
Exploring Predictability of SAT/SMT Solvers
Robert Brummayer

Johannes Kepler University
Linz, Austria

robert.brummayer@jku.at

Duckki Oe
The University of Iowa
Iowa City, Iowa, USA

duckki-oe@uiowa.edu

Aaron Stump
The University of Iowa
Iowa City, Iowa, USA
astump@acm.org

Abstract
This paper seeks to explore the predictability of SAT and SMT solvers in response to different

kinds of changes to benchmarks. We consider both semantics-preserving and possibly semantics-
modifying transformations, and provide preliminary data about solver predictability. We also propose
carrying learned theory lemmas over from an original run to runs on similar benchmarks, and show
the benefits of this idea as a heuristic for improving predictability of SMT solvers.

1 Motivation

SAT and SMT (Satisfiability Modulo Theories) solvers have enjoyed tremendous performance improve-
ments in the past ten years, increasing the automated-reasoning power available for applications like
algorithmic verification, combinatorial design, planning, and others (e.g., [7, 5, 4]). Most work in the
field has focused just on performance-oriented quality metrics for solvers. For example, the basic mea-
sure used in both the most recent (at the time of writing) SAT Competition and SMT Competition was
simply the pair of the number of benchmarks solved and running time to solve them, compared in the
natural lexicographic order (for the competitions mentioned, see, e.g., [1, 3]). While the SAT competition
has also experimented recently with more complex measures, they are also centered on performance.

In this paper, we propose another property to consider when evaluating solvers, namely predictabil-
ity. While users certainly require and benefit from improvements to raw performance, anecdotal evidence
from end users of solvers suggests that in some cases unpredictability is at least as significant a concern.
For example, Steve Miller, Principal Software Engineer in the Advanced Technology Center of Rockwell
Collins, reported in his keynote presentation at Midwest Verification Day 2009 that unpredictability is
a significant issue for his team in incorporating SAT/SMT solvers into their verification workflow. Un-
predictability is a problem because a small change to a model can lead to an enormous change in the
amount of time to solve the resulting verification condition. If the amount of time is enormously longer,
the verification may become infeasible or unacceptably delayed. If it is enormously shorter, engineers
may doubt the result, questioning if an error elsewhere in the workflow has led to such different system
behavior. It may improve the usability of such solvers to sacrifice a modest amount of performance for
improved predictability.

In this paper we provide a preliminary study of predictability of SAT (Section 2) and SMT (Section 3)
solvers under small mutations of standard benchmarks. We use the standard deviation of solver times
on a collection of mutants as a measure of variability. In the case of SMT solvers, we also propose and
study a technique for heuristically improving predictability, by carrying over a selection of learned theory
lemmas from the original run of the solver to the runs on the mutants.

2 Experiments with SAT Benchmarks

We survey how small changes to benchmarks affect the performance of SAT solvers. In particular,
we evaluate the effects of semantics-preserving changes such as variable renaming and literal/clause re-
ordering. Moreover, changes that may change the satisfiability status, e.g. adding resp. dropping arbitrary
literals, are evaluated. The goal is to quantify the variability of solving times and to identify the effects
of different types of variations.

1

robert.brummayer@jku.at
duckki-oe@uiowa.edu
astump@acm.org


Predictability of SAT/SMT Solvers Brummayer, Oe, and Stump

Type Description
l literals in each clause are reordered
c clauses of the formula are reordered
n variable names are changed
lc a combination of l and c variations
nlc a combination of n, l and c variations
nlcx in addition to nlc, one literal of non-unary clause is changed (0.01% of chance)
nlca in addition to nlc, one literal is dropped from or added to clause (0.01% of chance)

Figure 1: Types of variations

2.1 Methods

From the SAT competition 2009, 5 solvers and 13 benchmarks were chosen. The solvers are some
of the highly ranked ones in each category, and the benchmarks are of easy to medium difficulty that
could be solved in about 300 seconds from the industrial category of the competition. Those solvers and
benchmarks are listed below with solving times:

Benchmark CirCUs lysat MiniSat mxc-sat09 precosat

ACG-10-5p0 44.72 39.99 21.52 47.26 35.59
AProVE09-07 7.08 12.25 4.72 7.06 2.89
AProVE09-17 13.44 9.62 7.33 6.75 4.95
AProVE09-20 292.43 45.25 16.64 28.08 35.14
countbitsrotate016 27.94 61.81 24.2 11.7 14.5
gss-14-s100 65.2 22.79 18.37 13.54 47.97
gus-md5-04 4.92 5.62 2.17 16.91 5.3
icbrt1 32 14.59 15.29 7.72 11.61 11.34
minand128 9.86 49.8 20.01 55.83 13.77
minandmaxor032 7.73 6.23 3.65 5.51 4.92
minxorminand032 5.2 8.37 4.6 9.33 7.25
minxorminand064 106.21 157.31 106.16 327.19 151.4
post-c32s-gcdm16-22 249.57 115.06 97.41 151.21 51.15

Types of variations We made random changes to the original in order to simulate situations in which
users query similar, but not identical, formulas repeatedly. Seven types of variations were performed and
summarized in Figure 1. The first five variations preserve the semantics of the original formula and do
not change the satisfiability status of the formula. In contrast, the variations nlcx and nlca may change
the satisfiability status. For the variation nlcx, 0.01% of all non-unary clauses are considered small and
an arbitrary literal (of the existing variables) replaces one random literal of each affected clause. The
variation nlca performs even more changes. In particular, the same number of binary and ternary clauses
are changed with probability 0.01%. One literal is added to each of those binary clauses and one literal is
dropped from each of those ternary clauses. Note that we tried to avoid some of the possible unrealistic
changes. Unary clauses, the literal-clause ratio, and the lengths of clauses are left unchanged in order to
keep the inherent difficulty level of the formula.

Measure of Predictability For each type of variation and each benchmark, a random sample of 50
variations was generated and the solving times were recorded. Each solver has its own performance
distribution over the same sample. For predictability, we only care about the spread of distribution or the
variability of data. If the distribution of a solver is ”narrower“, we can say the solver is more predictable.

2



Predictability of SAT/SMT Solvers Brummayer, Oe, and Stump

To statistically quantify variability, we used the standard deviation of solving times. Obviously, a ”small“
standard deviation indicates high predictability.

2.2 Empirical Results

Figure 2 summarizes the variabilities of solving times induced by the different types of variation. For
each variation and each solver, the standard deviations of solving times for all benchmarks were col-
lected. Each bar in the graphs summarizes the distribution of the 13 standard deviations for a given
solver and a given variation. The gray box of each bar represents the range of the middle half values,
which are considered typical values. The line in the middle of box marks the median value and the ”+”
sign marks the average. The whiskers sticking out of box extend to adjacent values that are not farther
away from the edge of the box than 1.5 times the height of the box. Small squares are values farther out
than the adjacent values and considered outliers.

The result for the variation l shows that all solvers have small variability compared to those un-
der other types of variations. Note that the scale of the graph is smaller than the others. Interestingly,
reordering literals affects the predictability of precosat more than other solvers. This could be eas-
ily avoided by sorting the literals inside the SAT solver. The outstandingly high value of CirCUs is
for AProVE09-20. Notably, the solver showed less predictability over all variations of that particular
benchmark. The results for the other semantics-preserving variations are almost the same. All solvers
showed very similar behavior in general, except a few outliers. The other notable outlier, which belongs
to mxc-sat09, is minxorminand064. Our experimental results suggest that any single type of varia-
tion, except for l, is sufficient to shuffle the performance of solvers without changing semantics. More
experiments are necessary to generalize this observation to other benchmarks.

The nlcx variation changed the variabilities for some benchmarks so that more outliers appear in the
graphs. Interestingly, the highest outliers are all for post-c32s-gcdm16-22. However, the majority of
benchmarks did not change the variability of solving times compared to the result for the variation type
nlc. Interestingly, the nlca variation uniformly made the formula easier to solve and the solving times
less variable across all solvers. At the same time, relative variability among solvers did not change much.
Therefore, the graph looks similar to that of nlcx even if the scale of graph is different. Considering this
variation, the highest outliers are all for AProVE09-20.

3 Experiments with SMT Benchmarks and Theory Lemmas

In this section, we explore mutation of SMT benchmarks, taken from the SMT-LIB library [2]. The
following mutations are applied below with equal probability: (1) change the value of a real or integer
constant; (2) swap operands of a predicate or function symbol, or logical connective; (3) change a pred-
icate or function symbol, or logical connective, to one of the same type; (4) insert a logical negation;
and (5) perform a local rewriting step to change a formula or a term to an equivalent one. Only (5) is
semantics-preserving in general.

The goal of this experiment is to assess the impact of inserting theory lemmas dumped from a run of
the solver on the original benchmark, on mutations of that benchmark. The rationale for inserting learned
theory lemmas as possibly improving performance and/or predictability is that learned theory lemmas
represent information the solver found useful when solving the original benchmark. The idea is that this
information may also prove useful when solving a similar benchmark. It is also possible that the learned
lemmas will mitigate the effect of the mutation.

Previous work by Whittemore et al. on reusing derived lemmas for SAT for a similar scenario
(solving a sequence of related instances) requires tracking which lemmas are invalidated by changes in

3



Predictability of SAT/SMT Solvers Brummayer, Oe, and Stump

Figure 2: The variabilities of solving times by different types of variation

4



Predictability of SAT/SMT Solvers Brummayer, Oe, and Stump

the formula [6]. In contrast, theory lemmas are, by definition, formulas which are valid in the solver’s
(possibly combined) background theory, without any other assumptions. Thus, it is always semantics-
preserving to add a theory lemma, as it is always true modulo the theory, regardless of the rest of the
benchmark formula. So no tracking is needed for theory lemmas (but would be needed for lemmas that
follow from the input formula).

We modified the two open-source SMT solvers CVC3 and OPENSMT to dump learned theory lem-
mas, with the helpful advice of the authors of those tools. We then perform the following test for selected
benchmarks (discussed below), using a timeout of 1 minute and a memory limit of 1GB:

1. Run the solver on the original benchmark. If this times out, abort the rest of the test.

2. Run the lemma-dumping modified version of the solver to generate theory lemmas (all other runs
use the unmodified solver).

3. Insert theory lemmas into the benchmark as additional assumptions to obtain a modified bench-
mark. Run the solver on this modified benchmark.

4. Generate 11 mutants from the original benchmark, using the above mutations. For these experi-
ments, we allowed 4 changes to each benchmark. For all divisions exception QF RDL, we used 2
changes to formula structure, and 2 changes to term structure. For QF RDL, changes to the term
structure tend to take the benchmark out of the syntactic class for difference logic, so for QF RDL

we made 4 changes to the formula structure only.

5. Run the solver on each generated mutant.

6. Insert the lemmas dumped for the original benchmark into each mutant, and run the solver on each
of the resulting benchmarks.

Dumping theory lemmas. As mentioned, we modified CVC3 and OPENSMT to dump learned the-
ory lemmas, following helpful advice from the authors of those tools. Early experiments showed that
inserting all learned theory lemmas into benchmarks tends to overwhelm the solver. So we just dump
10% of the learned theory lemmas. For CVC3, we dumped every 10th learned lemma. For OPENSMT,
we dumped the 10% of learned theory lemmas with at most 2 literals which had the highest activity
(as measured by opensmt’s internal measure of activity). Certainly one could be interested to compare
alternative methods for selecting theory lemmas to dump. However, this is scheduled as future work.
OPENSMT does not normally learn theory lemmas outright (but rather, lemmas derived from theory lem-
mas by conflict analysis). We configured OPENSMT to learn theory lemmas of length at most 2, and kept
that configuration for all runs of OPENSMT reported below.

Benchmark selection. The tests below were performed on a selection of benchmarks used in SMT-
COMP 2009 (see, e.g., [1] and earlier papers for more on SMT-COMP). The selection process used was
the following. We are looking at several mature example divisions: QF UFIDL, QF AUFLIA, QF LIA,
QF LRA, and QF RDL. CVC3 competed in all those divisions, while of these, opensmt competed just in
QF LRA and QF RDL. For each solver and division in which it competed, we consider those benchmarks
which it could solve in time between 1 second and 1 minute. A further issue we dealt with is that
both SMT solvers sometimes introduce new symbols which make their way into theory lemmas. This
is problematic, because the meanings and types of those symbols are not determined by the original
benchmark. In the end, the approach we adopted was to try to translate away ites (term-level if-then-
else expressions) from benchmarks, since these seem to be the biggest (but not only) source of new
symbols showing up in theory lemmas. CVC3 recently added a command-line option +liftITE that

5



Predictability of SAT/SMT Solvers Brummayer, Oe, and Stump

name orig orig+lem L m̃ σm l̃ σl m/l σm/σl
LamportBakery14 3.26 6.1 44 2.49 0.4 2.46 1.01
LamportBakery15 2.19 2.22 58 1.97 0.29 1.93 0.27 1.02 1.05
OOO5 3.16 2.56 62 2.66 0.37 2.55 0.16 1.05 2.23
sorted list insert noalloc3 4.86 4.52 61 4.13 0.37 4.34 0.36 1.03
vhard8 2.01 7.75 306 0.07 0.01 0.66 0.04
OOO8 3.71 8.57 40 3.51 0.51 3.62 2.31
ibm cache full q unbounded12 4.19 6.07 49 4.2 0.24 5.47 0.96
sorted list insert noalloc5 4.74 4.48 93 3.94 0.44 4.36 0.33 1.32
OOO6 3.22 6.43 40 2.78 0.41 3.99 1.44
sorted list insert noalloc6 7.03 4.42 239 3.79 1.4 4.26 0.44 1.15 3.15
vhard5 0.49 1.08 85 0.04 0.01 0.15 0.03
ibm cache full q unbounded15 2.85 2.36 81 2.87 0.92 2.24 0.82 1.2 1.12
ibm cache full q unbounded14 4.04 4.16 35 4.05 0.75 4.13 0.36 2.06
vhard6 0.85 2.16 138 0.04 0.01 0.27 0.59
ibm cache full q unbounded17 7.78 19.83 114 4.07 2.04 2.27 5.63
ibm cache full q unbounded16 4. 4.04 35 4.01 0.74 4.04 0.17 1.06 4.3
vhard16 19.3 120. 2235 0.16 0. 7.43 0.01
vhard9 2.77 15.39 427 0.08 0.01 0.95 0.03
vhard18 29.23 120. 3151 0.19 0. 13.08 0.03
vhard11 5.03 31.53 760 0.12 0.85 1.79 33.98(1)

Figure 3: Results for CVC3: QF UFIDL

can be used to do this. In some cases, lifting ites results in an explosion in the size of the formula,
crashing the translating invocation of CVC3. In such cases, we excluded the benchmarks from our
sample. The test machine for the experiments was a lightly-loaded Intel Core Dual CPU at 1.2GHz, with
1.5GB physical memory.

3.1 Empirical Results

name orig orig+lem L m̃ σm l̃ σl m/l σm/σl
ParallelPrefixSum live blmc002 2.25 2.21 2 2.27 0.04 2.26 0.04 1.01
ParallelPrefixSum safe blmc008 9.57 9.49 6 9.55 0.59 9.62 0.56 1.04
FISCHER11-7-fair 99.89 15.67 180 92.08 47.59(1) 17.66 4.59
FISCHER6-10-fair 69.24 41.13 293 56.03 29.68 52.89 23.86 1.32 1.24

Figure 4: Results for CVC3: QF LIA

Figures 3 through 10 summarize the results of these experiments (Figures 6 through 10 are relegated
to the appendix for space reasons). Each figure corresponds to a single division and a single solver,
except that for typographic reasons, the results for OPENSMT on QF RDL are split over Figures 9 and 10.
Each row in the table corresponds to a test on a single benchmark, as described above. All times are
given in seconds. The headings in the figure are as follows:

• name: the of the benchmark.

• orig: the time for the (unmodified) solver to solve the benchmark.

• orig+lem: the time for the solver to solve the modified version of the original benchmark, with
theory lemmas inserted.

• L: the number of lemmas produced by the run of the lemma-generating version of the solver.

6



Predictability of SAT/SMT Solvers Brummayer, Oe, and Stump

name orig orig+lem L m̃ σm l̃ σl m/l σm/σl
storeinv t1 pp nf ai 00009 001 47.6 16.19 11176 0.13 23.18 0.85 7.74 2.68 2.99
swap t1 pp nf ai 00009 007 4.32 8.31 100 4.34 1.91 7.85 3.53
pointer-safe-10 9.54 2.87 102 5.2 3.94 1.72 3.65 1.76 1.08
pointer-invalid-20 117.29 38.92 721 68.36 47.17(4) 31.46 32.88(1)
pointer-invalid-10 10.72 1.17 126 4.65 4.7 1.73 4.1 1.97 1.14
pointer-safe-15 41.1 28.25 277 20.78 27.07 7.44 18.62 1.67 1.45
qlock-bug-5 19.48 5.7 312 17.86 37.84(1) 5.72 34.03(1)
swap t1 pp nf ai 00009 002 23.6 18.33 103 23.61 10.84 17.06 7.84 1.37 1.38
pointer-invalid-15 42.07 10.88 328 21.64 27.75 8.93 28.76 1.7
qlock.base.5 14.68 12.45 215 12.77 33.94(1) 1.94 33.49(1)
qlock-mutex-5 14.81 7.31 225 12.73 38.35(1) 1.85 33.6(1)

Figure 5: Results for CVC3: QF AUFLIA

• m̃: the median of the times to solve the 11 generated mutants.

• σm: the standard deviation of those times.

• l̃: the median of the times to solve the 11 mutants with the same set of lemmas as above inserted
into each mutant.

• σl: the standard deviation of those times.

• m/l: the ratio of total time to solve the 11 mutants to the total time to solve the 11 mutants with
lemmas inserted. For readability, we only list this number (and similarly for the next column, for
σm/σl) for rows where we have no missing data, and if it is greater than 1. This quantity represents
the speedup using lemmas, and so we view this as a relative performance metric.

• σm/σl: the ratio of the above-defined standard deviations. We view this as a relative predictability
metric.

Missing data. We lose data in this experiment for timeouts and memory outs, indicated in parentheses
with the standard deviation; and occasionally where mutation takes a benchmark out of the syntactic
class for the division, indicated in square brackets with the standard deviation. The latter problem just
occurs for OPENSMT on QF LRA, where the mutation occasionally creates divisions by zero.

Some observations about the data in the figures are warranted. First, it is not generally the case that
either m/l or σm/σl is improved by inserting theory lemmas. The ratio σm/σl (computed only for tests
with no censored data) is greater than 1 for 36% of the 68 total benchmarks (including tests with cen-
sored data). Similarly, the ratio m/l is greater than 1 for 35 %. We can observe, however, that in some
cases, one or the other, or both, measures are improved. For example, in Figure 3, the OOO5 benchmark
shows a modest improvement in performance but a significant (> 2x) improvement in predictability.
In some cases, such as sorted list insert noalloc5, predictability improves even with an overall
decline in performance. We can also see that inserting theory lemmas back into the original bench-
mark, while sometimes resulting in a significant slowdown (e.g., around 2x for LamportBakery14 of
Figure 3) can sometimes lead to big performance improvements: consider, for example, the results for
FISCHER11-7-fair (Figure 4), where inserting theory lemmas leads to roughly a 6x speedup over the
original benchmark; or for pointer-invalid-15 (Figure 5), with around a 4x speedup.

So insertion of theory lemmas, while not generally helpful for performance or predictability, may
have value as a heuristic for improving both. In our target use-model, a team making repeated calls to
a solver can simply turn on “retain-lemmas” mode, and see if it improves performance or, over several

7



Predictability of SAT/SMT Solvers Brummayer, Oe, and Stump

runs, predictability. If not, the heuristic can be turned off. But if so, it may improve the end-user’s
experience for subsequent runs of the solver.

4 Conclusion and Future Work

We have considered preliminary data studying how various mutations to benchmarks affect the perfor-
mance and reveal the predictability of SAT and SMT solvers, on collections of standard benchmarks.
We have also considered one heuristic for improving predictability of SMT solvers, namely retaining
learned theory lemmas from an original run to subsequent runs on similar benchmarks. This corresponds
to a scenario where successive changes made by an end-user cause modest changes to the benchmark
formula.

For future work, a more informed model for mutation is required, to ensure that the proposed methods
apply in real-world situations. For such a model, it would be very useful to have or to be able to generate
a sequence of formulas from successive small modifications to a verification model or other application-
specific structure. This will enable more accurate further studies of methods to measure and improve
solver predictability. One possibility might be to consider benchmarks from the same benchmark family
(for both the SAT and SMT experiments), since these should exhibit some similarities. For the SMT
experiments, it would be interesting to test whether or not adding theory lemmas learned from a run
of the SMT solver on one benchmark can improve predictability for other benchmarks from the same
family. Similarly, it would be interesting to do more thorough exploration of which lemmas to carry
over from one run to the next, and whether lemmas learned by one solver can improve predictability for
another.

Acknowledgments. Thanks to Clark Barrett and Roberto Bruttomesso for help modifying CVC3
and OPENSMT, respectively. Thanks also to Alberto Segre for consultation on statistics, and to Cesare
Tinelli for discussion of the idea of considering predictability for SMT solvers.

References

[1] Clark Barrett, Morgan Deters, Albert Oliveras, and Aaron Stump. Design and results of the 3rd annual satisfia-
bility modulo theories competition (SMT-COMP 2007). International Journal on Artificial Intelligence Tools
(IJAIT), 17(4):569–606, August 2008.

[2] Clark Barrett, Silvio Ranise, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2008.

[3] D. Berre and L. Simon. 55 Solvers in Vancouver: The SAT 2004 competition. In H. Hoos and D. Mitchell, ed-
itors, Proceedings of the International Conference on Theory and Applications of Satisfiability Testing (SAT),
2004.

[4] E. Giunchiglia and M. Maratea. Planning as Satisfiability with Preferences. In Proceedings of the Twenty-
Second AAAI Conference on Artificial Intelligence., pages 987–992. AAAI Press, 2007.

[5] S. Lahiri, S. Qadeer, and Z. Rakamaric. Static and Precise Detection of Concurrency Errors in Systems Code
Using SMT Solvers. In A. Bouajjani and O. Maler, editors, Computer Aided Verification, 21st International
Conference, CAV 2009. Proceedings, pages 509–524, 2009.

[6] J. Whittemore, J. Kim, and K. Sakallah. Satire: A new incremental satisfiability engine. In Design Automation
Conference, 2001. Proceedings, pages 542 – 545, 2001.

[7] H. Zhang. Combinatorial designs by SAT solvers. In A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors,
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, chapter 17,
pages 533–568. IOS Press, 2009.

8



Predictability of SAT/SMT Solvers Brummayer, Oe, and Stump

name orig orig+lem L m̃ σm l̃ σl m/l σm/σl
sc-35.induction3 5.02 120. 94 1.45 2.72 1.48 57.06(4)
sc-15.induction 1.49 0.94 16 0.32 0.54 0.33 0.36 1.24 1.5
uart-7.induction 2.08 1.78 78 0.67 0.67 0.64 0.66 1.05
sc-12.induction 1.17 0.67 14 0.26 0.4 0.27 0.24 1.23 1.65
p2-zenonumeric s6 2.79 7.77 27 1.78 0.4 3.23 1.54
uart-6.induction 1.62 1.07 69 0.49 0.51 0.53 0.32 1.07 1.56
sc-14.induction 1.33 0.86 16 0.32 0.5 0.3 0.32 1.29 1.56
reint to least.base 7.06 7.2 30 0.21 0.79 0.23 34.31(1)
pursuit-safety-7 5.38 1.03 50 1.65 8.9 0.58 0.46 6.22 19.28
sc-18.induction 1.91 1.18 19 0.4 0.76 0.41 0.46 1.31 1.64
sc-10.induction 0.79 0.54 12 0.22 0.26 0.24 0.19 1.14 1.35
uart-9.induction 2.98 3.32 100 0.92 1.04 1.09 1.27
p-0-bucket s7 5.3 4.6 58 5.33 0.04 4.74 0.39 1.1
gasburner-prop3-16 0.75 0.77 20 0.53 19.63 0.63 12.71 1.46 1.54
gasburner-prop3-17 0.79 1.07 21 0.66 34.16(1) 0.72 36.55(1)
clocksynchro 3clocks.main invar.base 1.05 1.09 18 0.23 0.07 0.27 0.24
p-driverlogNumeric s7 61.48 120. 21 3.59 4.1 6.59 32.75(1)
tgc io-safe-13 11.41 6.6 70 2.03 2.41 2.83 3.26
sc-24.induction 3.37 1.93 25 0.58 1.48 0.7 0.75 1.42 1.95
clocksynchro 9clocks.main invar.base 7.78 7.72 51 0.78 0.37 0.94 2.14
p4-zenonumeric s5 59.2 90.93 68 11.49 25.67 12.33 32.11
uart-8.base 17.43 15.73 279 1.61 3.54 4.44 3.57
tgc io-safe-18 42. 13.5 120 3.55 9.65 4.8 33.05(1)
p6-zenonumeric s5 65.28 120. 99 20.06 31.61(1) 22.37 43.77(3)
sc-8.induction2 3.76 4.09 33 0.24 1.7 0.34 1.9
simple startup 3nodes.abstract.induct 22.71 80.12 431 0.24 0.09 0.47 0.38
tgc io-safe-20 68.34 5.74 144 4.85 15.38 4.96 33.37(1)
simple startup 4nodes.missing.induct 2.65 1.07 143 0.32 0.1 0.4 0.18
uart-24.induction 18.58 60.41 435 5.16 6.02 5.22 18.92
sc-19.induction 2.12 1.26 20 0.39 0.84 0.44 0.5 1.32 1.69
sc-21.induction3 12.72 30.18 111 0.86 32.94 0.96 14.68 1.94 2.24
uart-9.base 39.64 25.67 457 1.46 5.02 5.28 16.33
synched.induction 3.36 3.84 49 0.27 2.46 0.29 34.17(1)
sc-32.induction3 4.4 120. 82 1.29 2.26 1.32 51.89(3)
uart-20.induction 13.01 29.44 318 3.56 4.18 3.74 10.54
simple startup 5nodes.missing.induct 7.36 3.29 333 0.45 0.17 0.61 0.47
simple startup 4nodes.abstract.induct 76.84 120. 1048 0.33 0.13 0.83 0.32

Figure 6: Results for CVC3: QF LRA

A More Results from SMT Experiments

9



Predictability of SAT/SMT Solvers Brummayer, Oe, and Stump

name orig orig+lem L m̃ σm l̃ σl m/l σm/σl
fischer3-mutex-8 9.13 14.7 197 7.44 2.54 3.47 4.18 1.28
orb02 700 4.32 4.23 32 4.71 0.16 4.49 0.23 1.04
fischer6-mutex-6 7.16 14.68 169 8.17 4.3 11.2 4.85
abz6 800 4.9 5.29 36 4.02 0.21 4.36 0.23
orb07 330 5.63 6.41 42 4.7 0.42 5.36 0.42
orb05 700 74.98 57.42 115 65.43 23.57(3) 68.67 15.15
fischer9-mutex-5 9.12 15.05 126 21.87 18.73 19. 9. 1.45 2.08
fischer3-mutex-9 16.07 20.2 356 7.16 5.81 6.54 6.24 1.22
fischer6-mutex-7 23.66 32.32 406 26.93 13.73 28.67 18.02
fischer9-mutex-6 50.3 91.25 405 50.3 14.43 66.48 34.54(1)
fischer3-mutex-10 23.39 50.63 572 19.75 9.75 5.11 16.36 1.29
fischer6-mutex-8 103.89 120. 1209 42.34 35.89(1) 45.87 38.81(2)
abz5 1400 27.59 120. 64 23.5 2.16 120. 0.(11)
orb09 1100 59.45 120. 84 27.74 17.18 120. 0.(11)
abz5 1000 12.53 21.89 59 39.31 10.57 29.32 6.32 1.2 1.67
fischer3-mutex-12 93.66 120. 1319 58.14 28.9 10.82 43.58(1)
fischer3-mutex-13 118.06 120. 1734 100.14 44.77(3) 16.17 48.22(3)
fischer3-mutex-11 40.47 119.12 902 17.9 19.61 9.07 35.27(1)
orb04 850 25.93 42.75 53 19.98 3.02 42.59 10.21
orb04 1200 29.05 120. 63 26.81 2.21 120. 0.(11)
orb06 1200 46.71 120. 78 82.05 25.62 120. 4.77(10)
orb05 1000 37.57 120. 62 60.41 13.01 120. 27.95(7)
orb10 1100 37.18 120. 68 36.09 0.61 85.53 18.52(3)

Figure 7: Results for CVC3: QF RDL

10



Predictability of SAT/SMT Solvers Brummayer, Oe, and Stump

name orig orig+lem L m̃ σm l̃ σl m/l σm/σl
sc-10.induction 6.07 7.55 15 0.2 2.89 0.2 3.35
pursuit-safety-10 1.27 1.36 18 0.54 1.33 0.59 1.06 1.1 1.25
p5-zenonumeric s5 3.29 3.66 37 3.26 0.06 3.66 0.12
pursuit-safety-11 1.42 1.65 17 0.66 2.87 0.74 1.72 1.35 1.66
uart-8.base 2.93 4.12 16 3.32 1.98 2.83 1.88 1.04 1.05
sc-11.induction 12.33 8.77 17 0.22 4.9 0.22 5.02
p-0-bucket s10 3.74 4.42 6 6.14 2.06 5.33 0.56 1.21 3.66
p-DepotsNum s8.msat 3.54 2.57 32 1.86 0.45 1.69 0.45 1.07
uart-7.induction 3.38 3.06 21 0.15 1.49 0.16 1.17 1.2 1.26
sc-12.induction 19.71 11.25 18 0.24 8.28 0.25 8.23 1.01
uart-9.base 6.75 8.34 21 5.01 3.05 4.24 2.84 1.1 1.07
pursuit-safety-13 2.75 3.01 24 1.02 5.2 0.74 4.81 1.11 1.08
tgc io-safe-18 5.2 3.13 36 3.06 1.34 3. 1.18 1.13
clocksynchro 9clocks.main invar.base 5.07 6.4 6 0.41 3.15[1] 0.53 2.79[1]
pursuit-safety-16 1.06 2.5 16 1.62 12.63 1.75 20.28
tgc io-safe-20 5.7 7.15 39 4.88 1.88 4.36 2.38
p-0-bucket s13 8. 6.24 6 12.61 3.13 10.93 5.03 1.07
p7-driverlogNumeric s7 5.23 12.96 45 2.19 1.51 2.39 2.27
sc-15.induction 15.12 42.9 18 0.3 17.62 0.31 18.03
uart-9.induction 7.72 9.21 26 0.22 3.3 0.21 2.91 1.13 1.13
simple startup 3nodes.abstract.induct 8.81 9.02 24 0.21 0.6[1] 0.19 0.52[1]
sc-14.induction 39.51 30.79 20 0.28 11.12 0.28 13.86
sc-12.induction3 11.55 13.79 13 0.31 6.84 0.3 4.61 1.43 1.48
simple startup 4nodes.missing.induct 12.17 15.59 29 0.28 3.11[1] 0.29 2.45[1]
sc-10.base 14.21 13.08 15 7.03 3.95 7.96 4.67
pursuit-safety-15 1.67 2.25 17 1.58 9.62 1.57 11.97
sc-14.induction3 13.74 22.94 14 0.35 12.87 0.35 10.9 1.12 1.18
sc-18.induction 110.77 116.39 25 0.38 44.05 0.37 35.59 1.22 1.23
p-2-bucket s11 26.33 24.54 8 25.81 1.52 25.28 2.01
simple startup 5nodes.missing.induct 55.16 46.07 43 0.38 10.74[1] 0.39 11.17[1]
sc-12.base 32.94 33.58 19 14.3 10.19 18.71 10.88
sc-19.induction 90.19 114.56 24 0.39 50.32(1) 0.38 49.99(1)
p7-driverlogNumeric s8 13.03 30.67 61 2.42 4.97 2.53 15.52
sc-17.induction2 70.35 54.6 24 0.38 27.86 0.38 28.62 1.02
sc-19.induction2 60.03 120. 22 0.48 45.44 0.43 47.49
simple startup 4nodes.abstract.induct 50.11 44.52 38 0.28 2.83[1] 0.28 3.38[1]
opt1217–6 45.69 42.71 313 7.43 19.52 5.15 19.72 1.02
uart-13.base 47.2 53.14 44 17.96 12.91 17.7 10.83 1.08 1.19
opt1217–11 57.04 53.3 332 7.48 21.33 6.79 20.62 1.05 1.03
sc-14.base 74.98 58.92 21 29.43 20.23 36.85 19.05 1.06
sc-15.base 94.18 95.45 22 45.51 22.94 34.34 21.29 1.14 1.07

Figure 8: Results for opensmt: QF LRA

11



Predictability of SAT/SMT Solvers Brummayer, Oe, and Stump

name orig orig+lem L m̃ σm l̃ σl m/l σm/σl
orb07 430 0.56 0.93 6 0.34 0.31 0.35 0.42
orb08 930 4.63 3.91 6 1.56 1.53 1.66 5.
fischer3-mutex-12 3.79 3.32 21 0.83 0.89 1.04 0.83 1.01 1.06
fischer3-mutex-15 6.36 6.51 27 1.99 1.5 1.16 1.93
orb01 1200 0.88 0.3 6 0.35 0.23 0.31 0.05 1.42 4.51
skdmxa-3x3-6.base 8.02 8.07 5 8.31 2.24 8.27 2.24
fischer3-mutex-14 4.49 4.02 23 1.37 1.39 1.57 1.2 1.15
abz6 943 3.29 3.76 6 0.38 1.17 0.4 1.3
orb10 900 2.5 3.02 6 8.93 3.05 9.81 3.25
fischer3-mutex-13 4.73 5.03 23 1.24 1.36 0.9 0.98 1.24 1.38
fischer9-mutex-8 5.4 4.71 30 1.72 1.91 1.6 1.73 1.1
skdmxa-3x3-7.base 9.42 9.34 5 10.26 2.81 10.48 2.82
fischer6-mutex-9 6.6 4.27 23 1.47 1.62 1.62 1.15 1.4
abz7 500 5.76 5.83 6 5.7 0.95 5.79 1.22
orb09 900 6.77 6.08 7 3.36 1.7 4.2 2.55
orb10 1000 3.62 3.09 6 1.03 2.21 1.1 1.11 1.17 1.98
skdmxa-3x3-8.base 12.29 11.94 5 12.95 3.8 12.85 3.75 1.01
orb06 1100 2.02 3.7 6 0.81 0.85 0.54 1.14
fischer3-mutex-16 8.16 9.42 31 2.08 2.32 1.7 2.73
orb04 1005 27.42 6.25 9 5.26 5.07 5.47 6.22[1]
skdmxa-3x3-9.base 14.87 14.87 5 16.14 4.73 16.08 4.69 1.01
fischer3-mutex-17 10.14 7.96 29 2.21 3.02 2.36 2.34 1.11 1.28
orb10 944 14.39 14.64 6 2.33 4.67 2.45 6.32
orb02 888 3.56 3.33 6 0.37 1.94 0.36 2.78
fischer9-mutex-9 10.56 18.32 36 3.22 3.92 3.89 3.32 1.18
fischer3-mutex-18 13.05 13.37 36 2.89 4.11 2.27 3.82 1.01 1.07
skdmxa-3x3-5.induction 28.12 17.71 7 19.72 7.86 17.12 7.06 1.14 1.11
skdmxa-3x3-10.base 19.6 19.4 5 19.71 6.05 19.96 6.05
fischer6-mutex-10 7.65 8.72 29 2.76 2.4 2.4 2.81

Figure 9: Results for opensmt: QF RDL

12



Predictability of SAT/SMT Solvers Brummayer, Oe, and Stump

name orig orig+lem L m̃ σm l̃ σl m/l σm/σl
fischer9-mutex-10 22.02 22.35 45 6.04 9.93 7.94 4.99 1.4 1.98
orb03 1100 10.57 0.38 8 0.4 1.21 0.41 0.59 1.83 2.03
orb07 397 10.62 17.67 6 0.66 5.9 0.78 7.12
abz5 1200 8.91 9.01 7 0.47 4.2 0.46 4.09 1.02 1.02
orb03 950 14.55 13.53 7 11.96 1.95 11.74 3.18
fischer3-mutex-19 18.64 16.42 43 2.6 5.59 3.74 5.08 1.09
skdmxa-3x3-11.base 23.17 23.28 5 25.02 8.09 25.05 8. 1.01
orb09 934 30.93 10.48 9 0.52 3.99 0.48 9.34
abz7 800 19.33 4.34 6 3.63 6.19 4.24 0.8 1.61 7.69
orb08 888 17.67 19. 8 4.52 7.19 4.66 6.74 1.07 1.06
skdmxa-3x3-12.base 30. 30.1 5 31.34 10.19 30.93 10.08 1.01 1.01
fischer6-mutex-11 12.54 26.58 35 3.3 4.36 3.69 9.3
skdmxa-3x3-13.base 34.69 35.08 5 35.56 12.31 35.69 12.34
fischer3-mutex-20 19.34 24.25 42 2.03 6.02 3.46 5.94 1.01
orb01 1100 21.69 18.04 8 1.19 2.23 0.88 8.21
fischer6-mutex-12 43.47 25.85 52 6.04 12.27 5.03 9.14 1.14 1.34
orb05 887 7.7 17.2 8 0.42 7.3 0.36 5.14 1.37 1.42
skdmxa-3x3-14.base 43.51 43.06 5 45.87 15.52 45.92 15.62
skdmxa-3x3-5 32.3 40.95 39 27.94 19.21 34.88 26.52
fischer6-mutex-13 30.86 52.75 54 8.69 14.24 6.94 19.28
abz5 1234 30.29 17.22 9 0.38 16.33 0.4 5.76 2.68 2.83
skdmxa-3x3-6.induction 48.16 33.19 9 35.92 15.68 30.94 13.51 1.01 1.16
skdmxa-3x3-15.base 56.2 55.89 5 57.54 20.43 57.21 20.48
skdmxa-3x3-16.base 75.21 75.66 5 73.81 26.43 73.93 26.5
fischer6-mutex-16 108.07 120. 73 34.07 40.1 42.84 41.86(1)
fischer9-mutex-11 54.97 43.05 65 16.96 15.97 9.5 19.75
fischer6-mutex-15 83.54 78.13 70 20.37 27.43 35.25 28.53
fischer6-mutex-14 106.9 54.42 67 17.41 17.79 14.53 19.82

Figure 10: Results for opensmt: QF RDL

13


	Motivation
	Experiments with SAT Benchmarks
	Methods
	Empirical Results

	Experiments with SMT Benchmarks and Theory Lemmas
	Empirical Results

	Conclusion and Future Work
	More Results from SMT Experiments

