
Formalizing the Meta-Theory of Q0 in
Rogue-Sigma-Pi

Li-Yang Tan
Washington University in St. Louis, Computational Logic Group

lytan@wustl.edu

Abstract. Introduced by Peter Andrews in the 1960’s, Q0 is a classical higher-order
logic based on simply-typed lambda calculus. This paper presents our work in progress on
the formalizing of Q0 in a programming language, Rogue-Sigma-Pi (RSP), with the aim
of validating its meta-theory. The main challenge of this project arises from the fact that
while all logical derivations are carried out in much detail in Andrews’ formalism, many
of the syntactic derivations have been kept implicit. Therefore, most of our work has been
devoted to setting up a framework that allows us to formalize low-level syntactic notions
of Q0, such as variable occurrences, bindings and replacement. This formalization also
includes proving meta-theoretic properties of these various syntactic notions. Building
on the the ability to prove syntactic derivations assumed in Andrews’ formalism, recent
progress has led to the proving of basic meta-theorems of Q0, such as the equality rules,
alpha-equivalence, beta- and eta-conversions, as well as capture-avoiding substitution.
This paper will discuss the theoretical and engineering challenges faced in our formalizing
of Q0 in RSP that is guided by a faithful adherence to Andrews’ presentation on paper.

1 Introduction

In studying Peter Andrews’ formalism of Q0 [1], one notices that all logical
derivations are made very explicit and carried out meticulously. In fact, one
is often impressed by how such a high level of detail and accuracy is attained
without the aid of the multitude of theorem provers and proof assistants
available for our use today.

However, although logical derivations are made explicit, Andrews chooses
to keep most syntactic derivations implicit in the meta-proofs of Q0. This
poses a challenge for our work on producing machine-checked proofs of the
meta-theorems. Consider the following example: If A′ is the result of re-
placing all free occurrences of x by y in a well-formed formula A, and if x
does not occur free in A, then we have that A′ is the same as A. Although
such syntactic lemmas are arguably intuitive and straightforward (and hence

Proceedings of the Tenth ESSLLI Student Session
Judit Gervain (editor)

Chapter 1, Copyright c© 2005, Li-Yang Tan

1

kept implicit in Andrews’ formalism), our meta-language is not expressive
enough to prove the associated syntactic derivations. Q0’s complex syntactic
notions pose additional challenges. Type theoretic meta-languages like RSP
are commonly used for formalizing meta-theories, as they often have support
for customary syntactic notions such as capture-avoiding substitution for all
occurrences of a variable. However, Q0 is based on more complex syntactic
notions — for instance, substitution in Q0 allows for variable capture some-
times, and only replaces a single occurrence.

Hence, we need to set up a framework within which we can formalize
these syntactic notions. With the added expressiveness of our meta-language,
we can then state and prove the syntactic lemmas needed for our meta-
proofs. A judgmental formulation seems appealing and was the approach
we choose to take initially. However, there are too many related syntactic
notions (see Table 1.1), and formalizing them all independently proved to
be unfeasible. Therefore, we introduced a sublogic — an underlying logical
system of our formalism. Our sublogic is a multi-sorted classical first-order
natural deduction system. Every syntactic notion is thus defined by a first-
order formula, and syntactic derivations correspond to proofs in our natural
deduction system. This is the main contribution of our project and will be
the emphasis of this paper.

2 The Primitive Basis of Q0 in RSP

2.1 Rogue-Sigma-Pi

Rogue-Sigma-Pi (RSP) is a functional language designed for the manipula-
tion of proofs [8], and it includes the Edinburgh Logical Framework (LF) [6]
as proper fragment. Based on dependent type theory, types in RSP are in-
dexed by terms and programs manipulate dependently typed data. For this
project, RSP serves the same functionality as theorem provers such as Is-
abelle, Nuprl, Coq, etc [7, 4, 5]. The basic concrete syntax of RSP is given
below.

c :: A type ascription
x:A => B dependent function type

A => B non-dependent function type
x:A -> M lambda abstraction

A key aspect of our approach is the use of tactics to build proofs of various
syntactic lemmas. In our current framework, we have a soundness guarantee
for our theorem prover (RSP): if a tactic is well-typed, then any proof it

2

builds is guaranteed to be valid. However, we have no such guarantee for
completeness. Our group is currently working on RSP1 [9], an extension of
RSP with simple termination and coverage checking. The type theory of
RSP1 will allow us to provide a total correctness guarantee for our tactics.
We will then be able to statically validate the meta-theory of Q0. However,
as RSP1 is still work in progress, our tactics are only partially verified in
our current framework; certain bugs can only be detected when the RSP
programs are executed.

Higher-order abstract syntax (HOAS) has been advocated as a way of
avoiding the overhead of explicit reasoning about syntax by incorporating the
necessary syntactic properties into the meta-logic. In fact, RSP does support
HOAS. However, due to the peculiar nature of Q0’s syntactic notions, HOAS
is not a suitable choice for this project. For example, as mentioned in the
previous section, substitutions allowed by replacement rules are linear, and
variable-capturing in some cases.

2.2 Q0 types, variables, constants and terms

In this section, we will discuss the embedding of the primitive basis of Q0

in RSP. A presentation of Q0 types, variables, constants and terms will run
parallel with a discussion of their corresponding representations in RSP.

The types of Q0 are defined recursively as shown below.

types t ::= ı type of individuals
| o type of truth values
| (αβ) type of functions from elements

of type β to elements of type α

With the exception of the abstraction operator λ and parentheses [], the only
primitive symbols of Q0 are variables and logical constants. Q0 variables in
RSP are indexed by their types and also by a variable number. There are
two logical constants: Q((oα)α) and ι(ı(oı)). The former denotes the identity
relation between elements of type α and the latter, a description operator
for individuals. The typing of Q0 types, variables and constants in RSP are
given below. Note that type is a primitive kind of RSP.

Tp :: type.
O :: Tp.
I :: Tp.
Fun :: Tp => Tp => Tp.
Var :: Tp => type.

3

Const :: Tp => type.

V :: a : Tp => V_num => Var a. # variables
Q :: s : Tp => Const (Fun (Fun O s) s). # identity relation
Iota :: Const (Fun I (Fun O I)). # description operator

In Q0, well-formed formulas and their corresponding types (denoted by
uppercase letters subscripted by their types—e.g., Aα, Bβ, Cαβ, . . .) are
recursively defined as follows. We abbreviate well-formed formulas of type α
by wffα.

1. A primitive variable or constant of type α is a wffα.
2. AαβBβ is a wffα denoting the application of the function Aαβ to Bβ.
3. λxβAα is a wff(αβ) denoting a lambda abstraction.

Well-formed formulas are terms in our formalization and they have type
Trm X, where X is a Q0 type (with RSP type Tp). The typing of each of
the four possible forms of terms is given below.

Trm :: Tp => type.
_v :: s : Tp => Var s => Trm s. # injection of a variable
_c :: s : Tp => Const s => Trm s. # injection of a constant
Apply :: a : Tp => b : Tp => Trm (Fun a b) => Trm b => Trm a.
Lambda :: a : Tp => b : Tp => Var b => Trm a => Trm (Fun a b).

Before stating the axioms and inference rule of Q0, Andrews introduces
several definitions of the customary logical operators (∧,∨,⊃,∼, T, F, . . .)
and their corresponding syntactic abbreviations. These have all been encoded
in RSP but due to space considerations, they will not be replicated here.

2.3 Axioms of Q0 and Rule R

Q0 has five axioms, two of which (3αβ and 41−45) are axiom schemata. Col-
lectively, they describe basic properties about truth, falsehood, equality and
λ. Also, the Q0 equivalents of the Axiom of Extensionality and the Axiom
of Descriptions are both stated. As with the definitions and abbreviations,
all five axioms have been encoded in our formalism in RSP.

Q0’s single rule of inference is a rule of replacement which allows for
variable capture. (Note: A,B,C etc. are abbreviations for the wffos Ao, Bo,
Co etc.)

Rule R From C and Aα = Bα to infer the result of replacing one occurrence of
Aα in C by an occurrence of Bα, provided that the occurrence of Aα in C
is not immediately preceded by λ.

4

There are three syntactic notions central to this rule, all of which have to
be formalized in RSP before we can state Rule R. First, we have to define
when a Q0 term occurs in another. That is, we have to formalize the ternary
relation “A is a subterm of B at position p.” Next, we need to formalize
the notion of replacing one term by another at a certain position. Third, we
need to define when a position is binding, and non-binding, in a term.

This necessitates an underlying logical system that will allow us to for-
malize such syntactic relations among Q0 terms and variables, and then allow
us to build proofs of meta-theoretic properties resulting from these relations.
In this way, we are able to explicitly carry out the syntactic derivations that
are assumed in Andrews’ meta-proofs. The resulting architecture of our ap-
proach can be summarized as follows: We encode our sublogic within the
logical framework RSP. On top of this sublogic, we define Q0. The incorpo-
ration of the sublogic into our formalism will be described in detail in the
following sections.

3 Formalizing Q0’s Syntactic Notions with a

Sublogic

Our sublogic is a multi-sorted classical first-order natural deduction system.
The primitive sorts of our sublogic are Q0 types, variables, constants, terms,
as well as positions in terms and variable numbers. The sublogic permits
quantification over all primitive sorts. Also, we take a small set of basic
syntactic notions as primitive. Every derived syntactic notion is then defined
by a first-order formula of our sublogic, and carrying out syntactic derivations
corresponds to building proofs in our natural deduction system.

sl_o :: type. # sublogic formula
sl_pf :: sl_o => type. # sublogic proof

Therefore, a sublogic formula A is true if and only if the type sl pf A

is inhabited. As proofs of more elaborate syntactic notions can be of con-
siderable size, we also implement validated tactics to alleviate the burden of
building proofs by hand.

The semantics of the name “sublogic” should be clarified here. In math-
ematics, the prefix “sub” is commonly understood as follows: sub-X is a
part of X that inherits all the structure of X. A few examples are subgroup,
subgraph, and subspace. However, in this paper, our sublogic is an auxiliary

5

logic upon which Q0 is defined. Therefore, we do not mean it in the same
sense as how classical propositional logic is a sublogic of first-order predicate
logic, but instead, our sublogic should be understood as an underlying logical
system of Q0.

3.1 Defining Syntactic Notions in the Sublogic

In our sublogic, we take equality between sublogic terms of the same sort as
primitive syntactic notions. In addition, the subterm, prefix, left child, right
child and set membership relations are taken primitive. All other syntactic
notions are defined in terms of the above primitive notions. Table 1.1 lists
the syntax and semantics of all primitive syntactic notions, along with some
of the basic derived notions of our sublogic.

Given the primitive and basic derived notions listed in Table 1.1, our
sublogic is now sufficiently expressive to formalize some of Q0’s more elabo-
rate syntactic notions. We will illustrate this with an example: Given terms
Aα and Bβ and a variable xα, Aα is free for xα in Bβ if and only if no free
occurrence of xα in Bβ is in a well-formed part of Bβ of the form [λyγCδ]
where yγ is free in Aα. Equivalently, if xα occurs free in a well-formed part of
Bβ of the form [λyγCδ], then yγ is not free in Aα. The typing and definition
of free for in our sublogic is shown below.

free_for ::
a : Tp => b : Tp => Trm a => Var a => Trm b => sl_o =
a : Tp -> b : Tp -> A : Trm a -> x : Var a -> B : Trm b ->
for_all_pos (p : Pos ->
for_all_tp (gamma : Tp ->
for_all_tp (delta : Tp ->
for_all_var (y : Var gamma ->
for_all_trm (C : Trm delta ->
sl_imp (sl_and (sl_subtrm Lambda(y,C) B p)

(sl_free_var x Lambda(y,C))
(sl_not_free y A)))))).

3.2 Sublogic Proofs of Syntactic Notions: Lemmas and
Tactics

For some xα, Aα and Bβ, we prove that Aα is free for xα in Bβ by doing a
case analysis on Bβ. If Bβ ≡ vβ for some variable vβ, the claim holds true
vacuously since there cannot be a lambda-term in vβ. On the other hand,
if Bβ ≡ [MβηNη], it is necessary and sufficient to establish that Aα is free
for xα in Mβη, and in Nη. The other two cases for constants and lambda

6

abstractions are similar.

In our formalism, we first state and prove four sublogic lemmas, one for
each possible form of Bβ. The proofs of these lemmas are derivations within
our natural deduction system. For example, in the case of Bβ ≡ vβ, the im-
plication is established by first assuming the antecedent, obtaining the proof
that [λyγCδ] occurs in vβ using ∧EL, and then deriving the consequent via ex
falso quolibet. If Bβ is an application or a lambda abstraction, the proof is a
hypothetical derivation from assumption(s) that Aα is free for xα in certain
subterm(s) of Bβ. For example, for the case Bβ ≡ [MβηNη], the correspond-
ing lemma has to take in a sublogic proof that Aα is free for xα in Mβη

(that is, an RSP term with type sl_pf(free_for a (Fun b e) A x M))),
and similarly for Nη. The typing of free for apply is shown below.

free_for_apply ::
a : Tp => b : Tp => e : Tp => Trm a => Var a =>
M : Trm (Fun b e) => N : Trm e =>
sl_pf (free_for a (Fun b e) A x M) =>
sl_pf (free_for a e A x N) =>
sl_pf (free_for a b A x Apply(M,N).

For each syntactic relation, we implement a tactic that, given arbitrary
input terms, builds the corresponding sublogic proof that the relation holds
among them (or returns Null if it does not). All our syntactic lemmas have
been proven using case analysis, and case analysis is carried out with pat-
tern matching in RSP (syntactic first-order matching). Hence, in free for,
each of the four possible forms of Bβ is represented by a dependently typed
pattern abstraction, and the abstractions are combined with deterministic
choice. When a pattern matches the target, our tactic calls the correspond-
ing lemma for that form. For the lemmas that are hypothetical derivations
(e.g., free for apply), recursive calls yield the desired proofs of assump-
tions.

Numerous other syntactic relations and lemmas have been proven in our
formalism. A particularly challenging syntactic notion arises in the state-
ment of a generalization of Rule R. Replacement in Rule R’ is subject to the
following restriction: The occurrence of Aα in C is not in a wf part [λxβEγ]
of C, where xβ is free in a member of H and free in [Aα = Bα] (H is a list
of hypotheses). The formalizing of this syntactic restriction in our sublogic
— statement of lemmas, their associated sublogic proofs, along with tactics
— entailed more than 1200 lines of RSP code.

7

Having stated and proven the necessary syntactic lemmas, we have re-
cently started proving elementary meta-theorems of Q0. Equality rules,
alpha-equivalence, restricted and generalized versions of beta-conversion, eta-
conversion, as well as a generalization of Rule R’, have all been stated, proven
and verified in our formalism. With the added expressiveness of our frame-
work, the programs written to prove these meta-theorems have all been rela-
tively small — the total size of the first seven meta-theorems is only slightly
more than 1300 lines of RSP code. The size of the Q0 project currently
stands at 11000 lines of RSP code.

4 Conclusion and Future Work

In this paper, we have discussed the challenges involved in the formalizing
of Peter Andrews’ classical higher-order logic Q0 in our language Rogue-
Sigma-Pi. The main challenge of this project has been the setting up of a
framework within which we can define the complex syntactic notions of Q0

precisely. Our proposed solution is to embed an underlying logical system —
a first-order natural deduction system — into our formalism. This sublogic
provides us with the expressiveness to first define, and then prove meta-
theoretic properties about the various syntactic notions. We are then able
to explicitly carry out syntactic derivations assumed in Andrews’ formalism
and prove syntactic lemmas needed for the meta-proofs of Q0.

Having completed this phase of the project, we have since gone on to
state and prove some of the elementary meta-theorems of Q0. Although the
syntactic theory we have stated in the sublogic may need further additions or
even revisions as we proceed, the proving of meta-theorems is now the main
emphasis of the project. It is our hope that the project will culminate in the
proving of the Deduction Theorem of Q0.

5 Acknowledgments

First and foremost, I would like to thank my advisor, Professor Aaron Stump,
for his guidance throughout this project. Also, I would like to thank the
anonymous reviewers for their helpful comments and suggestions. Last but
not least, I would like to thank the members of my research group, Ian
Wehrman, Edwin Westbrook, Robert Klapper, and Joel Brandt, for their
support.

8

Primitive Sublogic Syntactic Notions

sl eq tp a b

Holds iff two sublogic terms of the
same sort are syntactically equal.

sl eq var v1 v2

sl eq const c1 c2

sl eq trm A B

sl eq pos p1 p2

sl eq vnum N M

sl subtrm A B p A is a subterm of B at position p
sl prefix p1 p2 Position p1 is a prefix of p2

sl pos left p1 p2
p2 = p1 · 0. That is, p2 is the result of
going left on p1.

sl pos right p1 p2 p2 = p1 · 1
sl Olist member x L x is in the list of hypotheses L

Some Derived Sublogic Syntactic Notions

Inequality
sl difftp a b

Holds iff the two Q0 terms of the same
sublogic sort are syntactically
different. Negation of sl eq *

sl diffvar v1 v2

sl diffconst c1 c2

sl difftrm A B

Positions

sl pos binding p A
Position p in A is immediately
preceded by a λ

sl pos non binding p A Negation of sl pos binding

Variable Occurrences and Bindings
sl is var v1 A The variable v1 occurs in A.
sl not var v1 A Negation of sl is var

sl bound above v A p Position p in A is bound above by v.
sl not bound above v A p Negation of sl bound above

sl free var v A v occurs free in A
sl not free v A Negation of sl free var

sl bound var v A v occurs bound in A.
sl not bound v A Negation of sl bound var

Replacement

sl replace x y p C D
Replacing x by y at position p in C
gives you D

sl replace all x A C

D

Replacing all free occurrences of x by
A in C gives you D

Table 1.1: Syntactic Notions defined in the Sublogic

9

Bibliography

[1] P. Andrews. A Transfinite Type Theory with Type Variables. North-Holland,
1965.

[2] P. Andrews. An Introduction to Mathematical Logic and Type Theory: to Truth
through Proof. Academic Press, 1986.

[3] A. Appel and A. Felty. Dependent Types Ensure Partial Correctness of Theo-
rem Provers. Journal of Functional Programming, 14(1):3–19, January 2004.

[4] R. Constable and the PRL group. Implementing mathematics with the Nuprl
proof development system. Prentice-Hall, 1986.

[5] T. Coquand and G. Huet. The Calculus of Constructions. Information and
Computation, 76(2-3):95–120, 1988.

[6] R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics.
Journal of the Association for Computing Machinery, 40(1):143–184, January
1993.

[7] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL —
A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

[8] A. Stump. Imperative LF Meta-Programming. In C. Schürmann, editor, 4th
International Workshop on Logical Frameworks and Meta-Languages, 2004.

[9] E. Westbrook and A. Stump. RSP1: A First-Order, Dependently Typed Pat-
tern Matching Language with Imperative Features, 2005. Manuscript available
at http://cl.cse.wustl.edu/papers/rsp1.pdf.

10

