
The Calculus of Nominal Inductive Constructions
An Intensional Approach to Encoding Name-Bindings

Edwin Westbrook1

Rice University
emw4@rice.edu

Aaron Stump2

The University of Iowa
astump@cs.uiowa.edu

Evan Austin
The University of Kansas

ecaustin@ittc.ku.edu

Abstract
Although name-bindings are ubiquitous in computer science, they
are well-known to be cumbersome to encode and reason about in
logic and type theory. There are many proposed solutions to this
problem in the literature, but most of these proposals, however,
have been extensional, meaning they are defined in terms of other
concepts in the theory. This makes it difficult to apply these pro-
posals in intensional theories like the Calculus of Inductive Con-
structions, or CIC.

In this paper, we introduce an approach to encoding name-
bindings that is intensional, as it attempts to capture the meaning of
a name-binding in itself. This approach combines in a straightfor-
ward manner with CIC to form the Calculus of Nominal Inductive
Constructions, or CNIC. CNIC supports induction over data con-
taining bindings, comparing of names for equality, and associating
meta-language types with names in a fashion similar to HOAS, fea-
tures which have been shown difficult to support in practice.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Applicative (functional) languages; F.3.1 [Logics and
Meanings of Programs]: Mechanical verification; F.4.1 [Mathe-
matical Logic]: Mechanical theorem proving

1. Introduction
Name-bindings are ubiquitous in computer science. These are con-
structs, such as the λ-abstraction λx. t of the λ-calculus, that intro-
duce a fresh name in a local scope. Unfortunately, name-bindings
are well-known to be cumbersome to encode and reason about
in logic and type theory, making it tedious to prove properties
about programming languages and other formalisms that use name-
bindings. This has led to much research into techniques for encod-
ing name-bindings that mitigate this burden [16, 10, 8, 20, 7, 19,
13, 24, 21, 18, 4].

Most of these proposals define name-binding extensionally,
meaning that name-binding is defined in terms of other concepts
in the theory. Stated differently, name-binding is defined by giving
a model for it in terms of other constructs, rather than by trying

1 This author was partially supported by NSF grant CSR/EHS #0720857.
2 This author was partially supported by NSF grant CCF #0841554.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LFMTP ’09, August 2, 2009, Montreal, Canada.
Copyright c© 2009 ACM 978-1-60558-529-1/09/08. . . $5.00

to define it directly. Nominal Logic, for example, defines name-
bindings as α-equivalence classes, while Higher-Order Abstract
Syntax (HOAS) defines name-bindings in terms of parametric func-
tions. Extensional definitions work well in extensional type theo-
ries, and indeed, Nominal Logic has been used to much success in
the Isabelle proof assistant [14] which is based on the extensional
type theory HOL. None of these approaches, however, have been
shown fully compatible with intensional theories such as the Cal-
culus of Inductive Constructions (CIC), the basis of the Coq proof
assistant [23]. Specifically, it is difficult in CIC to express recursion
principles for data containing name-bindings under many of these
approaches, and many of the approaches also require additional
axioms to be added to CIC. In short, current extensional defini-
tions do not quite capture the intended meaning of name-binding
in intensional type theory.

In this paper, we introduce an approach to encoding name-
bindings that is intensional, as it attempts to capture the meaning of
a name-binding in itself. This is done by formalizing the meaning
of a name-binding directly in the theory as a construct called a ν-
abstraction.1 We then show how the ν-abstraction can be combined
with CIC to form a new theory which we call the Calculus of
Nominal Inductive Constructions, or CNIC. CNIC supports all of
CIC, and supports the following features related to name-binding:
induction over data containing bindings; comparing of names for
equality; and associating meta-language types with names in a
fashion similar to HOAS. These features have been shown to be
difficult to support for many previous approahces.

The remainder of this document is organized as follows. Sec-
tion 2 introduces CNIC and its approach to name-bindings. Section
3 formalizes CNIC and states it meta-theoretic properties; proofs
of these are given for a similar system in the first author’s dis-
sertation [26]. Section 4 discusses the current implementation of
CNIC, called cinic, which is available from the first author’s
website, http://www.cs.rice.edu/~emw4. Section 5 describes
a modest-sized example, a proof of confluence of the untyped λ-
calculus, that has been formalized and checked in cinic. Section 6
then compares CNIC to related work and Section 7 concludes and
discusses potential future work.

2. Name-Bindings in CNIC
In this section, we introduce the notion of name-bindings used
here, show how it is modeled in CNIC, and then introduce the key
features of CNIC for manipulating name-bindings. The notion of
name-binding captured in CNIC is that of a construct, such as the λ-
abstraction λx. t of the untyped λ-calculus, that introduces a fresh

1 Using ν for name-bindings is mnemonic for a “new” name and seems to
have originated with Odersky [15], though the current use is closer to that
of Schürmann and Poswolsky [21].

name in a local scope. Specifically, the name-binding is defined by
the following four properties:

• Freshness: The name that is introduced is distinct from any
names bound outside the given binding, so that, for example,
x 6= y holds inside t in λx. λy. t;

• α-equivalence: Terms with name-bindings are equal up to re-
naming of bound names, so that λx. x equals λy. y;

• Scoping: A name cannot occur outside a binding for it, so x is
only a valid λ-term inside some binding for x; and

• Typing: Different types of names can be bound, such as the
term and type variables of System F, or, in a typed representa-
tion of the simply-typed λ-calculus, λx :A . t binds x specifi-
cally as a variable of type A.

Note that scoping does not mean that CNIC cannot manipulate
open terms; we allow the possibility that a name is bound outside
of a λ-term, in the meta-language itself, to intermediate values in
a computation that are open. In the end, though, we are only really
interested in the closed λ-terms. Thus scoping is about adequacy,
that is, that an encoding captures all and only the closed λ-terms. It
is possible in CNIC to encode a λ-calculus over a given set of free
variables, but that would be a different theory.

To support an intensional view of name-binding, CNIC in-
troduces a construct called the ν-abstraction. Philosophically, ν-
abstractions capture the intensional meaning of name-binding. The
syntax of a ν-abstraction is ν α : A .M , which binds the name α
of type Name A inside the term M . This construct supports the
four name-binding properties by definition in CNIC: the name α
is always guaranteed to be distinct from all other names in scope,
so freshness holds; ν-abstractions are considered equal up to re-
naming of bound names, so α-equivalence holds; names cannot
occur outside of bindings for them, so scoping holds; and names
are introduced with some given type, so typing holds.

The user can make use of these properties by encoding name-
bindings as ν-abstractions. Bound names are then encoded as CNIC
names. For example, the following constructors define an encoding
of the untyped λ-calculus as a type trm in CNIC, where the type
∇α : A .B (note that ∇ is pronounced “nabla”) is the type of a
ν-abstraction ν α :A .M , where M has type B:

var : (Name trm)⇒ trm
app : trm⇒ trm⇒ trm
lam : (∇α : trm . trm)⇒ trm

These three constructors match the three cases in the definition of
λ-terms. Bound variables x are encoded as var α, where α is a
bound name of type Name trm. Note the use of the typing property
here: var can only be used with names specifically introduced to
model λ-variables. Applications t u are encoded as app M N ,
where M and N are the encodings of t and u, respectively. The
λ-abstraction λx. t is encoded as lam (ν α : trm .M), where M
is an encoding of t that uses var α for x. Because λ-abstractions
are encoded with ν-abstractions, they satisfy the four name-binding
properties given above “for free.” For example, α-equivalence of
ν-abstractions ensures that any encodings of λx. x and λy. y are
equal terms in CNIC.

The simplest tool for manipulating bindings in CNIC is called
the name replacement. This construct allows the user to access the
body of a ν-abstraction by passing in a fresh name to be used
in place of the name bound by the ν-abstraction. Intuitively, this
“peels off” the ν of a ν-abstraction. Syntactically, name replace-
ments are written M @ α, and have the computation rule that
(ν β :A .M) @ α evaluates to [α/β]M . Note that this is not safe
if α is used in M to begin with, since β needs to be distinct from α
in M by freshness. Viewed differently, name replacements treat ν-

abstractions as partial functions, whose domain is the set of names
that are fresh. This is similar to the concretion operator of [4].

Names can be compared in CNIC with name-matching func-
tions. These are similar to pattern-matching functions, but operate
on terms of type Name A. A name-matching function must have
a case for every name in scope, since an unknown value of type
Name A could potentially be equal to any of the names in scope.
Name-matching functions also must always have a catch-all case
that matches any name not in scope, since evaluation could move
the name-matching function into a larger scope with more names
than the one in which it was written. As an example, the CNIC term

nfun (α \ → true
| β \ U : Type0, β : U → false)

is a function that takes in a name and compares the name with
α, which must be the only name currently in scope. The notation
M \ Γ is a pattern that matches any term that is a substitution
instance ofM for the variables and names listed in Γ. Thus the first
case matches the name α and returns true, while the second case
matches any other name β of type Name U for some U and returns
false.

CNIC also contains a specialized form of name-matching func-
tion over names of type Name A where A is inductive. This form
eliminates cases for names of different types, and also refines the
type of the catch-all case. For example, the CNIC term

nfun (α \ → true
| β \ β : trm→ false)

matches over names of type Name trm, where α is the only name
in scope with type Name trm. There could be names besides α in
scope with types other than Name trm. CNIC, however, requires
that all these other names have type Name B for some B that
is also inductive, in order to simplify the type refinement for the
catch-all case.

A final feature of CNIC is that it allows pattern-matching inside
ν-abstractions. For example, if we define the type nat of natural
numbers with the usual constructors zero and succ, then a value
of type nat should not have any names free. The following func-
tion witnesses this fact by lifting a natural number out of a ν-
abstraction:

fun lift-nat (ν α :A . zero \ → zero
| ν α :A . succ (x @ α) \ x : ∇α :A . nat→

succ (lift-nat x))

For example, lift-nat applied to ν x : A . succ zero returns
succ zero. Note that the pattern variable x in the case for succ
is applied to α with a name replacement. This is because α is
bound in the pattern and x is bound outside it, and so any value
substituted for x cannot contain α. Stated differently, the pattern
ν α : A . succ x only matches terms ν α : A . succ M where M
does not contain α, excluding the possibility that M is, e.g., y α
for some free variable y. Since this pattern is less general than
ν α : A . succ (x @ α), and because allowing the former would
require a complex occurs check at runtime, CNIC simply requires
all pattern variables to be fully applied using name replacements to
the names bound in the pattern.

3. CNIC Formalized
This section formalizes the syntax and semantics of CNIC and
states some of its meta-theoretic properties. The syntax of CNIC
is given in Figure 1. Many of the term constructs come directly
from CIC, including the predicative universes Typei (where we
here use Type0 for the universe Set), the abstraction type Πx :
A .B, inductive type constructors a, variables x, constructors c,
λ-abstractions λx : A .M , and applications M1 M2. Most of

M ::= Typei Prop Πx :A .B ∇α :A .B a Name
u x c α ν α :A .M M @ α λx :A .M
M M nfun (Γ) (Pα →M | . . . | Pα →M)
fun u (Γ) (P c →M | . . . | P c →M)

P c ::= ν Γα . c x @ Γα . . . x @ Γα \ Γ
Pα ::= ν Γα . α \ Γ

Γ ::= Γ, x : A Γ, α : A ·
Σ ::= Σ, c : A Σ, a : A Σ, u : A ·
σ ::= [M/x, σ] ·

Figure 1. Syntax of CNIC

the new term constructs have been introduced above, including
nabla-types, names, ν-abstractions, name replacments, and name-
matching functions. The pattern-matches and recursive functions
of CIC are combined into the single pattern-matching function
construct, which has also been introduced above. Note that the
general form of name- and pattern-matching functions given here
contain an extra context Γ before the patterns of the function, which
specifies an additional list of parameters to the function.

Note that patterns for pattern- and name-matching functions can
contain ν-abstractions for an arbitrary list of names. This is written
as ν Γα .M , where the notation Γα is used to denote a context
containing only names. The variables occurring in patterns for
pattern-matching functions must be applied to these names using
name replacements, which is denoted by the notation x @ Γα.

CNIC contexts Γ differ from CIC contexts in that contexts in
CNIC assign types both to variables and names. CNIC also includes
modal variables u and modal contexts Σ. These are included for
purely technical reasons: name- and pattern-matching functions are
always considered closed, that is, all of the variables and names
they use must be bound either in their patterns or in their list
of parameters. The exception is that they are allowed to contain
recursive calls to enclosing pattern-matching functions. Thus the
variables used for recursive calls to pattern-matching functions are
always modal variables u, and we see below that the typing rules
for pattern- and name-matching functions then discard all other free
variables and names in the normal context Γ. Modal contexts are
also used to ascribe types to constructors and type constructors.

The remainder of this section uses the following notations, some
of which were briefly introduced above. We use Γx and Γα to de-
note contexts that only bind variables or names, respectively. We
use Γp for normal CNIC contexts that are used as parameter lists
in pattern- and name-matching functions. We use R for an argu-
ment, which is either a term M or the syntax @ α for some α. We
write N R to denote either the application to or name replacement
of R, depending on the form of R. We use ~R to denote a list of
arguments, where Ri denotes the ith element of this list and M ~R
denotes the application to and/or name replacement of each argu-
ment Ri in order. We use M Γ to denote the application and/or
name replacement of M to each variable or name bound in Γ. We
use ΠΓ . A and ∇Γα . A to denote Π- and ∇-abstractions of the
variables and names in Γ or Γα, respectively. We use ν Γα .M for
ν-abstractions of the names in Γα. We use [~N/~x] to denote the sub-
stitution [N1/x1, . . . , Nn/xn], and we use [~R/Γ] to denote com-
bined substitution for variables in Γ by terms in ~R and renaming of
names in Γ with names in ~R.

The notation (M)↑Γ
α

denotes the raising of M by Γα, which
yields the term ν Γα . [(x1 @ Γα)/x1, . . . , (xn @ Γα)/xn]M for
all free variables xi inM . Similarly, (M)↑Γ

α

∇ denotes the raising of
M by Γα as a type, which yields a similar term with ν Γ . replaced
by ∇Γ . . The notation (Γ)↑Γ

α

raises each type in Γ by Γα as a
type.

The operational semantics of CNIC is given in Figure 2. This
is given as a list of rewrite rules. These are mostly straightforward.
The first rule applies one step of a pattern-matching function on
a constructor application. The second and third rules apply name-
matching functions to either names bound in the function or un-
known names that match the catch-all case. The fourth rule is stan-
dard β-reduction, while the fifth rule is a version of β-reduction
for ν-abstrations. Note that name replacements M @ α are syn-
tactically restricted so that α does not occur free in M , and thus
the fifth rule always applies by α-equivalence when the body of a
name replacement is a ν-abstraction. These rules define a Higher-
Order Name-Binding Rewrite System that is orthogonal, and thus
confluent; see the first author’s dissertation [26].

Typing in CNIC is given by the judgment Σ; Γ ` M : A.
This judgment implicitly assumes well-formedness of the modal
context Σ and well-formedness relative to Σ of the context Γ. These
judgments are straightforward; the latter requires only that the types
in Γ are well-typed, while the former requires both this condition
and that the given inductive types satisfy the positivity and universe
constraints of CIC [23].

The rules for the typing judgment of CNIC are given in Figure
3. These use s to denote a sort, that is, a term that is either Prop
or Typei for some i. Many of these rules are standard in CIC, and
so we do not discuss them here. Also standard is the subtyping
judgment ` A . B, which is used in the conversion typing rule to
capture universe inclusion. The CNIC definition of subtyping is a
straightforward extension of subtyping in CIC to include a case for
∇-types, so we omit it here. Examining the rules that are new in
CNIC, the predicative and impredicative typing rules for ∇-types
mirror those for Π-types. The rule for Name A requires A to be
well-typed. The rule for names α looks up α in the current context,
adding Name to the returned type. The rule for ν-abstractions adds
the bound name to the context and checks the body.

The rule for name replacements M @ α uses the operation
removeα(Γ) to remove the name α from Γ when typing M .
This is in order to ensure that α is fresh for M , as required. The
operation removeα(Γ) also removes every name in Γ whose type
contains α, so that Γ remains well-formed. In addition, all variables
bound after α in Γ are also removed, since they could eventually
have some term substituted for them that contains α, and thus a
term containing such a variable is not guaranteed to be fresh for α.

The rule for pattern-matching functions is similar to what is
found in CIC except for the presence of raisings, which are nec-
essary to match under ν-abstractions. The type of the scrutinee is
in general of the form∇Γα . a M1 . . .Mn for some Mi that could
contain names in Γα. To abstract out the Mi, we match over the
type ∇Γα . a (M1 @ Γα) . . . (Mn @ Γα), more succinctly writ-
ten as (a Γx)↑Γ

α

∇ for some context Γx. For this to be well-typed, the
types of the variables in Γx must also be raised, so our function has
type ΠΓp .Π(Γx)↑Γ

α

.Πx : ((a Γx)↑Γ
α

∇) . B. The typing rule first
checks that Γx is the argument context for a, then it checks that the
return type is well-typed, and then it looks up the type ΠΓx

i . a ~Mi

of each constructor ci. Next it type-checks each body Ni with the
modal variable u bound with the type of the whole function and
with context Γp, (Γ

x
i) ↑Γ

α

, which includes the raised version of
the argument context of ci. The type computed must substitute the
raised pattern and the raised type indices it induces for a into the
expected return type B. Finally, the function must have a case for
every constructor of a, written Γ ` ~c covers a, each case must
pass termination checking, written ` app-checku(Γx

i ;Ni), and
the return type B must contain occurrences of x or variables in Γx

that are fully applied with name replacements to at least as many
names as are in Γα. Omitting this condition turns out to be equiv-
alent to extensionality of ν-abstractions, which we do not neces-
sarily wish to assume in CNIC at this time. The rules for name-

(fun u (Γp) (. . . | (c Γ)↑Γ
α

\ Γ→Mi | . . .)) ~R (ν Γα . ci ~N) [(fun u (Γp) (. . .))/u, (ν Γα . ~N)/Γ, ~R/Γp]Mi

(nfun (Γp) (. . . | ν Γα . αi \ · → ~Mi | . . .)) ~R (ν Γα . αi) [~R/Γp]Mi

(nfun (Γp) (. . . | ν Γα . β \ β : A→ ~M0 | . . .)) ~R (ν Γα . β) [~R/Γp]M0

(λx :A .M) N [N/x]M
(ν α :A .M) @ α M

Figure 2. Operational Semantics of CNIC

Σ; Γ `M : A Σ; Γ ` B : Typei ` A . B
Σ; Γ `M : B Σ; Γ ` Typei : Typei+1 Σ; Γ ` Prop : Type1

Σ; Γ ` A : Typei Σ; Γ, x : A ` B : Typei
Σ; Γ ` Πx :A .B : Typei

Σ; Γ ` A : s Σ; Γ, x : A ` B : Prop

Σ; Γ ` Πx :A .B : Prop

Σ; Γ ` A : Typei Σ; Γ, α : A ` B : Typei
Σ; Γ ` ∇α :A .B : Typei

Σ; Γ ` A : s Σ; Γ, α : A ` B : Prop

Σ; Γ ` ∇α :A .B : Prop
a : A ∈ Σ

Σ; Γ ` a : A

Σ; Γ ` A : s

Σ; Γ ` Name A : s

x : A ∈ Γ
Σ; Γ ` x : A

u : A ∈ Σ
Σ; Γ ` u : A

c : A ∈ Σ
Σ; Γ ` c : A

α : A ∈ Γ
Σ; Γ ` α : Name A

Σ; Γ, α : A `M : B

Σ; Γ ` ν α :A .M : ∇α :A .B

Σ; Γ ` α : Name A Σ; removeα(Γ) `M : ∇α :A .B

Σ; Γ `M @ α : B

Σ; Γ, x : A `M : B

Σ; Γ ` λx :A .M : Πx :A .B

Σ; Γ `M : Πx :A .B Σ; Γ ` N : A

Σ; Γ `M N : [N/x]B

a : ΠΓx . s1 ∈ Σ Σ; · ` ΠΓp .Π(Γx)↑Γ
α

.Πx : (a Γx)↑Γ
α

∇ . B : s2 ∀i(ci : ΠΓx
i . a ~Mi ∈ Σ)

∀i(Σ, u : (ΠΓp .Π(Γx)↑Γ
α

.Πx : (a Γx)↑Γ
α

∇ . B) ; Γp, (Γ
x
i)↑Γ

α

` Ni : [(~Mi)↑Γ
α

/Γx , (ci Γx
i)↑Γ

α

/x]B)
Γx, x fully applied w.r.t. Γα in B ∀i(` app-checku(Γx

i ;Ni)) Γ ` ~c covers a

Σ; Γ ` fun u (Γp, (Γ
x)↑Γ

α

) (. . . | (ci Γx
i)↑Γ

α

\ (~Γx
c)↑Γ

α

→ ~N | . . .) : ΠΓp .Π(Γx)↑Γ
α

.Πx : ((a Γx)↑Γ
α

∇) . B

Σ; · ` ΠΓp, (Γ
x)↑Γ

α

.Πx : (Name (a Γx))↑Γ
α

∇ . B : s

∀i(Σ; Γp,Γ
α ` αi : Name (a ~N)) ∀i(Σ; Γp `Mi : [ν Γα . ~N/Γx, ν Γα . αi/x]B)

∀i(Σ; Γp,Γ
x, β : Name (a Γx) `M0 : [ν Γα .Γx/Γx, ν Γα . β/x]B) Γx, x fully applied w.r.t. Γα in B

Σ; Γ ` nfun (Γp, (Γ
x)↑Γ

α

)(ν Γα . ~α \ · → ~M
| ν Γα . β \ Γx, β : Name (a Γx)→M0)

: ΠΓp, (Γ
x)↑Γ

α

.Πx : ((Name (a Γx))↑Γ
α

∇) . B

Figure 3. Typing for CNIC

matching functions are similar; note that we only include a rule for
name-matching over Name of an inductive type.

We turn now to some meta-theoretic properties of CNIC. The
following results have been proved in the first author’s dissertation
for a previous version of CNIC where all names had a single type
Name, that is, where the Name type was not indexed by another
type [26]. Adapting them to the current system is straightforward.

LEMMA 1 (Canonical Forms). If Σ; · `M : a ~N for some Σ with
no modal variables and some M in normal form, then M is of the
form c ~M ′ for some constructor c of a.

LEMMA 2 (Weakening). If Σ; Γ ` M : A then Σ; Γ′ ` M : A
for any context Γ′ containing all the variables and names of Γ and
satisfying the property that if x comes before α in Γ then it also
does in Γ′.

LEMMA 3 (Substitution). If Σ; Γ1 ` M : A and Σ; Γ1, x :
A,Γ2 ` N : B then Σ; Γ1, [M/x ` Γ :2][M/x]N [M/x]B.

LEMMA 4 (Modal Substitution). If Σ; Γ1 `M : A and Σ; Γ1, u :
A,Γ2 ` N : B then Σ; Γ1, [M/u ` Γ :2][M/u]N [M/u]B.

LEMMA 5 (Preservation). If Γ ` M : A and M N , then
Γ ` N : A.

Consistency and strong normalization were also proved in the
first author’s dissertation for the system with a single type Name
of names. This was done with a translation from the old version
of CNIC into CIC that was shown to preserve reductions. We
conjecture that this approach can be adapted in a straightforward
manner to the current system.

CONJECTURE 1 (Strong Normalization). The relation is strong-
ly normalizing on the well-typed CNIC terms.

CONJECTURE 2 (Consistency). If Σ contains no modal variables,
then there is no term M such that Σ; · `M : ΠA :Prop . A

4. The cinic Implementation
Our initial implementation of CNIC is called cinic, written in
approximately 6kloc in OCAML. Figure 4 presents the concrete
syntax of cinic, in relation to the abstract syntax. The context
G in fun- and nfun-terms is called the parameter context. It lists
parameters which may be mentioned in the type of the scrutinee.
The expression e in the syntax for fun- and nfun-terms is the
expected type for the fun- or nfun-term. The different kinds of
cases a for nfun-terms are for names x in the context, the N ’th
variable in the nested ν-abstraction against which the nfun is
matched, or, finally, a catch-all case matching any other name x.

(Type i) ∼ Typei
(Name e) ∼ Name e
(\ x e e’) ∼ λx : e.e′

(! x e e’) ∼ Πx : e.e′

(e1 ... en) ∼ (e1 . . . en)
(nu x e e’) ∼ ν x :e . e′

(^ x e e’) ∼ ∇x :e . e′

(@ e x1 ... xn) ∼ e @ (x1, . . . , xn)
(fun x G e c1 ... cn) ∼ fun x G e c1 . . . cn
(nfun G e a1 ... an) ∼ nfun G e a1 . . . an

where:
G ::= ((x1 e1) ... (xn en)) ∼ (x1 : e1, . . . , xn : en)
c ::= (d G e) ∼ d\G→ e
a ::= (x e) ∼ x\· → e

| (N e) ∼ N\· → e
| (x G e) ∼ x\G→ e

Figure 4. Concrete Syntax of cinic

We currently do not implement a number of useful features
found in mature implementations of type theory, like Coq:

• We currently use an S-expression syntax for CNIC for easy
parsing, and there is no syntax extension mechanism.

• We do not support implicit arguments.
• There is no tactic language, so proof terms are written directly.
• Type refinement in pattern cases is done just by matching, rather

than unification.
• Inversion and injectivity lemmas, which could be derived auto-

matically, currently must be proved by hand.

While future work includes improvements on all those points, the
advantages of CNIC with regard to variable binding may still make
even the current version of cinic attractive. The most burdensome
limitation, in our opinion, is the need to derive inversion and injec-
tivity by hand. The other issues are less costly to work around.

4.1 Commands
The cinic tool processes a sequence of commands one at a time.
The central commands are Inductive, for declaring a set of mu-
tually inductive types, and Define, for defining a constant to equal
a given term. The syntax for these commands is:

(Inductive D1 ... Dn)
(Define x e’ e)
(Define x e)

where

D ::= (x e C1 ... Cn)
C ::= (x e)

In Define-commands, the optional expression e’ above is the ex-
pected type for e, which the Define-command defines x to equal.
In Inductive-commands, a sequence of D-expressions define a set
of mutually inductive types. In a D-expression, x is the name of the
type constructor, e is its kind, and the following C-expressions de-
fine its term constructors x with their types e.

4.2 Implicit Contexts
One feature of cinic that helps in writing proof terms directly
is support for implicit contexts in pattern cases. The basic idea is
that the user need not specify pattern variables for cases of pattern-
matching functions. Instead, cinic will introduce the pattern vari-
ables automatically, with canonical names. The benefit of this ap-

proach is that it reduces the number of names that the programmer
must choose – and keep track of. Instead of keeping track of new
names in each case, the programmer must just keep track of a single
set of ways of forming canonical names.

The names for pattern variables which cinic automatically
introduces with the implicit contexts feature consist of the name of
the scrutinee concatenated with the name of the argument as listed
in the type of the term constructor. For example, suppose we have
a constructor cons for a standard inductive type for homogeneous
polymorphic lists. This constructor has the type:

ΠA : Type0.Πa : A.Πr : (list A). (list A)

In the pattern case for cons, the programmer can certainly choose
her own names for the pattern variables for these three arguments,
listing these names in a context following “cons” at the start of the
case. But she may also omit that context. In that case, cinic will
automatically fill it in as follows, where x is the variable listed in
the pattern-matching function’s type for the scrutinee:

((x.A : Type0) (x.a : x.A) (x.r : (list x.A)))

Here “x.A”, for example, is just the name of the variable which
cinic introduces, not special syntax. In the body of the case, the
programmer may refer to the arguments of the cons-term via these
canonical names. We will see examples of implicit contexts below.

5. Confluence of Untyped Lambda Calculus
We have implemented in cinic a proof given by Barendregt (who
attributes it without citation to Tait and Martin-Löf) of confluence
of untyped lambda calculus, based on a multi-step reduction rela-
tion (also sometimes called simultaneous reduction [22]) [3]. The
crux of the proof is to define a relation which is between (in the
inclusion ordering) →β and →∗β , and show that this relation sat-
isfies the diamond property. To formalize this reasoning in cinic,
we first declare an indexed inductive types Step for single step re-
duction and Mstep for multi-step reduction. We rely on a generic
reflexive-transitive closure operator in cinic’s library to represent
→∗β .

For the diamond property, we prove by induction on a term
dleft of type (Mstep t s1) that whenever we additionally have
a term dright of type (Mstep t s2), we can construct a term
of type (Mstep join s1 s2), where Mstep join is constructed
by exhibiting a term t’ and derivations of (Mstep s1 t’) and
(Mstep s2 t’). To complete the proof, we prove that the relation
is indeed between→β and→∗β , and that this implies confluence of
→β .

(Inductive (trm (Type 0)
(var (! name (Name trm) trm))
(app (! fn trm

(! arg trm
trm)))

(lam (! body (^ n trm trm)
trm))))

Figure 5. The Datatype for Terms

The total development is just under 700 lines of cinic, not
counting around 225 lines of inversion lemmas, which in a more
mature implementation would be derived automatically. We now
walk through the development, in cinic concrete syntax, to see
how the nominal features of CNIC are used in a non-trivial example
like this one. We start with the basic datatypes and the definition of
substitution, then consider the proof of the diamond property for
Mstep, and finally look at the proof that this implies confluence of
Step.

5.1 The trm Type
Terms of the untyped lambda calculus are encoded as elements
of an inductive type trm, presented in Figure 5. For use with the
implicit contexts feature described above, we choose descriptive
names for the arguments to the constructors. The var constructor
takes a single argument name, of type (Name trm). Such names
are introduced by the lam constructor, whose single argument body
is a ∇-abstraction. Thus, object language binding will be imple-
mented with ν-abstraction in the encoding, in accordance with our
higher-order encoding methodology.

5.2 Substitution
Figure 6 gives the cinic code defining substitution. To substitute
t1 for x in a term t2, we would write (subst t1 (nu x trm
t2)) using this implementation. The fun-term in the definition
thus scrutinizes terms of type (^ x trm trm). The cases of this
fun-term are written using implicit arguments. The context auto-
matically constructed by cinic for the app-case, for example, is:

((t2.fn (^ x trm trm)) (t2.arg (^ x trm trm)))

The names of the pattern variables are derived as explained above,
where t2 has been identified as the name of the scrutinee from
subst’s stated type (! t2 (^ x trm trm) trm). Because the
scrutinee’s stated type (^ x trm trm) is a ∇-abstraction, cinic
recognizes that we are matching beneath ν-abstractions, and hence
must raise the types of all the pattern variables: the subterms of the
scrutinee can all depend on those ν-bound variables. That is why
the types for t2.fn and t2.arg are both (^ x trm trm), and not
just trm.

Notice that we need not worry about possible variable capture
in our definition of subst, since CNIC ensures this cannot happen
with ν-bound names. This is why the lam-case for subst is so
much simpler than it would be if we were using a concrete encoding
of names. So this is an example of the sort of situation where the
nominal features of CNIC making programming or proving with
binders much less burdensome.

The var case of the substitution uses a name-matching function
to do a case split on whether this variable is the one for which we
are substituting, or a distinct variable. Because we are operating
beneath a ν-abstraction for x, this ends up being a case split on
whether t2.name (whose type is raised, as explained just above)
equals νx : trm.x, or νx : trm.y for some distinct name y. The
first case of the nfun-term is for matching (nu x trm x), and the
second for matching (nu x trm y), for any distinct name y.

(Define subst (! t1 trm
(! t2 (^ x trm trm)

trm))
(fun subst

((t1 trm))
(! t2 (^ x trm trm) trm)

(var
((nfun ()

(! n2 (^ x trm (Name trm)) trm)
(0 t1)
(y ((y (Name trm))) (var y)))

t2.name))
(app

(app (subst t1 t2.fn) (subst t1 t2.arg)))
(lam

(lam (nu n trm
(subst t1

(nu x trm (@ t2.body x n))))))))

Figure 6. Substitution

(Inductive
(Mstep (! t1 trm (! t2 trm (Type 0)))

(Mstep_var_refl
(! name (Name trm)

(Mstep (var name) (var name))))
(Mstep_lam

(! body1 (^ x trm trm)
(! body2 (^ x trm trm)
(! dbody (^ x trm

(Mstep (@ body1 x)
(@ body2 x)))

(Mstep (lam body1) (lam body2))))))
(Mstep_app1

(! fn1 trm (! arg1 trm
(! fn2 trm (! arg2 trm
(! dfn (Mstep fn1 fn2)
(! darg (Mstep arg1 arg2)

(Mstep (app fn1 arg1)
(app fn2 arg2)))))))))

(Mstep_app2
(! fn1 trm (! arg1 trm
(! body2 (^ x trm trm) (! arg2 trm
(! dfn (Mstep fn1 (lam body2))
(! darg (Mstep arg1 arg2)

(Mstep (app fn1 arg1)
(subst arg2 body2)))))))))))

Figure 7. The Datatype for Multi-Step Reduction

5.3 Multi-Step Reduction
Figure 7 gives an inductive definition of the multi-step reduction
relation. Variables step to themselves; lambda-abstractions step as
their bodies do; and for applications, we can either step the func-
tional subterm and argument subterm in parallel (Mstep app1), or
we can do so and then do a β-reduction (Mstep app2). Note the
use of name replacements in the Mstep lam case, to state that the
body of the first lambda-abstraction steps to the body of the second,
when the bodies both use x as the name of the bound variable.

5.4 Multi-Step Reduction and Substitution Lemmas
The two lemmas about multi-step reduction needed in the proof
are:

Mstep_refl :
(! t trm (Mstep t t))

and

(Define Mstep_refl
(fun IH()

(! t trm (Mstep t t))
(var

(Mstep_var_refl t.name))
(app

(Mstep_app1 t.fn t.arg t.fn t.arg
(IH t.fn) (IH t.arg)))

(lam
(Mstep_lam t.body t.body

(nu x trm (IH (@ t.body x)))))))

Figure 8. Reflexivity of Multi-Step Reduction

Mstep_subst :
(! s2 trm
(! t2 trm
(! d2 (Mstep s2 t2)
(! s1 (^ x trm trm)
(! t1 (^ x trm trm)
(! d1 (^ x trm (Mstep (@ s1 x) (@ t1 x)))

(Mstep (subst s2 s1) (subst t2 t1))))))))

The first lemma says that Mstep is reflexive for all terms (not just
variables, as the definition of Mstep already states). The second
lemma states that, using conventional notation for substitution,
[s2/x]s1 (multi-step) reduces to [t2/x]t1 if s2 reduces to t2 and
s1 to t1. The proofs of these lemmas are very short, just 55 lines.
For example, the proof of the first lemma is listed in Figure 8. Note
the use of implicit contexts to avoid having to invent names for all
the pattern variables. We hope the reader agrees that this makes the
proof of Mstep refl quite readable.

The proof of Mstep subst depends on a lemma describing
how substitution commutes with itself. This well known property
is written in conventional mathematical notation like this, where x
is not free in t1:

[s/y][t1/x]t2 = [[s/y]t1/x][s/y]t2

In our cinic development, this lemma is stated as follows, mak-
ing use of a standard indexed inductive type eq for polymorphic
equality (as in Coq):

subst_comm :
(! s trm
(! t1 (^ y trm trm)
(! t2 (^ y trm (^ x trm trm))
(eq trm

(subst s (nu y trm
(subst (@ t1 y) (@ t2 y))))

(subst (subst s (nu y trm (@ t1 y)))
(nu x trm

(subst s (nu y trm (@ t2 y x)))))))))

The proof, by induction on t2, and is 87 lines long, and requires in
one of the variable cases this lemma, which states that [s/x]t = t
when x is not free in t:

subst_closed :
(! s trm
(! t trm

(eq trm (subst s (nu x trm t)) t)))

The proof of that lemma is 31 lines long. In systems based on
HOAS, where object language substitution is mapped to meta-
language substitution, these two lemmas about substitution would
not be required. In the CNIC methodology, object language substi-
tution must be implemented, but can be done so in a straightforward
way using the nominal features of the language. The resulting re-
quired lemmas are also straightforward to prove, without the low-

level lemmas (e.g. about shifting, for de Bruijn indices) that are
typically required with concrete encodings of variable names.

5.5 The Diamond Property for Mstep
The diamond property for Mstep is now formulated as follows.
First, we make this definition:

(Define P (\ t trm
(\ s1 trm
(! s2 trm
(! dright (Mstep t s2)

(join s1 s2))))))

This defines a predicate P, for which we can prove by induction on
dleft:

Mstep_confl :
(! t trm
(! s1 trm
(! dleft (Mstep t s1)

(P t s1))))

This proof is non-trivial, requiring around 275 lines of cinic.
The most significant challenge is that we must apply inversion in
numerous cases. For example, in the case where dleft is built with
Mstep lam, cinic’s type refinement will refine the trm t to be
(lam dleft.body1), and s1 to be (lam dleft.body2). But it
is up to us to apply an inversion lemma to conclude that since t is
a lam-trm, the proof dright must also be built with Mstep lam
(since that is the only proof which allows a lam-trm to take a
multi-step), and s2 must then also be a lam-trm. As remarked
above, the current implementation of cinic does not derive this
inversion lemma automatically, as Coq, for example, does. Instead,
the programmer must currently derive such principles himself.

5.6 Concluding Confluence of Step
Figure 9 gives an inductive definition of the single-step reduction
relation. Figure 10 gives the inductive definition from cinic’s li-
brary of the reflexive transitive closure star of a relation. Us-
ing star, we can now define the desired new reduction relation,
Starstep:

(Define Starstep (star trm Step))

Given the proof of the diamond property for Mstep, it is possible
to derive a proof of the diamond property for Starstep which is
equivalent to a proof of confluence of Step.

Informally, the proof is as follows. Assuming for two relations,
R and S, R ⊆ S ⊆ R∗ and the diamond property for S, conflu-
ence for R can be derived as follows, in three major steps. First,
assume R∗ t s1 and R∗ t s2. From this get S∗ t s1 and S∗ t s2 by
monotonicity of ∗, using R ⊆ S. Second, by confluence of S,
which follows easily from the diamond property for S, get a t′ with
S∗ s1 t

′ and S∗ s2 t
′. Finally, get R∗∗ s1 t

′ and R∗∗ s2 t
′ again by

monotonicity of *, this time using S ⊆ R∗. Confluence of R can
be concluded from this via idempotence of *.

Now we consider how this is implemented in cinic. For con-
venience, we first define StarMstep:

(Define StarMstep (star trm Step))

From cinic’s library, we have a lemma star commute, which
states that star maintains commutativity:

(! A (Type 0)
(! R1 (! x A (! y A Prop))
(! R2 (! x A (! y A Prop))
(! t1 A
(! s1 A
(! s2 A
(! d1 ((star A R2) t1 s1)

(Inductive
(Step (! t1 trm (! t2 trm Prop))

(Step_beta
(! body (^ x trm trm)
(! arg trm

(Step (app (lam body) arg)
(subst arg body)))))

(Step_app1
(! fn1 trm
(! fn2 trm
(! arg trm
(! d (Step fn1 fn2)

(Step (app fn1 arg)
(app fn2 arg)))))))

(Step_app2
(! fn trm
(! arg1 trm
(! arg2 trm
(! d (Step arg1 arg2)

(Step (app fn arg1)
(app fn arg2)))))))

(Step_lam
(! body1 (^ x trm trm)
(! body2 (^ x trm trm)
(! d (^ x trm (Step (@ body1 x)

(@ body2 x)))
(Step (lam body1)

(lam body2))))))))

Figure 9. The Datatype for Single-Step Reduction

(Inductive
(star (! A (Type 0)

(! R (! x A (! y A Prop))
(! a A (! b A Prop))))

(star_refl
(! A (Type 0)
(! R (! x A (! y A Prop))

(! a A (star A R a a)))))
(star_next

(! A (Type 0)
(! R (! x A (! y A Prop))
(! a A
(! b A
(! c A
(! d1 (R a b)
(! d2 (star A R b c)

(star A R a c)))))))))))

Figure 10. Inductive Definition of Reflexive Transitive Closure

(! d2 ((star A R1) t1 s2)
(! d3 (commutativity A R1 R2)
(join A (star A R1) (star A R2) s1 s2))))))))))

To prove confluence for Mstep, the proof of the diamond property
for Mstep is supplied to star commute, along with StarMstep
for both R1 and R2. The final type for the proof of confluence of
Mstep is shown below:

(Define Mstep_confl
(! t1 trm
(! s1 trm
(! s2 trm
(! d1 (StarMstep t1 s1)
(! d2 (StarMstep t1 s2)

(join trm StarMstep StarMstep s1 s2)))))))

The final step of our informal proof is to show that Step ⊆
Mstep ⊆ Starstep. We formalize this with two lemmas. The first,

step to mstep, is an easy conversion between Step and Mstep.
The second, mstep to starstep, is a conversion between Mstep
and Starstep. This conversion is less trivial in that congruence
properties must be derived inductively for Starstep. The type of
one such congruence property is:

(! body1 (^ n trm trm)
(! body2 (^ n trm trm)
(! d (^ n trm

(Starstep (@ body1 n) (@ body2 n)))
(Starstep (lam body1) (lam body2)))))

Now that we have confluence of Mstep and the inclusion re-
lations between Step, Mstep, and Starstep, we can follow the
steps laid out in the informal proof in a straightforward manner. The
formal proof first assumes (Starstep t s1) and (Starstep t
s2). Recall from the informal proof that these assumptions must
first be converted from type Starstep to type StarMstep. As
was done in the informal proof, the formal proof does this via
monotonicity of star, implemented in cinic’s library as a lemma
star mono:

(! A1 (Type 0)
(! A2 (Type 0)
(! R1 (! x A1 (! y A1 Prop))
(! R2 (! x A2 (! y A2 Prop))
(! f (! x A1 A2)
(! q (! s A1 (! t A1

(! d (R1 s t)
(R2 (f s) (f t)))))

(! s A1
(! t A1
(! d (star A1 R1 s t)

(star A2 R2 (f s) (f t)))))))))))

Combining star mono with step to mstep, produces another
conversion lemma, starstep to starmstep, with the type ex-
pected from its name. The next step in the informal proof is to de-
rive a joining point and two joining relations. In the formal proof
this is as easy as the application of the Mstep confl proof. Recall,
however, that this proof returns all three parts as a join bundle. To
separate them, the join has to be inverted which is handled easily by
the invert join lemma from cinic’s library. Once they are sep-
arated, the final step of the proof, converting the output relations,
can be completed.

Just as in the first step, this conversion is a basic application of
star mono and a conversion lemma, mstep to starstep. These
two alone produce a relation of type (star trm (Starstep))
which can be reduced to Starstep via idempotence of star as
proved by the star idem lemma from cinic’s library:

(! A (Type 0)
(! R (! x A (! y A Prop))
(! s A
(! t A
(! d (star A (star A R) s t)

(star A R s t))))))

Combining all three of these lemmas produces a new conversion
lemma, starmstep to starstep, with the expected type. Once
the output relations are attained, all that remains is to rejoin them
with the joining point which is handled simply by a join construc-
tor, show join, in cinic’s library.

Putting all of the pieces together, the final formulation of con-
fluence of Step is shown in Figure 11. In total, the proof of con-
fluence for Step, including lemmas, given the diamond property
for Mstep, requires only around 175 lines of code, not including
library or inversion lemmas.

(Define Step_confl
(\ t1 trm
(\ s1 trm
(\ s2 trm
(\ d1 (Starstep t1 s1)
(\ d2 (Starstep t1 s2)

(invert_join trm StarMstep StarMstep s1 s2
(Mstep_confl t1 s1 s2

(starstep_to_starmstep t1 s1 d1)
(starstep_to_starmstep t1 s2 d2))

(join trm Starstep Starstep s1 s2)
(\ joining trm
(\ d1 (StarMstep s1 joining)
(\ d2 (StarMstep s2 joining)

(show_join trm Starstep Starstep
s1 s2 joining

(starmstep_to_starstep s1 joining d1)
(starmstep_to_starstep s2 joining d2)

)))))
))))))

Figure 11. Final Proof of Confluence for Step

5.7 A Note on Extensionality
The definitional equality of CNIC follows CIC in being inten-
sional: extensionally equal functions are not necessarily definition-
ally equal. The same is true in CNIC for terms of ∇-type. We do
not generally have, for t of type ∇x :A .B, that t is definitionally
equal to ν x : A . t @ x. While we conjecture that CNIC’s type
refinement could be modified to imply extensionality when B is
an inductive type, currently we postulate extensionality at ∇-types
as an axiom. The confluence proof uses such a principle of exten-
sionality to obtain this equation between encoded lambda-terms:
lam t = lam (nu x trm (@ t x)), which is needed in several
places. Extensionality at∇-type is the only axiom we add to CNIC
for the confluence proof.

6. Related Work
The most well-known intensional approach to encoding name-
binding is Higher-Order Abstract Syntax, or HOAS, which refers
to the use of λ-abstractions to encode binding constructs. HOAS
has been combined successfully with logic programming in Twelf
[17], λProlog [12], and Bedwyr [2], where the latter is the source
of the ∇-abstraction. HOAS has proved difficult to combine with
functional programming languages, however, which include type
theories such as CIC, because it is difficult to express recursion over
λ-abstractions [10, 6, 25]. A number of systems have addressed
this problem [21, 18], including the∇-calculus that is the source of
the ν-abstraction, but these require complex machinery to recurse
over λ-abstractions (this is the purpose of the ν-abstraction in
the ∇-calculus), and none of these approaches have been shown
compatible with polymorphism and thus with CIC.

The most closely related approach to the current work is Simple
Nominal Type Theory, or SNTT [4], which contains constructs that
directly mirror the∇-type, ν-abstractions, and name replacements.
The current work can be seen as an extension of this work to handle
the full language of CIC.

There are also a number of extensional approaches to encoding
name-binding [7, 19, 11, 8]. The most well-known of these is Nom-
inal Logic [7], in which bindings are encoded as α-equivalence
classes. Nominal Logic has been successfully combined with the
Isabelle proof assistant [24], which is based on extensional type
theory. There has been one attempt to combine Nominal Logic [1]
and the Theory of Context [11] with CIC, but the first work (by its
own admission) states that it is incomplete and difficult to use, and

both require Axiom statements. Further, most of these approaches
do not satisfy the typing property of name-bindings discussed in
Section 2.

Another interesting extensional approach is the Locally Name-
less approach, in which bound names are encoded with deBruijn
indices while free names are encoded with a known set of names
[9]. This approach has been shown to be very easy to use, as all op-
erations related to deBruijn indices can be encapsulated in a small
term manipulation library. Unfortunately, deBruijn indices do not
satisfy the scoping property, as there is nothing to ensure that only
valid numbers are used. For example, the term var\;200 is only
valid under 200 binders. Thus the Locally Nameless approach is
not truly an adequate encoding, as discussed above, without an ex-
tra judgment that the bound variables in an expression are all valid.
All operations on expressions must thus be proved to correctly ma-
nipulate names as well, drastically increasing the size of proofs. In
addition, this approach does not satisfy the typing property.

7. Conclusion
This paper has presented a theory, the Calculus of Nominal In-
ductive Constructions, for encoding and reasoning about name-
bindings. This calculus is an extension of the Calculus of Inductive
Constructions to include an intensional account of name-binding
in terms of a construct called the ν-abstraction. CNIC also in-
cludes powerful features for using name-bindings, including name-
matching functions for comparing names and pattern-matching
functions that can match inside ν-abstractions. CNIC has been
demonstrated with a modest-sized example, a proof of confluence
of the untyped λ-calculus, which relies heavily on name-binding.
This proof has been machine-checked with an implementation of
CNIC called cinic.

There are many interesting directions for future work on CNIC.
It would be useful in CNIC to add support for dependent pattern-
matching with stronger type refinements, such as initially suggested
by Coquand [5]. In standard type theory, this dependent pattern-
matching is known to require the axiom of Uniqueness of Identity
Proofs (UIP). In CNIC, however, this type refinement would have
to work for pattern-matches inside ν-abstractions, which seems to
require additional axioms, such as extensionality of ν.

On the theoretical side, there are many interesting theorems in
CNIC that intuitively should hold but do not seem to be provable
in the theory. For example, if x, y, and their type B are fresh for
α, then the proposition ∇α :A . eq B x y should intuitively imply
that eq B x y holds, as the equality proof should not require α.
Proving this is not immediate, however, and we conjecture that it
cannot in fact be proved in CNIC. This suggests that there are non-
trivial models of CNIC, and thus of name-binding, which are highly
counter-intuitive.

References
[1] B. Aydemir, A. Bohannon, and S. Weirich. Nominal reasoning tech-

niques in Coq (extended abstract). In Proceedings of the First In-
ternational Workshop on Logical Frameworks and Meta-Languages:
Theory and Practice (LFMTP 2006), pages 69–77, 2007.

[2] D. Baelde, A. Gacek, D. Miller, G. Nadathur, A. Tiu, and École
Polytechnique. The Bedwyr system for model checking over syntactic
expressions. In 21st Conference on Automated Deduction (CADE ’07),
pages 391–397, 2007.

[3] H. Barendregt. The Lambda Calculus, Its Syntax and Semantics.
North-Holland, 1984.

[4] J. Cheney. Simple nominal type theory. In Proceedings of the In-
ternational Workshop on Logical Frameworks and Meta-Languages:
Theory and Practice, 2008.

[5] T. Coquand. Pattern matching with dependent types. In B. Nordström,
K. Petersson, and G. Plotkin, editors, Electronic Proceedings of the
Third Annual BRA Workshop on Logical frameworks, 1992.

[6] L. Fegaras and T. Sheard. Revisiting catamorphisms over datatypes
with embedded functions (or, programs from outer space). In Proceed-
ings of the 23rd Symposium on Principles of Programming Languages
(POPL ’96), pages 284–294, 1996.

[7] M. Gabbay and A. Pitts. A new approach to abstract syntax with
variable binding. Formal Aspects of Computing, 13:341–363, 2002.

[8] M. Hofmann. Semantical analysis of higher-order abstract syntax.
In Proceedings of the 14th Annual IEEE Symposium on Logic in
Computer Science (LICS ’99), 1999.

[9] C. McBride and J. McKinna. Functional pearl: i am not a number–
i am a free variable. In Haskell ’04: Proceedings of the 2004 ACM
SIGPLAN workshop on Haskell, pages 1–9, 2004.

[10] E. Meijer and G. Hutton. Bananas in Space: Extending fold and unfold
to Exponential Types. In Proceedings of the 7th SIGPLAN-SIGARCH-
WG2.8 International Conference on Functional Programming and
Computer Architecture. ACM Press, La Jolla, California, June 1995.

[11] M. Miculan. Developing (meta)theory of λ-calculus in the theory of
contexts. In Proceedings of the Workshop on MEchanized Reasoning
about Languages with variable bINding (MERLIN ’01), pages 65–81,
2001.

[12] D. Miller. A logic programming language with lambda-abstraction,
function variables, and simple unification. J. of Logic and Computa-
tion, 1(4):497–536, 1991.

[13] D. Miller and A. Tiu. A proof theory for generic judgments. ACM
Trans. Comput. Logic, 6(4):749–783, 2005.

[14] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

[15] M. Odersky. A functional theory of local names. In Proc. 21st ACM
Symposium on Principles of Programming Languages (POPL ’94),
pages 48–59, 1994.

[16] F. Pfenning and C. Elliott. Higher-order abstract syntax. In ACM SIG-
PLAN Symposium on Language Design and Implementation, 1988.

[17] F. Pfenning and C. Schürmann. System Description: Twelf — A Meta-
Logical Framework for Deductive Systems. In 16th International
Conference on Automated Deduction, 1999.

[18] B. Pientka. A type-theoretic foundation for programming with higher-
order abstract syntax and first-class substitutions. In Proceedings
of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2008.

[19] U. Schöpp and I. Stark. A dependent type theory with names and
binding. In Computer Science Logic (CSL ’04), volume 3210 of LNCS,
pages 235–249, 2004.

[20] C. Schürmann, J. Despeyroux, and F. Pfenning. Primitive recursion for
higher-order abstract syntax. Theoretical Computer Science, 266(1-
2):1–57, 2001.

[21] C. Schürmann and A. Poswolsky. Practical programming with higher-
order encodings and dependent types. In 17th European Symposium
on Programming (ESOP ’08), pages 93–107, 2008.

[22] TeReSe, editor. Term Rewriting Systems, volume 55 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press,
2003.

[23] The Coq Development Team. The Coq Proof Assistant Reference
Manual, Version V8.0, 2004. http://coq.inria.fr.

[24] C. Urban. Nominal Techniques in Isabelle/HOL. J. Autom. Reason.,
40(4), 2008.

[25] G. Washburn and S. Weirich. Boxes go bananas: encoding higher-
order abstract syntax with parametric polymorphism. In Proceed-
ings of the 8th International Conference on Functional Programming
(ICFP ’03), pages 249–262, 2003.

[26] E. Westbrook. Higher-Order Encodings with Constructors. PhD
thesis, Washington University in Saint Louis, 2008.

