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1 Introduction

This paper proposes a new syntax and proof system called Dualized Intuitionistic Logic (DIL),
for intuitionistic propositional logic with the subtraction operator. Our goal is a conservative
extension of standard propositional intuitionistic logic with perfect duality (symmetry) between
positive and negative connectives. The proof system should satisfy the following metatheoretic
properties: soundness, completeness, cut elimination, and substitution. To our knowledge, no
existing system achieves these goals. Substitution is needed for cut elimination, but has posed
problems for other systems; for example Crolard develops a complex dependency-tracking calculus
to obtain substitution for a constructive type theory with subtraction [3].

In this extended abstract, we describe our work in progress on DIL. We have formulated a dualized
syntax and proof system, for which we have proved soundness with respect to a standard Kripke
semantics for intuitionistic propositional logic. We have also proved substitution. Regarding com-
pleteness, we point out an issue in prior work: we exhibit a semantically valid formula which is
provable in DIL but which lacks, under the obvious translation, a cut-free proof in the system
SLK1 of Crolard [2]. This shows that Crolard’s system cannot satisfy both cut elimination and
completeness.

Our motivation is to obtain a new logical foundation for type theory, with a perfect duality between
positive and negative computation. Computational classical type theories (CCTTs) like those
proposed in [9] and [4] exhibit such a duality, but are not suitable for computation since they,
like other CCTTs, lack the canonicity property: closed terms of type T are not necessarily built
with a constructor for T (e.g., pairing for T ∧ T ′). For other work seeking to support control
and canonicity, see [5] and works cited there. Like some CCTTs, DIL is formulated as a sequent
calculus. In future work, we intend to use the Curry-Howard isomorphism to develop a Dualized
Type Theory based on DIL, where positive assumptions will become input variables and negative
ones output variables. Cut will become a control operator much like the µ-operator of Curien and
Herbelin’s system [4]. We thus propose to explore intuitionistic duality as a basis for constructive
control, in contrast to (non-constructive) CCTTs.

But the main benefit we are seeking from a completely dualized system is a uniform simultaneous
treatment of induction and coinduction. It is well known that induction and coinduction are duals
semantically. While this duality has been considered in CCTT [7], no constructive system with
induction and coinduction as duals has yet been proposed. Proof assistants like Coq and Agda
have unsatisfactory treatments of (mixed) induction and coinduction (see the discussion in [1]):
Coq lacks type preservation in the presence of coinductive types, a serious defect in the system,
while Agda restricts how inductive and coinductive types can be nested. Our working hypothesis
is that a logical foundation based on intuitionistic duality will allow the semantic duality between
induction and coinduction to be expressed in type theory, yielding a solution to the problems with
these important features in existing systems. Detailed proofs of all lemmas and theorems below
may be found in a companion document on the first author’s web site.
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2 Syntax of Dualized Intuitionistic Logic (DIL)

polarities p ::= + | −
formulas T ::= A | 〈p〉 | T →p T ′ | T ∧p T ′

Figure 1: Syntax of formulas for DIL

The syntax for polarities p and then formulas T of Dualized Intuitionistic Logic (DIL) is given in
Figure 1. We write p̄ for the opposite polarity from p (so +̄ = − and −̄ = +). The formulas A are
drawn from a set A of atomic propositional formulas. As the semantics below will make precise,
the logical constructs above can be identified with standard ones as follows: 〈+〉 is True, 〈−〉 is
False, T ∧+ T ′ is T ∧ T ′, T ∧− T ′ is T ∨ T ′, T →+ T ′ is T → T ′, and T →− T ′ is subtraction
T ′ − T ′ (note the reversed order of subformulas).

3 Kripke Semantics for DIL

We will work with standard Kripke models (W,�, V ) (cf. Chapter 7 of [8]), where W is a non-
empty set of objects called worlds, � is a preorder on W called the accessibility relation, and V
maps each world w in W to a subset of A, namely the atomic formulas which are true in w. As
standard, V is required to be monotonic: for all w ∈W and A ∈ A, if A ∈ V (w), then A ∈ V (w′)
for all w′ � w. Figure 2 defines a semantics JT Kw relative to a Kripke model (W,�, V ), to interpret
a formula T in a world w ∈W . The semantics exactly follows standard semantics for intuitionistic
propositional logic with subtraction (cf. [6]).

Theorem 1 (Monotonicity). Suppose w �p w′. Then pJT Kw implies pJT Kw′ .

Relational notation. We write �p to indicate � if p = +, and � if p = −.

Paths. We define a bi-directional path π of a Kripke model to be a possibly empty list of worlds
w1, · · · , wn such that for all i ∈ {1, . . . , n− 1}, we have either wi � wi+1 or wi � wi+1. For such a
path, we denote its length (n) by |π|. We will write π �p w to mean that π = π′, w′ for some π′

and w′, with w′ �p w. We do not distinguish a singleton path w from the world w.

4 A Proof System for DIL

In this section we define a proof system for DIL, which we will subsequently justify using the
modal semantics defined above. The derivable objects of the proof system are sequents of the form
Γ `p T , where Γ is a modal context as defined in Figure 3.

JAKw ⇔ A ∈ V (w)
J〈+〉Kw ⇔ true
J〈−〉Kw ⇔ false
JT →+ T ′Kw ⇔ ∀w′.w � w′ ⇒ JT Kw′ ⇒ JT ′Kw′

JT →− T ′Kw ⇔ ∃w′.w � w′ ∧ ¬JT Kw′ ∧ JT ′Kw′

JT ∧+ T ′Kw ⇔ JT Kw ∧ JT ′Kw
JT ∧− T ′Kw ⇔ JT Kw ∨ JT ′Kw

Figure 2: Semantics of DIL formulas
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local contexts ∆ ::= · | pT ,∆
modal contexts Γ ::= ∆ | Γ �p ∆

Figure 3: Logical contexts for DIL

Γ �p′ ∆1, pT ,∆2 `p T
ax

Γ `p T

Γ �p ∆ `p T
weak

Γ `p 〈p〉
unit

Γ �p pT `p T ′

Γ `p T →p T ′
imp

Γ `p̄ T
Γ `p T ′

Γ `p T →p̄ T ′
impBar

Γ `p T1

Γ `p T2

Γ `p T1 ∧p T2
and

Γ `p T1

Γ `p T1 ∧p̄ T2
andBar1

Γ `p T2

Γ `p T1 ∧p̄ T2
andBar2

Γ, p̄T `p T ′

Γ, p̄T `p̄ T ′

Γ `p T
cut

Figure 4: Proof Rules for DIL

4.1 Contexts

Intuitively, a local context ∆ describes a world, while a modal context describes a (bi-directional)
path. The starting point of the path corresponds to the leftmost local context in the modal context.
We treat pT as an abbreviation for local context pT , ·. We sometimes also view contexts as built
from right to left instead of left to right. We concatenate local contexts with ∆,∆′, and modal
contexts with Γ �p Γ′. We do not distinguish a modal context of the form ∆ from the local
context ∆. The local extension Γ,∆ of modal context Γ by local context ∆ is defined as follows:

(Γ′ �p ∆′),∆ = Γ �p (∆′,∆)

The local concatenation Γ,Γ′ of modal contexts Γ and Γ′ is then defined by:

Γ, (∆ �p Γ′′) = (Γ,∆) �p Γ′′

When Γ = ∆ or Γ = Γ′ �p ∆, we call ∆ the current local context of Γ. It describes the abstract
world w at the end of the abstract path described by Γ. We sometimes refer informally to that w
as the current local world of Γ. The length |Γ| of modal context Γ is the number of maximal local
contexts contained in Γ; so, 1 plus the number of occurrences of �+ or �−. The use of an ordering
in the context may also be found in the display calculus δBiInt of Goré [6].

4.2 Proof system

Let us write p F as meta-notation meaning F if p ≡ + and ¬F if p ≡ −. The intuitive meaning
of the sequents, which we will make precise in the next section, is: Γ `+ T iff in the world w
at the end of the path determined by Γ, pJT Kw holds. The crucial idea of the proof system is to
incorporate Theorem 1 (Monotonicity), in the weak rule: if we are following edges forward in the
accessibility relation, then true formulas will remain true; and dually, if we follow edges backwards,
false formulas will remain false.

Figure 4 gives the proof rules for deriving sequents Γ `p T . The rules allow expansion of the
context in two different ways. If we expand the context locally, as in the cut rule, we are adding
a new assumption about the current world. If we expand the context modally, as in the imp rule,
we are extending our path π to a new world w′ where π �p w′, and the assumed formula holds.
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JpT ,∆Kw = p JT Kw ∧ J∆Kw
J·Kw = true

J∆Kπ,w = J∆Kw
JT Kπ,w = JT Kw

JΓ �p ∆Kπ,w = JΓKπ ∧ π �p w ∧ J∆Kw

JΓ `p T Kπ = JΓKπ ⇒ pJT Kπ

Figure 5: Semantics of Local Contexts and Sequents

5 Semantics and Metatheory for DIL

For purposes of this section, fix an arbitrary Kripke model (W,�, V ). Figure 5 defines a semantics
for sequents, after first defining several helper predicates: J∆Kw expresses that world w satisfies
local context ∆; J∆Kπ expresses that the last world in the path π satisfies ∆; and JΓKπ expresses
that path π satisfies modal context Γ. The interpretation JΓ `p T Kπ of sequents with respect to a
path π is then defined using those predicates: Γ `p T holds along path π iff assuming π satisfies
Γ, then T holds in the last world of π.

Theorem 2 (Soundness). If Γa `p Ta is derivable using the rules of Figure 4, and if π is a path
where |π| = |Γa| (the lengths of the path and the context are the same), then JΓa `p TaKπ.

Theorem 3 (Substitution). If Γ1, p1T1,Γ2 `p2 T2 and Γ1 `p1 T1, then Γ1,Γ2 `p2 T2.

6 Possible Incompleteness of Other Logics

Consider the following formula

A→+ (A→− A→+ 〈−〉)→− 〈+〉 (?1).

Using the usual translation to classical logic one will see that this formula is an embedding of the
law of excluded middle into intuitionistic logic. It is valid with respect to the semantics given in
Section 3.

Lemma 4. Suppose M = 〈W,�, V 〉 is a Kripke model, then for all worlds w ∈ W we have
JA→+ (A→− A→+ 〈−〉)→− 〈+〉Kw.

Proof. By definition we must show that ∀w1.(w � w1 and JAKw1
) ⇒ J(A →− (A →+ 〈−〉)) →−

〈+〉Kw1 . Now suppose w1 ∈ W such that w � w1 and JAKw1 . Then we must show ∃w2.w2 �
w1 and ¬JA →− (A →+ 〈−〉)Kw2 and J〈+〉Kw2 . Take w1 for w2. Clearly, J〈+〉Kw1 holds. To show
¬JA→− (A→+ 〈−〉)Kw1

we must show ∀w3.w3 � w1 and ¬JAKw3
⇒ ¬JA→+ 〈−〉Kw3

. So assume
w3 ∈ W , w3 � w1, and ¬JAKw3

. Then we must show ¬JA →+ 〈−〉Kw3
. It suffices to show

∃w4.w3 � w4 and JAKw4
and ¬J〈−〉Kw4

. Take w1 for w4. Clearly, ¬J〈−〉Kw1
, and by assumption we

have JAKw1 . Therefore, JA→+ (A→− A→+ 〈−〉)→− 〈+〉Kw.

In addition, this formula has an easy cut-free derivation (elided) in DIL.

In [2], Crolard defines an intuitionistic logic with subtraction called SLK1 which he states is com-
plete with respect to the standard Kripke semantics for intuitionistic logic. This system uses
the following forms of implication-left and subtraction-right rules, where the opposite context is
required to be empty:

Γ, B ` A
Γ ` B ⇒ A

A ` ∆, B

A−B ` ∆
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We show next that the formula (?1) has no cut-free proof in SLK1. We first must translate (?1)
into the language of SLK1. Its equivalent form is the following:

A→ (True− ((A→ False)−A)) (?2).

Then using Crolard’s definitions (?2) has a shorter form A→∼(¬A−A).

Theorem 5. The formula A→ (True− ((A→ False)−A)) has no cut-free proof in SLK1.

The previous theorem shows that SLK1 cannot satisfy both completeness (which follows directly
from Theorem 2.4.3 and Proposition 4.4.1 of [2]) and cut elimination. It is unclear if the previous
formula is derivable in SLK1 if cut is used. Note that Goré’s δBiInt [6] does not have any restriction
corresponding to that in the implication-right and subtraction-left rules of SLK1, so we conjecture
this formula is derivable in δBiInt (due to lack of experience with display calculi, we have not
been able to confirm this yet).

7 Conclusion

We have proposed Dualized Intuitionistic Logic (DIL), which is sound with respect to a standard
Kripke semantics for propositional intuitionistic logic with subtraction, and has the substitution
property. The crucial idea is to use modal contexts Γ to describe bi-directional paths, and incor-
porate monotonicity in the proof system. We plan to complete the metatheoretic analysis of DIL,
in particular completeness and cut elimination. Axiom cuts, where one premise is a weakening
(iterated application of weak) of ax cannot be eliminated, but we conjecture that all other cuts
can be. We then plan to develop DIL into a Dualized Type Theory.
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