc3:clause.
Πu1:holds c1. Πu2:holds c2. Πv:var {(resolve c1 c2 v) c3}. holds c3

can be paraphrased as follows: for any clauses c1, c2, c3 and variables v, the rule
R returns a proof of c3 from a proof of c1 and a proof of c2 provided that c3
is the result of successfully applying the resolve function to c1, c2 and v. The
side condition function resolve is defined as follows (using a number of auxiliary
functions whose definition can be found in the appendix). To resolve clauses c1
and c2 with pivot v, v must occur in a positive literal of c1 and a negative literal of
c2 (checked with the in function). In that case, the resolvent clause is computed by
removing (with remove) all positive occurrences of v from c1 and all negative ones
from c2, concatenating the resulting clauses (with append), and finally dropping
any duplicates from the concatenation (with drop dups); otherwise, resolve, and
consequently the side condition of R, fails.

In proof terms containing applications of the R rule, the values of its input
variables c1, c2 and c3 can be determined from later input values, namely the
concrete types of u1, u2 and v, respectively. Hence, in those applications c1, . . . , c3
can be replaced by the wildcard , as mentioned in Section 3 and shown in Figure 6.

The single rule above is enough to encode proofs in the propositional resolution
calculus. This does not appear to be possible in LF. Without side conditions one
also needs auxiliary rules, for instance, to move a pivot to the head of the list rep-
resenting the clause and to perform factoring on the resolvent. The upshot of this

6 A variable v is the pivot of a resolution application with resolvent c1 ∨ c2 if the clauses
resolved upon are c1 ∨ v and ¬v ∨ c2.

SMT Proof Checking Using a Logical Framework 11

V1 ∨ V2 ¬V1 ∨ V2
V2

¬V2 ∨ V3 ¬V3 ∨ ¬V2
¬V2

2

λv1:var. λv2:var. λv2:var.

λp1:holds (v1 ∨ v2). λp2:holds (¬v1 ∨ v2).

λp3:holds (¬v2 ∨ v3). λp4:holds (¬v3 ∨ ¬v2).

(R (R p1 p2 v1) (R p3 p4 v3) v2) : holds 2)

(check
(% v1 var (% v2 var (% v3 var
(% p1 (holds (clc (pos v1) (clc (pos v2) cln)))
(% p2 (holds (clc (neg v1) (clc (pos v2) cln)))
(% p3 (holds (clc (neg v2) (clc (pos v3) cln)))
(% p4 (holds (clc (neg v3) (clc (neg v2) cln)))
(: (holds cln) (R _ _ _ (R _ _ _ p1 p2 v1) (R _ _ _ p3 p4 v3) v2))))))))))

Fig. 6 An example refutation and its LFSC encoding, respectively in abstract and in concrete
syntax (as argument of the check command). In the concrete syntax, (% x τ t) stands for
λx:τ. t; for convenience, the ascription operator : takes first a type and then a term.

is a more complex proof system and bigger proofs. Other approaches to checking
resolution proofs avoid the need for those auxiliary rules by hard coding the clause
type in the proof checker and implementing it as a set of literals. An example is
work by Weber and Amjad on reconstructing proofs produced by an external SAT
solver in Isabelle/HOL [48]. They use several novel encoding techniques to take
advantage of the fact that the native sequents of the Isabelle/HOL theorem prover
are of the form Γ ` φ, where Γ is interpreted as a set of literals. They note the im-
portance of these techniques for achieving acceptable performance over their earlier
work, where rules for reordering literals in a clause, for example, were required.
Their focus is on importing external proofs into Isabelle/HOL, not trustworthy
efficient proof-checking in its own right. But we point out that it would be wrong
to conclude that their approach is intrinsically more declarative than the LFSC
approach: in their case, the computational side-conditions needed to maintain the
context Γ as a set have simply been made implicit, as part of the core inference
system of the theorem prover. In contrast, the LFSC approach makes such side
conditions explicit, and user-definable.

Example 1 For a simple example of a resolution proof, consider a propositional
clause set containing the clauses c1 := ¬V1 ∨ V2, c2 := ¬V2 ∨ V3, c3 := ¬V3 ∨¬V2,
and c4 := V1 ∨ V2. A resolution derivation of the empty clause from these clauses
is given in Figure 6. The proof can be represented in LFSC as the lambda term
below the proof tree. Ascription is used to assign type (holds 2) to the main
subterm (R . . . v2) under the assumption that all four input clauses hold. This
assumption is encoded by using the input (i.e., lambda) variables p1, . . . , p4 of
type (holds c1), . . . , (holds c4), respectively. Checking the correctness of the original
proof in the resolution calculus then amounts to checking that the lambda term is
well-typed in LFSC when its holes are filled in as prescribed by the definition of
R. In the concrete syntax, this is achieved by passing the proof term to the check
command. �

The use of lambda abstraction in the example above comes from standard LF
encoding methodology. In particular, note how object-language variables (the Vi’s)

12 Aaron Stump et al.

(declare clr (! l lit (! c clause clause)))
(declare con (! c1 clause (! c2 clause clause)))

(declare DR (! c1 clause (! c2 clause (! u1 (holds c1) (! u2 (holds c2) (!v var
(holds (con (clr (pos v) c1) (clr (neg v) c2)))))))))

(declare S (! c1 clause (! c2 clause (! u (holds c1) (^ (simplify c1) c2)
(holds c2)))))

Fig. 7 New clause type and rules for deferred resolution.

fun simplify (x : clause) : clause =
match x with

cln → cln
con c1 c2 → append (simplify c1) (simplify c2)
clc l c →

if l is marked for deletion then (simplify c)
else mark l for deletion; d = clc l (simplify c); unmark l; d

clr l c →
if l is marked for deletion then d = simplify c
else mark l for deletion; d = simplify c; unmark l;
if l was deleted from c then d else fail

Fig. 8 Pseudo-code for side condition function used by the S rule.

are represented by LFSC meta-variables (the λ-variables v1, . . . , v4). This way, safe
renaming and safe substitution of bound variables at the object level are inherited
for free from the meta-level. In LFSC, an additional motivation for using meta-
variables for object language variables is that we can efficiently test the former for
equality in side conditions using variable marking. In the resolution proof system
described here, this is necessary in the side condition of the R rule—for instance, to
check that the pivot occurs in the clauses being resolved upon (see Appendix B).

4.2 Deferred Resolution

The single rule resolution calculus presented above can be further improved in
terms of proof checking performance by delaying the side condition tests, as done
in constrained resolution approaches [41]. One can modify the clause data struc-
ture so that it includes constraints representing those conditions. Side condition
constraints are accumulated in resolvent clauses and then checked periodically,
possibly just at the very end, once the final clause has been deduced. The effect
of this approach is that (i) checking resolution applications becomes a constant
time operation, and (ii) side condition checks can be deferred, accumulated, and
then performed more efficiently in a single sweep using a new rule that converts a
constrained clause to a regular one after discharging its attached constraint.

There are many ways to implement this general idea. We present one in Fig-
ure 7, based on extending the clause type of Figure 4 with two more constructors:
clr and con. The term (clr l c) denotes the clause consisting of all the literals of c
except l, assuming that l indeed occurs in c. The expression (con c1 c2) denotes
the clause consisting of all the literals that are in c1 or in c2. Given two clauses
c1 and c2 and a pivot variable v, the new resolution rule DR, with no side condi-

SMT Proof Checking Using a Logical Framework 13

tions, produces the resolvent (con (clr (pos v) c1) (clr (neg v) c2)) which carries
within itself the resolution constraint that (pos v) must occur in c1 and (neg v)
in c2. Applications of the resolution rule can alternate with applications of the
rule S, which converts a resolvent clause into a regular clause (constructed with
just cln and clc) while also checking that the resolvent’s resolution constraints are
satisfied. A sensible strategy is to apply S both to the final resolvent and to any
intermediate resolvent that is used more than once in the overall proof—to avoid
unnecessary duplication of constraints.

The side condition function for S is provided in pseudo-code (for improved
readability) in Figure 8. The pseudo-code should be self-explanatory. The auxiliary
function append, defined only on regular clauses, works like a standard list append
function. Since the cost of append is linear in the first argument, simplify executes
more efficiently with linear resolution proofs, where at most one of the two premises
of each resolution step is a previously proved (and simplified) lemma. Such proofs
are naturally generated by SMT solvers with a propositional engine based on
conflict analysis and lemma learning—which means essentially all SMT solvers
available today. In some cases, clauses returned by simplify may contain duplicate
literals. However, such literals will be removed by subsequent calls to simplify,
thereby preventing any significant accumulation in the clauses we produce.

Our experiments show that deferred resolution leads to significant performance
improvements at proof checking time: checking deferred resolution proofs is on
average 5 times faster than checking proofs using the resolution rule R [38]. The
increased speed does come here at the cost of increased size and complexity of
the side condition code, and so of the trusted base. The main point is again that
LFSC gives users the choice of how big they want the trusted base to be, while
also documenting that choice explicitly in the side condition code.

4.3 CNF Conversion

Most SMT solvers accept as input quantifier-free formulas (from now on simply
formulas) but do the bulk of their reasoning on a set of clauses derived from the
input via a conversion to CNF or, equivalently, clause form. For proof checking
purposes, it is then necessary to define proof rules that account for this conversion.
Defining a good set of such proof rules is challenging because of the variety of
CNF transformations used in practice. Additional difficulties, at least when using
logical frameworks, come from more mundane but nevertheless important problems
such as how to encode with proof rules, which have a fixed number of premises,
transformations that treat operators like logical conjunction and disjunction as
multiarity symbols, with an arbitrary number of arguments.

To show how these difficulties can be addressed in LFSC we discuss now a
hybrid data structure we call partial clauses that mixes formulas and clauses and
supports the encoding of many CNF conversion methods as small step transfor-
mations on partial clauses. Partial clauses represent intermediate states between
an initial formula to be converted to clause form and its final clause form. We then
present a general set of rewrite rules on partial clauses that can be easily encoded
as LFSC proof rules. Abstractly, a partial clause is simply a pair

(φ1, . . . , φm; l1 ∨ · · · ∨ ln)

14 Aaron Stump et al.

dist pos (φ1 ∧ φ2, Φ; c) =⇒ (φ1, Φ; c), (φ2, Φ; c)
dist neg (¬(φ1 ∧ φ2), Φ; c) =⇒ (¬φ1,¬φ2, Φ; c)

flat pos (φ1 ∨ φ2, Φ; c) =⇒ (φ1, φ2, Φ; c)

flat neg (¬(φ1 ∨ φ2), Φ; c) =⇒ (¬φ1, Φ; c), (¬φ2, Φ; c)

rename (φ, Φ; c) =⇒ (Φ; v, c), (φ; ¬v), (¬φ; v) (v is a fresh var)

Fig. 9 Sample CNF conversion rules for partial clauses (shown as a rewrite sys-
tem). Φ is a sequence of formulas and c is a sequence of literals (a clause).

(declare formula type) (declare not (! phi formula formula)
(declare formSeq type) (declare empty formSeq)

(declare ins (! phi formula (! Phi formSeq formSeq)))

(declare pc_holds (! Phi formSeq (! c clause type)))

(declare rename (! phi formula (! Phi formSeq (! c clause
(! q (pc_holds (ins phi Phi) c)
(! r (! v var (! r1 (pc_holds Phi (clc (pos v) c))

(! r2 (pc_holds (ins phi empty) (clc (neg v) cln))
(! r3 (pc_holds (ins (not phi) empty) (clc (pos v) cln))
(holds cln)))))

(holds cln)))))))

Fig. 10 LFSC proof rule for rename transformation in Figure 9.

consisting of a (possibly empty) sequence of formulas and a clause. Semantically,
it is just the disjunction φ1 ∨ · · · ∨ φm ∨ l1 ∨ · · · ∨ ln of all the formulas in the
sequence with the clause. A set {φ1, . . . , φk} of input formulas, understood con-
junctively, can be represented as the sequence of partial clauses (φ1;), . . . , (φk;).
A set of rewrite rules can be used to turn this sequence into an equisatisfiable
sequence of partial clauses of the form (; c1), . . . , (; cn), which is in turn equisat-
isfiable with c1 ∧ · · · ∧ cn. Figure 9 describes some of the rewrite rules for partial
clauses. We defined 31 CNF conversion rules to transform partial clauses. Most
rules eliminate logical connectives and let-bindings in a similar way as the ones
shown in Figure 9. Several kinds of popular CNF conversion algorithms can be re-
alized as particular application strategies for this set of rewrite rules (or a subset
thereof).

Formulating the rewrite rules of Figure 9 into LFSC proof rules is not difficult.
The only challenge is that conversions based on them and including rename are
only satisfiability preserving, not equivalence preserving. To guarantee soundness
in those cases we use natural-deduction style proof rules of the following general
form for each rewrite rule p =⇒ p1, . . . , pn in Figure 9: derive 2, the empty clause,
from (i) a proof of the partial clause p and (ii) a proof of 2 from the partial clauses
p1, . . . , pn. We provide one example of these proof rules in Figure 10, namely the
one for rename; the other proof rules are similar. In the figure, the type formSeq
for sequences of formulas has two constructors, analogous to the usual ones for
lists. The constructor pc holds is the analogous of holds, but for partial clauses—
it denotes a proof of the partial clause (Φ; c) for every sequence Φ of formulas
and clause c. Note how the requirement in rename that the variable v be fresh
is achieved at the meta-level in the LFSC proof rule with the use of a Π-bound
variable.

SMT Proof Checking Using a Logical Framework 15

(declare th_holds (! phi formula type))

(declare assume_true (declare assume_false
(! v var (! phi formula (! c clause (! v var (! phi formula (! c clause
(! r (atom v phi) (! r (atom v phi)
(! u (! o (th_holds phi) (holds c)) (! u (! o (th_holds (not phi)) (holds c))
(holds (clc (neg v) c)))))))) (holds (clc (pos v) c))))))))

Fig. 11 Assumption rules for theory lemmas in LFSC concrete syntax

4.4 Converting Theory Lemmas to Propositional Clauses

When converting input formulas to clause form, SMT solvers also abstract each
theory atom φ (e.g., s = t, s < t, etc.) occurring in the input with a unique propo-
sitional variable v, and store the corresponding mapping internally. This operation
can be encoded in LFSC using a proof rule similar to rename from Figure 10, but
also incorporating the mapping between v and φ. In particular, SMT solvers based
on the lazy approach [42,4] abstract theory atoms with propositional variables to
separate propositional reasoning, done by a SAT engine which works with a set
of propositional clauses, from theory reasoning proper, done by an internal theory
solver which works only with sets of theory literals, theory atoms and their nega-
tions. At the proof level, the communication between the theory solver and the
SAT engine is established by having the theory solver prove some theory lemmas,
in the form of disjunctions of theory literals, whose abstraction is then used by the
SAT engine as if it was an additional input clause. A convenient way to produce
proofs that connect proofs of theory lemmas with Boolean refutations, which use
abstractions of theory lemmas and of clauses derived from the input formulas, is
again to use natural deduction-style proof rules.

Figure 11 shows two rules used for this purpose. The rule assume true derives
the propositional clause ¬v∨c from the assumptions that (i) v abstracts a formula
φ (expressed by the type (atom v φ)) and (ii) c is provable from φ. Similarly,
assume false derives the clause v ∨ c from the assumptions that v abstracts a
formula φ and c is provable from ¬φ. Suppose ψ1 ∨ · · · ∨ ψn is a theory lemma.
A proof-producing theory solver can be easily instrumented to prove the empty
clause from the assumptions ψ1, . . . , ψn, where ψi denotes the complement of the
literal ψi. This proof can be expressed by the theory solver with nested applications
of assume true and assume false, and become a proof of the propositional clause
l1 ∨ · · · ∨ ln, where each li is the propositional literal corresponding to ψi.

Example 2 Consider a theory lemma such as ¬(s = t)∨t = s, say, for some terms s
and t. Staying at the abstract syntax level, let P be a proof term encoding a proof
of 2 from the assumptions s = t and ¬(t = s). By construction, this proof term
has type (holds 2). Suppose a1, a2 are meta-variables of type (atom v1 (s = t))
and (atom v2 (t = s)), respectively, for some meta-variables v1 and v2 of type var.
Then, the proof term

(assume true a1 (λh1.
(assume false a2 (λh2. P)))

16 Aaron Stump et al.

x− x ≤ c {c < 0}
2 idl contra

x− y < c {c− 1 = d}
x− y ≤ d

lt to leq

x− y ≤ a y − z ≤ b {a+ b = c}
x− z ≤ c idl trans

Fig. 12 Sample QF IDL rules and LFSC encodings (x, y, z are constant symbols and a, b, c,
d are integer values.)

(declare int type) (declare as_int (! x mpz int))

(declare idl_contra (! x int (! c mpz
(! u (th_holds (<= (- x x) (as_int c))) (^ (ifneg c tt ff) tt)
(holds cln)))))

Fig. 13 LFSC encoding of the idl contra rule. Type mpz is the built-in arbitrary precision
integer type (the name comes from the underlying GNU Multiple Precision Arithmetic Library,
libgmp); as int builds a term of the SMT integer type int from a mpz number; tt and ff are
the constructors of the bool predefined type for Booleans; (ifneg x y z) evaluates to y or z
depending on whether the mpz number x is negative or not.

has type holds (¬v1 ∨ v2) and can be included in larger proof terms declaring
v1, v2, a1, and a2 as above. Note that the λ-variables h1 and h2 do not need a type
annotation here as their types can be inferred from the types of a1 and a2. �

5 Encoding SMT logics

In this section, we show in more detail how LFSC allows one to represent SMT
proofs involving theory reasoning. We consider two basic logics (i.e., fragments of
first-order theories) in the SMT-LIB standard [5]: QF IDL and QF LRA.

5.1 Quantifier-Free Integer Difference Logic

The logic QF IDL, for quantifier-free integer difference logic, consists of formulas
interpreted over the integer numbers and restricted (in essence) to Boolean com-
binations of atoms of the form x − y ≤ c where x and y are integer variables
(equivalently, free constants) and c is an integer value, i.e., a possibly negated nu-
meral. Some QF IDL rules for reasoning about the satisfiability of sets of literals
in this logic are shown in Figure 12, in conventional mathematical notation. Rule
side conditions are provided in braces, and are to be read as semantic expressions;
for example, a+ b = c in a side condition should be read as “c is the result of
adding a and b.” Note that the side conditions involve only values, and so can
be checked by (simple) computation. The actual language QF IDL contains ad-
ditional atoms besides those of the form of x − y ≤ c. For instance, atoms such
as x < y and x − y ≥ c are also allowed. Typical solvers for this logic use then a
number of normalization rules to reduce these additional atoms to the basic form.
An example would be rule lt to leq in Figure 12.

Encoding typical QF IDL proof rules in LFSC is straightforward thanks to the
built-in support for side conditions and for arbitrary precision integers in the side
condition language. As an example, Figure 13 shows the idl contra rule.

SMT Proof Checking Using a Logical Framework 17

p1 = 0 p2 ∼ 0

(p1 + p2)↓ ∼ 0
lra add =∼

p1 ∼ 0 p2 = 0

(p1 − p2)↓ ∼ 0
lra sub ∼=

{a ∼ 0}
a ∼ 0

lra axiom ∼

p = 0

(a · p)↓ = 0
lra mult c =

p > 0 {a > 0}
(a · p)↓ > 0

lra mult c >
p ∼ 0 {p � 0}

2 lra contra ∼

Fig. 14 Some of proof rules for linear polynomial atoms. Letter p denotes normalized
linear polynomials; a denotes rational values; the arithmetic operators denote operations on
linear polynomials.

5.2 Quantifier-Free Linear Real Arithmetic

The logic QF LRA, for quantifier-free linear arithmetic, consists of formulas in-
terpreted over the real numbers and restricted to Boolean combinations of linear
equations and inequations over real variables, with rational coefficients. We sketch
an approach for encoding, in LFSC, refutations for sets of QF LRA literals. We
devised an LFSC proof system for QF LRA that centers around proof inferences
for normalized linear polynomial atoms; that is, atoms of the form

a1 · x1 + . . .+ an · xn + an+1 ∼ 0

where each ai is a rational value, each xi is a real variable, and ∼ is one of the
operators =, >,≥. We represent linear polynomials in LFSC as (inductive data
type) values of the form (pol a l), where a is a rational value and l is a list of
monomials of the form (mon ai xi) for rational value ai and real variable xi.
With this representation, certain computational inferences in QF LRA become
immediate. For example, to verify that a normalized linear polynomial (pol a l) is
the zero polynomial, it suffices to check that a is zero and l is the empty list. With
normalized linear polynomials, proving a statement like (1) in Section 2 amounts
to a single rule application whose side condition is an arithmetic check for equality
between rational values.

Figure 14 shows a representative selection of the rules in our LFSC proof
system for QF LRA based on a normalized linear polynomial representation of
QF LRA literals.7 Again, side conditions are written together with the premises,
in braces, and are to be read as mathematical notation. For example, the side
condition {p+ p′ = 0}, say, denotes the result of checking whether the expression
p + p′ evaluates to the zero element of the polynomial ring Q[X], where Q is the
field of rational numbers and X the set of all variables. Expression of the form e↓
in the rules denote the result of normalizing the linear polynomial expression e.
The normalization is actually done in the rule’s side condition, which is however
left implicit here to keep the notation uncluttered. The main idea of this proof
system, based on well known results, is that a set of normalized linear polynomial
atoms can be shown to be unsatisfiable if and only if it is possible to multiply each
of them by some rational coefficient such that their sum normalizes to an atom of
the form p ∼ 0 that does not hold in Q[X].

Since the language of QF LRA is not based on normalized linear polynomial
atoms, any refutation for a set of QF LRA literals must also include rules that
account for the translation of this set into an equisatisfiable set of normalized

7 Additional cases are omitted for the sake of brevity. A comprehensive list of rules can be
found in the appendix of [39].

18 Aaron Stump et al.

t1 = p1 t2 = p2

t1 + t2 = (p1 + p2)↓
pol norm+

t = p

at · t = (ap · p)↓
pol normc·

at = ap
pol norm const

t1 = p1 t2 = p2

t1 − t2 = (p1 − p2)↓
pol norm−

t = p

t · at = (p · ap)↓
pol norm·c

vt = vp
pol norm var

t1 ∼ t2 t1 − t2 = p

p ∼ 0
pol norm∼

Fig. 15 Proof rules for conversion to normalized linear polynomial atoms. Letter t
denotes QF LRA terms; at and ap denote the same rational constant, in one case considered
as a term and in the other as a polynomial (similarly for the variables vt and vp).

(declare term type)
(declare poly type) (declare pol_norm (! t term (! p poly type)))

(declare pol_norm_+ (! t1 term (! t2 term (! p1 poly (! p2 poly (! p3 poly
(! pn1 (pol_norm t1 p1) (! pn2 (pol_norm t2 p2) (^ (poly_add p1 p2) p3)
(pol_norm (+ t1 t2) p3)))))))))

Fig. 16 Normalization function for + terms in concrete syntax.

linear polynomial atoms. Figure 15 provides a set of proof rules for this translation.
Figure 16 shows, as an example, the encoding of rule pol norm+ in LFSC’s concrete
syntax. The type (pol norm t p) encodes the judgment that p is the polynomial
normalization of term t—expressed in the rules of Figure 15 as t = p. In pol norm+,
the polynomials p1 and p2 for the terms t1 and t2 are added together using the
side condition poly add, which produces the normalized polynomial (p1 + p2)↓.
The side condition of the rule requires that polynomial to be the same as the
provided one, p3. The other proof rules are encoded in a similar way using side
condition functions that implement the other polynomial operations (subtraction,
scalar multiplication, and comparisons between constant polynomials).

We observe that the overall size of the side condition code in this proof system is
rather small: about 60 lines total (and less than 2 kilobytes). Complexity-wise, the
various normalization functions are comparable to a merge sort of lists of key/value
pairs. As a result, manually verifying the correctness of the side conditions is fairly
easy.

6 Empirical Results

In this section we provide some empirical results on LFSC proof checking for the
logics presented in the previous section. These results were obtained with an LFSC
proof checker that we have developed to be both general (i.e., supporting the whole
LFSC language) and fast. The tool, which we will refer to as lfsc here, is more
accurately described as a proof checker generator : given an LFSC signature, a
text file declaring a proof system in LFSC format, it produces a checker for that
proof system. Some of its notable features in support of high performance proof
checking are the compilation of side conditions, as opposed to the incorporation of
a side condition language interpreter in the proof checker, and the generation of
proof checkers that check proof terms on the fly, as they parse them. See previous

SMT Proof Checking Using a Logical Framework 19

work by Stump et al, as well as work by Necula et al., for more on fast LF proof
checking [43,50,44,35,34].

6.1 QF IDL

In separate work, we developed an SMT solver for the QF IDL logic, mostly to ex-
periment with proof generation in SMT. This solver, called clsat, can solve mod-
erately challenging QF IDL benchmarks from the SMT-LIB library, namely those
classified with difficulty 0 through 3.8 We ran clsat on the unsatisfiable QF IDL
benchmarks in SMT-LIB, and had it produce proofs in the LFSC proof system
sketched in Section 5.1 optimized with the deferred resolution rule described in
Section 4.2. Then we checked the proofs using the lfsc checker. The experiments
were performed on the SMT-EXEC solver execution service.9 A timeout of 1,800
seconds was used for each of the 622 benchmarks. The table below summarizes
those results for two configurations: clsat (r453 on SMT-EXEC), in which clsat
is run with proof-production off; and clsat+lfsc (r591 on SMT-EXEC), in which
clsat is run with proof-production on, followed by a run of lfsc on the produced
proof.

Table 1 Summary of results for QF IDL (timeout: 1,800 seconds).

Configuration Solved Unsolved Timeouts Time

clsat (without proofs) (r453) 542 50 30 29,507.7s
clsat+lfsc (r591) 539 51 32 38,833.6s

The Solved column gives the number of benchmarks each configuration com-
pleted successfully. The Unsolved column gives the number of benchmarks each
configuration failed to solve before timeout due to clsat’s incomplete CNF con-
version implementation and lack of arbitrary precision arithmetic. The first config-
uration solved all benchmarks solved by the second. The one additional unsolved
answer for clsat+lfsc is diamonds.18.10.i.a.u.smt, the proof of which is bigger
than 2GB in size and the proof checker failed on due to a memory overflow. The
Time column gives the total times taken by each configuration to solve the 539
benchmarks solved by both. Those totals show that the overall overhead of proof
generation and proof checking over just solving for those benchmarks was 31.6%,
which we consider rather reasonable.

For a more detailed picture on the overhead incurred with proof-checking,
Figure 17 compares proof checking times by clsat+lfsc with clsat’s solve-only
times. Each dot represents one of the 542 benchmarks that clsat could solve.
The horizontal axis is for solve-only times (without proof production) while the
vertical axis is for proof checking times. Both are in seconds on a log scale. It
turned out that the proofs from certain families of benchmarks, namely fischer,
diamonds, planning and post office, are much more difficult to verify than those

8 The hardest QF IDL benchmarks in SMT-LIB have difficulty 5.
9 The results are publicly available at http://www.smt-exec.org under the SMT-EXEC job

clsat-lfsc-2009.8.

20 Aaron Stump et al.

1

10

100

1000

1 10 100 1000

LF
SC
 p
ro
o
f
ch
e
ck
in
g
(s
)

clsat solving only (s)

Fig. 17 Solve-only times versus proof checking times for QF IDL.

for other families. In particular, for those benchmarks proof checking took longer
than solving. The worst offender is benchmark diamonds.11.3.i.a.u.smt whose
proof checking time was 2.30s vs 0.2s of solving time. However, the figure also
shows that as these benchmarks get more difficult, the relative proof overheads
appear to converge towards 100%, as indicated by the dotted line.10

6.2 Results for QF LRA

To evaluate experimentally the LFSC proof system for QF LRA sketched in Sec-
tion 5.2, we instrumented the SMT solver cvc3 to output proofs in that system.
Because cvc3 already has its own proof generation module, which is tightly in-
tegrated with the rest of the solver, we generated the LFSC proofs using cvc3’s
native proofs as a guide. We looked at all the QF LRA and QF RDL unsatisfiable
benchmarks from SMT-LIB.11.

Our experimental evaluation contains no comparisons with other proof check-
ers besides lfsc for lack of alternative proof-generating solvers and checkers for
QF LRA. To our knowledge, the only potential candidate was a former system de-
veloped by Ge and Barrett that used the HOL Light prover as a proof checker for
cvc3 [19]. Unfortunately, that system, which was never tested on QF LRA bench-
marks and was not kept in sync with the latest developments of cvc3, breaks
on most of these benchmarks. Instead, as a reference point, we compared proofs
produced in our LFSC proof system against proofs translated into an alternative
LFSC proof system for QF LRA that mimics the rules contained in cvc3’s native
proof format. These rules are mostly declarative, with a few exceptions.12

10 The outlier above the dotted line is diamonds.18.10.i.a.u.smt.
11 Each of these benchmarks consists of an unsatisfiable quantifier-free LRA formula.

QF RDL is a sublogic of QF LRA.
12 Details of these proof systems as well as proof excerpts can be found in [39].

SMT Proof Checking Using a Logical Framework 21

Benchmark Solve + (Pf Gen) (s) Pf Size (MB) Pf Check (s)
Family # cvc lrac lra lrac lra lrac lra T%
check-lra 1 0.1 0.3 0.2 0.5 0.1 0.1 0.0 79%
check-rdl 1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 48%
clock synch 18 11.7 21.8 21.7 14.8 13.0 2.6 2.3 17%
gasburner 19 4.0 8.6 7.8 13.9 7.7 2.5 1.6 46%
pursuit 8 16.6 26.3 26.3 5.1 3.6 0.8 0.7 36%
sal 31 1584.8 3254.3 3239.8 537.1 472.2 275.6 269.0 6%
scheduling 8 281.8 322.9 322.1 25.1 17.8 3.7 2.9 37%
spider 35 10.2 17.4 17.4 12.7 11.1 2.3 2.4 15%
tgc 21 31.5 55.9 55.4 22.7 16.9 4.2 3.4 16%
TM 1 17.6 29.3 29.0 2.7 2.7 0.4 0.4 0%
tta startup 25 29.7 68.4 68.5 43.6 43.2 5.4 5.6 3%
uart 9 1074.2 1391.2 1434.7 102.4 76.6 42.7 37.0 13%
windowreal 24 20.6 41.6 41.7 22.1 21.9 2.8 2.9 3%
Total 201 3082.9 5238.0 5264.6 802.8 686.9 343.2 328.1 8%

Fig. 18 Cumulative results for QF LRA, grouped by benchmark family. Column 2 gives
the numbers of benchmarks in each family. Columns 3–5 give cvc3’s aggregate runtime for
each of the 3 configurations. Columns 6–7 show the proof sizes for the two proof-producing
configurations. Columns 8–9 show LFSC proof checking times. The last column show the
average theory content of each benchmark family.

Fig. 19 Comparing proof sizes and proof checking times for QF LRA.

We ran our experiments on a Linux machine with two 2.67GHz 4-core Xeon
processors and 8GB of RAM. We discuss benchmarks for which cvc3 could gener-
ate a proof within a timeout of 900 seconds: 161 of the 317 unsatisfiable QF LRA
benchmarks, and 40 of the 113 unsatisfiable QF RDL benchmarks. We collected
runtimes for the following three main configurations of cvc3.

cvc: Default, solving benchmarks but with no proof generation.
lrac: Solving with proof generation in the LFSC encoding of cvc3’s format.
lra: Solving with proof generation in our LFSC proof system.

Recall that the main idea of our proof system for QF LRA is to use a polyno-
mial representation of LRA terms so that theory reasoning is justified with rules
like those in Figure 14. Propositional reasoning steps (after CNF conversion) are
encoded with the deferred resolution rule presented in Section 4.2. As a conse-
quence, one should expect the effectiveness of the polynomial representation in
reducing proof sizes and checking times to be correlated with the amount of the-

22 Aaron Stump et al.

ory content of a proof. Concretely, we measure that as the percentage of nodes
in a native cvc3 proof that belong to the (sub)proof of a theory lemma. For our
benchmarks set, the average theory content was very low, about 8.3%, consider-
ably diluting the global impact of our polynomial representation. However, this
impact is clearly significant, and positive, on proofs or subproofs with high theory
content, as discussed below.

Table 18 shows a summary of our results for various families of benchmarks.
Since translating cvc3’s native proofs into LFSC format increased proof generation
time and proof sizes only by a small constant factor, we do not include these values
in the table. As the table shows, cvc3’s solving times (i.e., the runtimes of the
cvc configuration) are on average 1.65 times faster than solving with native proof
generation (the lrac configuration). The translation to proofs in our system (the lra
configuration) adds additional overhead, which is however less than 3% on average.

The scatter plots in Figure 19 are helpful in comparing proof sizes and proof
checking times for the two proof systems. The first plot shows that ours, lra,
achieves constant size compression factors over the LFSC encoding of native cvc3

proofs, lrac. A number of benchmarks in our test set do not benefit from using
our proof system. Such benchmarks are minimally dependent on theory reasoning,
having a theory content of less than 2%. In contrast, for benchmarks with higher
theory content, lra is effective at proof compression compared to lrac. For instance,
over the set of all benchmarks with a theory content of 10% or more, proofs in
our system occupy on average 24% less space than cvc3 native proofs in LFSC
format. When focusing just on subproofs of theory lemmas, the average compres-
sion goes up significantly, to 81.3%; that is to say, theory lemma subproofs in our
proof system are 5.3 times smaller than native cvc3 proofs of the same lemmas.
Interestingly, the compression factor is not the same for all benchmarks, although
an analysis of the individual results shows that benchmarks in the same SMT-LIB
family tend to have the same compression factor.

It is generally expected that proof checking should be substantially faster than
proof generation or even just solving. This was generally the case in our experi-
ments for both proof systems when proof checking used compiled side conditions.13

lfsc’s proof checking times for both proof systems were around 9 times smaller
than cvc3’s solving times. Furthermore, checking lra proofs was always more effi-
cient than checking the LFSC encoding of cvc3’s native proofs; in particular, it
was on average 2.3 times faster for proofs of theory lemmas.

Overall, our experiments with multiple LFSC proof systems for the same logic
(QF LRA), show that mixing declarative proof rules, with no side conditions, with
more computational arithmetic proof rules, with fairly simple side conditions, is
effective in producing smaller proof sizes and proof checking times.

7 Further applications: leveraging type inference

To illustrate the power and flexibility of the LFSC framework further, we sketch
an additional research direction we have started to explore recently. More details
can be found in [40]. Its starting point is the use of the wildcard symbol in proof
terms, which requires the LFSC proof checker to perform type inference as opposed

13 The lfsc checker can be used either with compiled or with interpreted side condition code.

SMT Proof Checking Using a Logical Framework 23

(declare color type)
(declare A color)
(declare B color)
(declare clause type)

(declare formula type)
(declare colored (! phi formula (! col color type)))
(declare p_interpolant (! c clause (! phi formula type)))
(declare interpolant (! phi formula type))

Fig. 20 Basic definitions for encoding interpolating calculi in LFSC.

to mere type checking. One can exploit this feature by designing a logical system
in which certain terms of interest in a proof need not be specified beforehand, and
are instead computed as a side effect of proof checking. An immediate application
can be seen in interpolant-generating proofs.

Given a logical theory T and two sets of formulas A and B that are jointly
unsatisfiable in T , a T -interpolant for A and B is a formula φ over the symbols of T
and the free symbols common toA andB such that (i)A |=T φ and (ii)B,φ |=T ⊥,
where |=T is logical entailment in T and ⊥ is the universally false formula. For
certain theories, interpolants can be generated efficiently from a refutation of A∧B.
Interpolants have been used successfully in a variety of contexts, including symbolic
model checking [30] and predicate abstraction [23]. In many applications, it is
critical that formulas computed by interpolant-generation procedures are indeed
interpolants; that is, exhibit the defining properties above. LFSC offers a way of
addressing this need by generating certified interpolants.

Extracting interpolants from refutation proofs typically involves the use of
interpolant-generating calculi, in which inference rules are augmented with addi-
tional information necessary to construct an interpolant. For example, an inter-
polant for an unsatisfiable pair of propositional clause sets (A,B) can be con-
structed from a refutation of A ∪ B written in a calculus with rules based on
sequents of the form (A,B) ` c[φ], where c is a clause and φ a formula. Sequents
like these are commonly referred to as partial interpolants. When c is the empty
clause, φ is an interpolant for (A,B). The LF language allows one to augment proof
rules to carry additional information through the use of suitably modified types.
This makes encoding partial interpolants into LFSC straightforward. For the ex-
ample above, the dependent type (holds c) used in Section 4.1 can be replaced with
(p interpolant c φ), where again c is a clause and φ a formula annotating c. This
general scheme may be used when devising encodings of interpolant generating
calculi for theories as well.

Figure 20 provides some basic definitions common to the encodings of inter-
polant generating calculi in LFSC for two sets A and B of input formulas. We use
a base type color with two nullary constructors, A and B. Colors are used as a
way to tag an input formula ψ as occurring in the set A or B, through the type
(colored φ col), where col is either A or B. Since formulas in the sets A and B
can be inferred from the types of the free variables in proof terms, the sets do not
need to be explicitly recorded as part of proof judgment types. In particular, our
judgment for interpolants is encoded as the type (interpolant φ).

Our approach allows for two options to obtain certified interpolants. With
the first, an LFSC proof term P can be checked against the type (interpolant φ)
for some given formula φ. In other words, the alleged interpolant φ is explicitly
provided as part of the proof, and if proof checking succeeds, then both the proof P
and the interpolant φ are certified to be correct. Note that in this case the user and
the proof checker must agree on the exact form of the interpolant φ. Alternatively,

24 Aaron Stump et al.

P can be checked against the type schema (interpolant). If the proof checker
verifies that P has type (interpolant φ) for some formula φ generated by type
inference, it will output φ. In this case, interpolant generation comes as a side
effect of proof checking, and the returned interpolant φ is correct by construction.

In recent experimental work [40] we found that interpolants can be generated
using LFSC with a small overhead with respect to solving. In that work, we focused
on interpolant generation for the theory of equality and uninterpreted functions
(EUF), using the lfsc proof checker as an interpolant generator for proofs gener-
ated by cvc3. A simple calculus for interpolant generation in EUF can be encoded
in LFSC in a natural way, with minimal dependence upon side conditions. Over-
all, our experiments showed that interpolant generation had a 22% overhead with
respect to solving with proof generation, indicating that the generation of certified
interpolants is practicably feasible with high-performance SMT solvers.

8 Conclusion and future work

We have argued how efficient and highly customizable proof checking can be sup-
ported with the Logical Framework with Side Conditions, LFSC. We have shown
how diverse proof rules, from purely propositional to core SMT to theory in-
ferences, can be supported naturally and efficiently using LFSC. Thanks to an
optimized implementation, LFSC proof checking times compare very favorably
to solving times, using two independently developed SMT solvers. We have also
shown how more advanced applications, such as interpolant generation, can also
be supported by LFSC. This illustrates the further benefits of using a framework
beyond basic proof checking.

Future work includes a new, more user-friendly syntax for LFSC signatures, a
simpler and leaner, from scratch re-implementation of the lfsc checker—intended
for public release and under way—as well as additional theories and applications of
LFSC for SMT. We also intend to pursue the ultimate goal of a standard SMT-LIB
proof format, based on ideas from LFSC, as well as the broader SMT community.

Acknowledgements We would like to thank Yeting Ge and Clark Barrett for their help
translating cvc3’s proof format into LFSC. We also thank the anonymous referees for their
thoughtful and detailed reviews whose suggestions have considerably helped us improve the
presentation.

References

1. A. Armando, J.M., Platania., L.: Bounded model checking of software using SMT solvers
instead of SAT solvers. In: Proceedings of the 13th International SPIN Workshop on
Model Checking of Software (SPIN’06), Lecture Notes in Computer Science, vol. 3925,
pp. 146–162. Springer (2006)

2. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular inte-
gration of SAT/SMT solvers to Coq through proof witnesses. In: J.P. Jouannaud, Z. Shao
(eds.) Certified Programs and Proofs, Lecture Notes in Computer Science, vol. 7086, pp.
135–150. Springer (2011)

3. Barnett, M., yuh Evan Chang, B., Deline, R., Jacobs, B., Leino, K.R.: Boogie: A modular
reusable verifier for object-oriented programs. In: 4th International Symposium on Formal
Methods for Components and Objects, Lecture Notes in Computer Science, vol. 4111, pp.
364–387. Springer (2006)

SMT Proof Checking Using a Logical Framework 25

4. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories. In:
A. Biere, M.J.H. Heule, H. van Maaren, T. Walsh (eds.) Handbook of Satisfiability, vol.
185, chap. 26, pp. 825–885. IOS Press (2009)

5. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: A. Gupta,
D. Kroening (eds.) Proceedings of the 8th International Workshop on Satisfiability Modulo
Theories (Edinburgh, England) (2010). Available from www.smtlib.org

6. Barrett, C., Tinelli, C.: CVC3. In: W. Damm, H. Hermanns (eds.) Proceedings of the 19th
International Conference on Computer Aided Verification (CAV’07), Berlin, Germany,
Lecture Notes in Computer Science, vol. 4590, pp. 298–302. Springer (2007)

7. Bauer, L., Garriss, S., McCune, J.M., Reiter, M.K., Rouse, J., Rutenbar, P.: Device-
enabled authorization in the Grey system. In: Proceedings of the 8th Information Security
Conference (ISC’05), pp. 431–445 (2005)

8. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
Springer Verlag (2004)

9. Besson, F., Fontaine, P., Théry, L.: A Flexible Proof Format for SMT: a Proposal. In:
P. Fontaine, A. Stump (eds.) Workshop on Proof eXchange for Theorem Proving (PxTP)
(2011)

10. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of provers.
In: Boogie 2011: First International Workshop on Intermediate Verification Languages.
Wroc law, Poland (2011)

11. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: M. Kaufmann,
L. Paulson (eds.) Interactive Theorem Proving, Lecture Notes in Computer Science, vol.
6172, pp. 179–194. Springer (2010)

12. Bouton, T., Caminha B. De Oliveira, D., Déharbe, D., Fontaine, P.: veriT: An open,
trustable and efficient SMT-solver. In: R.A. Schmidt (ed.) Proceedings of the 22nd Inter-
national Conference on Automated Deduction (CADE), CADE-22, pp. 151–156. Springer-
Verlag (2009)

13. Chen, J., Chugh, R., Swamy, N.: Type-preserving compilation of end-to-end verification
of security enforcement. In: Proceedings of the 2010 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pp. 412–423. ACM (2010)

14. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability
solving. Formal Methods in System Design 19(1), 7–34 (2001)

15. Deharbe, D., Fontaine, P., Paleo, B.W.: Quantifier inference rules for SMT proofs. In:
Workshop on Proof eXchange for Theorem Proving (2011)

16. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B.: Extended static
checking for Java. In: Proc. ACM Conference on Programming Language Design and
Implementation, pp. 234–245 (2002)

17. Fontaine, P., Marion, J.Y., Merz, S., Nieto, L.P., Tiu, A.: Expressiveness + automation +
soundness: Towards combining SMT solvers and interactive proof assistants. In: In Tools
and Algorithms for Construction and Analysis of Systems (TACAS), Lecture Notes in
Computer Science, vol. 3920, pp. 167–181. Springer-Verlag (2006)

18. Ford, J., Shankar, N.: Formal verification of a combination decision procedure. In:
A. Voronkov (ed.) 18th International Conference on Automated Deduction (CADE), Lec-
ture Notes in Computer Science, vol. 2392, pp. 347–362. Springer (2002)

19. Ge, Y., Barrett, C.: Proof translation and SMT-LIB benchmark certification: A prelimi-
nary report. In: Proceedings of International Workshop on Satisfiability Modulo Theories
(2008)

20. Goel, A., Krstić, S., Tinelli, C.: Ground interpolation for combined theories. In: R. Schmidt
(ed.) Proceedings of the 22nd International Conference on Automated Deduction (CADE),
Lecture Notes in Artificial Intelligence, vol. 5663, pp. 183–198. Springer (2009)

21. Hagen, G., Tinelli, C.: Scaling up the formal verification of Lustre programs with SMT-
based techniques. In: A. Cimatti, R. Jones (eds.) Proceedings of the 8th International
Conference on Formal Methods in Computer-Aided Design (Portland, Oregon), pp. 109–
117. IEEE (2008)

22. Harper, R., Honsell, F., Plotkin, G.: A Framework for Defining Logics. Journal of the
Association for Computing Machinery 40(1), 143–184 (1993)

23. Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refinement.
In: Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Lecture
Notes in Computer Science, vol. 3920, pp. 459–473. Springer (2006)

26 Aaron Stump et al.

24. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D.,
Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: Formal
verification of an OS kernel. In: J. Matthews, T. Anderson (eds.) 22nd ACM Symposium
on Operating Systems Principles (SOSP), pp. 207–220. ACM (2009)

25. Kothari, N., Mahajan, R., Millstein, T.D., Govindan, R., Musuvathi, M.: Finding pro-
tocol manipulation attacks. In: S. Keshav, J. Liebeherr, J.W. Byers, J.C. Mogul (eds.)
Proceedings of the ACM SIGCOMM 2011 Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communications, pp. 26–37 (2011)

26. Lee, D., Crary, K., Harper, R.: Towards a Mechanized Metatheory of Standard ML. In:
Proceedings of 34th ACM Symposium on Principles of Programming Languages, pp. 173–
184. ACM Press (2007)

27. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler with
a proof assistant. In: G. Morrisett, S.P. Jones (eds.) 33rd ACM symposium on Principles
of Programming Languages, pp. 42–54. ACM Press (2006)

28. Lescuyer, S., Conchon, S.: A Reflexive Formalization of a SAT Solver in Coq. In: Emerging
Trends of the 21st International Conference on Theorem Proving in Higher Order Logics
(TPHOLs) (2008)

29. Marić, F.: Formal verification of a modern SAT solver by shallow embedding into Is-
abelle/HOL. Theoretical Computer Science 411, 4333–4356 (2010)

30. McMillan, K.: Interpolation and SAT-based model checking. In: W.A.H. Jr., F. Somenzi
(eds.) Proceedings of Computer Aided Verification, Lecture Notes in Computer Science,
vol. 2725, pp. 1–13. Springer (2003)

31. Moskal, M.: Rocket-Fast Proof Checking for SMT Solvers. In: C. Ramakrishnan, J. Rehof
(eds.) Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
Lecture Notes in Computer Science, vol. 4963, pp. 486–500. Springer (2008)

32. de Moura, L., Bjørner, N.: Proofs and Refutations, and Z3. In: B. Konev, R. Schmidt,
S. Schulz (eds.) 7th International Workshop on the Implementation of Logics (IWIL)
(2008)

33. Necula, G.: Proof-Carrying Code. In: 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 106–119 (1997)

34. Necula, G., Lee, P.: Efficient representation and validation of proofs. In: 13th Annual
IEEE Symposium on Logic in Computer Science, pp. 93–104 (1998)

35. Necula, G., Rahul, S.: Oracle-Based Checking of Untrusted Software. In: Proceedings of
the 28th ACM Symposium on Principles of Programming Languages, pp. 142–154 (2001)

36. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: from
an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the
ACM 53(6), 937–977 (2006)

37. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-
Order Logic, Lecture Notes in Computer Science, vol. 2283. Springer (2002)

38. Oe, D., Reynolds, A., Stump, A.: Fast and Flexible Proof Checking for SMT. In:
B. Dutertre, O. Strichman (eds.) Proceedings of International Workshop on Satisfiabil-
ity Modulo Theories (2009)

39. Reynolds, A., Hadarean, L., Tinelli, C., Ge, Y., Stump, A., Barrett, C.: Comparing proof
systems for linear real arithmetic with LFSC. In: A. Gupta, D. Kroening (eds.) Proceedings
of International Workshop on Satisfiability Modulo Theories (2010)

40. Reynolds, A., Tinelli, C., Hadarean, L.: Certified interpolant generation for EUF. In:
S. Lahiri, S. Seshia (eds.) Proceedings of the 9th International Workshop on Satisfiability
Modulo Theories (2011)

41. Robinson, J., Voronkov, A.E.: Handbook of Automated Reasoning. Elsevier Science Pub-
lishers and MIT Press (2001)

42. Sebastiani, R.: Lazy satisability modulo theories. Journal on Satisfiability, Boolean Mod-
eling and Computation 3(3-4), 141–224 (2007)

43. Stump, A.: Proof checking technology for satisfiability modulo theories. In: A. Abel,
C. Urban (eds.) Proceedings of the International Workshop on Logical Frameworks and
Metalanguages: Theory and Practice (LFMTP) (2008)

44. Stump, A., Dill, D.: Faster Proof Checking in the Edinburgh Logical Framework. In: 18th
International Conference on Automated Deduction (CADE), pp. 392–407 (2002)

45. Stump, A., Oe, D.: Towards an SMT Proof Format. In: C. Barrett, L. de Moura (eds.)
Proceedings of International Workshop on Satisfiability Modulo Theories (2008)

46. Van Gelder, A.: URL http://users.soe.ucsc.edu/~avg/ProofChecker/
ProofChecker-fileformat.txt

SMT Proof Checking Using a Logical Framework 27

47. Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A Concurrent Logical Framework
I: Judgments and Properties. Tech. Rep. CMU-CS-02-101, Carnegie Mellon University
(2002)

48. Weber, T., Amjad, H.: Efficiently checking propositional refutations in HOL theorem
provers. Journal of Applied Logic 7(1), 26 – 40 (2009)

49. Zee, K., Kuncak, V., Rinard, M.C.: An integrated proof language for imperative programs.
In: Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pp. 338–351 (2009)

50. Zeller, M., Stump, A., Deters, M.: Signature Compilation for the Edinburgh Logical Frame-
work. In: C. Schürmann (ed.) Workshop on Logical Frameworks and Meta-Languages:
Theory and Practice (LFMTP) (2007)

51. Zhang, L., Malik, S.: The quest for efficient boolean satisfiability solvers. In: Proceedings
of 8th International Conference on Computer Aided Deduction (CADE) (2002)

A Typing Rules for Code

The completely standard type-computation rules for code terms are given in Figure 21. Code
terms are monomorphically typed. We write N for any arbitrary precision integer, and use
several arithmetic operations on these; others can be easily modularly added. Function ap-
plications are required to be simply typed. In the typing rule for pattern matching expres-
sions, patterns P must be of the form c or (c x1 · · ·xm), where c is a constructor, not a
bound variable (we do not formalize the machinery to track this difference). In the latter case,
ctxt(P) = {x1 : T1, . . . xn : Tn}, where c has type Πx1 : T1. · · ·xn : Tn.T . We sometimes
write (do C1 C2) as an abbreviation for (let x C1 C2), where x 6∈ FV(C2).

Γ (x) = T

Γ ` x⇒ T Γ ` N ⇒ mpz

Γ ` t1 ⇒ mpz Γ ` t2 ⇒ mpz

Γ ` t1 + t2 ⇒ mpz

Γ ` t⇒ mpz

Γ ` − t⇒ mpz

Γ ` C1 ⇒ T ′ Γ, x : T ′ ` C2 ⇒ T

Γ ` (let x C1 C2)⇒ T

Γ ` C1 ⇒ mpz Γ ` C2 ⇒ T Γ ` C3 ⇒ T

Γ ` (ifneg C1 C2 C3)⇒ T

Γ ` C ⇒ T

Γ ` (markvar C)⇒ T

Γ ` t1 ⇒ Πx:T1. T2 Γ ` t2 ⇒ T1 x 6∈ FV(T2)

Γ ` (t1 t2)⇒ T2

Γ ` T ⇒ type

Γ ` (fail T)⇒ T

Γ ` C1 ⇒ T ′ Γ ` C2 ⇒ T Γ ` C3 ⇒ T

Γ ` (ifmarked C1 C2 C3)⇒ T

Γ ` C ⇒ T ∀i ∈ {1, . . . , n}.(Γ ` Pi ⇒ T Γ, ctxt(Pi) ` Ci ⇒ T ′)

Γ ` (match C (P1 C1) · · · (Pn Cn))⇒ T ′

Fig. 21 Typing Rules for Code Terms. Rules for the built-in rational type are similar to
those for the the integer type, and so are omitted.

B Helper Code for Resolution

The helper code called by the side condition program resolve of the encoded resolution rule R is
given in Figures 22 and 23. We can note the frequent uses of match, for decomposing or testing
the form of data. The program eqvar of Figure 22 uses variable marking to test for equality of
LF variables. The code assumes a datatype of Booleans tt and ff. It marks the first variable,

28 Aaron Stump et al.

(program eqvar ((v1 var) (v2 var)) bool
(do (markvar v1)

(let s (ifmarked v2 tt ff)
(do (markvar v1) s))))

(program litvar ((l lit)) var
(match l ((pos x) x) ((neg x) x)))

(program eqlit ((l1 lit) (l2 lit)) bool
(match l1 ((pos v1) (match l2 ((pos v2) (eqvar v1 v2))

((neg v2) ff)))
((neg v1) (match l2 ((pos v2) ff)

((neg v2) (eqvar v1 v2))))))

Fig. 22 Variable and literal comparison.

(declare Ok type)
(declare ok Ok)

(program in ((l lit) (c clause)) Ok
(match c ((clc l’ c’) (match (eqlit l l’) (tt ok) (ff (in l c’))))

(cln (fail Ok))))

(program remove ((l lit) (c clause)) clause
(match c (cln cln)

((clc l’ c’)
(let u (remove l c’)

(match (eqlit l l’) (tt u) (ff (clc l’ u)))))))

(program append ((c1 clause) (c2 clause)) clause
(match c1 (cln c2) ((clc l c1’) (clc l (append c1’ c2)))))

(program dropdups ((c1 clause)) clause
(match c1 (cln cln)

((clc l c1’)
(let v (litvar l)

(ifmarked v
(dropdups c1’)
(do (markvar v)

(let r (clc l (dropdups c1’))
(do (markvar v) ; clear the mark

r))))))))

Fig. 23 Operations on clauses.

and then tests if the second variable is marked. Assuming all variables are unmarked except
during operations such as this, the second variable will be marked iff it happens to be the first
variable. The mark is then cleared (recall that markvar toggles marks), and the appropriate
Boolean result returned. Marks are also used by dropdups to drop duplicate literals from the
resolvent.

C Small Example Proof

Figure 24 shows a small QF IDL proof. This proof derives a contradiction from the assumed
formula

(and (<= (- x y) (as_int (~ 1)))

SMT Proof Checking Using a Logical Framework 29

(% x int (% y int (% z int
(% f (th_holds (and (<= (- x y) (as_int (~ 1)))

(and (<= (- y z) (as_int (~ 2)))
(<= (- z x) (as_int (~ 3))))))

(: (holds cln)
(start _ f
(\ f0
(dist_pos _ _ _ _ f0
(\ f1 (\ f2
(decl_atom_pos _ _ _ f1
(\ v0 (\ a0 (\ f3
(clausify _ f3
(\ x0
(dist_pos _ _ _ _ f2
(\ f4 (\ f5
(decl_atom_pos _ _ _ f4
(\ v1 (\ a1 (\ f6
(clausify _ f6
(\ x1
(decl_atom_pos _ _ _ f5
(\ v2 (\ a2 (\ f7
(clausify _ f7
(\ x2

(R _ _ _ x0
(R _ _ _ x1

(R _ _ _ x2
(assume_true _ _ _ a0 (\ h0
(assume_true _ _ _ a1 (\ h1
(assume_true _ _ _ a2 (\ h2

(idl_contra _ _
(idl_trans _ _ _ _ _ _ h0
(idl_trans _ _ _ _ _ _ h1

h2)))))))))
v2) v1) v0)

)))))))))))))))))))))))))))))))

Fig. 24 A small QF IDL proof

(and (<= (- y z) (as_int (~ 2)))
(<= (- z x) (as_int (~ 3)))))

The proof begins by introducing the variables x, y, and z, and the assumption (named f) of
the formula above. Then it uses CNF conversion rules to put that formula into CNF. CNF
conversion starts with an application of the start rule, which turns the hypothesis of the input
formula (th hold φ) to a proof of the partial clause (pc hold (φ;)). The dist_pos, mentioned
also in Section 4.3 above, breaks a conjunctive partial clause into conjuncts. The decl_atom_pos
proof rule introduces new propositional variables for positive occurrences of atomic formulas.
The new propositional variables introduced this way are v0, v1, and v2, corresponding to the
atomic formulas (let us call them φ0, φ1, and φ2) in the original assumed formula, in order.
The decl_atom_pos rule is similar to rename (discussed in Section 4.3 above), but it also binds
additional meta-variables of type (atom v φ) to record the relationships between variables
and abstracted formulas. So for example, a0 is of type (atom v0 φ0). The clausify rule turns
the judgements of partial clauses with the empty formula sequence (pc holds (; c)) to the
judgements of pure propositional clauses (holds c). Here, this introduces variables x0, x1, and
x2 as names for the asserted unit clauses φ0, φ1, and φ2, respectively.

After CNF conversion is complete, the proof derives a contradiction from those asserted
unit clauses and a theory clause derived using assume_true (see Section 4.4) from a theory con-
tradiction. The theory contradiction is obtained with idl_trans and idl_contra (Section 5.1).

