
Subset Types and Partial Functions

Aaron Stump

Dept. of Computer Science and Engineering
Washington University in St. Louis

Web: http://www.cs.wustl.edu/ estump/

Abstract. A classical higher-order logic PFsub of partial functions is
defined. The logic extends a version of Farmer’s logic PF by enriching
the type system of the logic with subset types and dependent types.
Validity in PFsub is then reduced to validity in PF by a translation.

1 Introduction

Logics of partial functions are of practical interest for formal modelling and
verification of hardware, software, and protocols. Such systems often use opera-
tions like division or selectors of inductive data types which are most naturally
viewed as undefined on some inputs. Previous works studying such logics and
their implementations include [16, 17, 10, 11, 4].

Subset types have been proposed for similar purposes. Intuitively, a subset
type A|P is formed from a type A and a predicate P on A; and something is
in this subset type if it is in type A and satisfies predicate P . The widely used
proof assistant PVS relies heavily on subset types for modelling and verification
of systems [19, 23]. In PVS, higher-order functional terms are interpreted as total
functions on their domains. An application of a function with domain A|P to
an argument a of type A|Q where Q(a) does not imply P (a) is considered ill-
typed. This quickly leads to undecidability of type-checking in PVS. Attempting
to type check a goal formula leads to type-correctness conditions (TCCs) which
if proved, establish that the formula is well-typed and hence possibly provable.
Unfortunately, it can happen that the TCCs generated by PVS for a formula are
unprovable, but the TCCs for what should intuitively be an equivalent formula
are provable [23, 20]. The example given in Chapter 6 of [20] is

if 1/i > 0 then i 6= 0 else F.

The TCC generated for this formula by PVS is i 6= 0, which is not valid. But
PVS generates the valid TCC i 6= 0 ⊃ i 6= 0 for the following formula, which we
expect to be logically equivalent:

if i 6= 0 then 1/i > 0 else F.

Due to this difference, these two formulas are not provably equivalent in PVS.

This paper develops a unified approach to partial functions and subset types,
which does not suffer from this anomalous behavior. We begin with a higher-
order logic that allows functions to be undefined on some arguments. We extend
this logic’s type system to include subset types, but we retain decidability of
type checking essentially by having the type system ignore subset types. So
an application of a function expecting a non-zero number to zero will be well-
typed. But the proof system for the logic will then state that that application
is undefined. So the constraints determined by the subset types are enforced by
the proof system, not the type system.

Section 2 formulates this system of partial functions and subset types, called
PFsub. Section 3 develops some basic proof theory of PFsub. Section 4 defines a
subtyping relation between types in terms of more primitive notions, and shows
how standard subtyping rules, including contravariant subtyping of functional
types, are derivable. Section 5 reduces validity in PFsub to validity in PFsub

without subset types. This latter system we call PF, since it is essentially a
version of Farmer’s logic of partial functions PF [8, 9]. Section 6 summarizes the
basic meta-theory of PF.

2 Definition of PFsub

This section defines the logic PFsub. The basic idea is to add subset types to
Farmer’s PF [9, 8]. PF is based on Andrews’s system Q0 [1], which is based in
turn on Church’s original higher-order logic [5]. While conceptually we begin
with PF and add subset types, for clarity of presentation we develop PFsub first
and then define PF as PFsub without subset types.

2.1 Type system

The type system of PFsub has basic types ι, for individuals, and o, for formulas.
Subset types complicate matters, since type expressions can contain formulas as
subexpressions. A further complication arises with typing lambda expressions
like λx : ι. λ y : (ι|λ y : ι. y ≥ x). y − x The most natural type for this is
Π x : ι.Π y : (ι|λ y : ι. y ≥ x). ι which uses dependent function types Π x :
A.B instead of simple function types A → B. Hence, the type system of PFsub

involves dependent types (see, e.g., [21]). We will rely on standard notations and
definitions from typed lambda calculus.

Figure 1 defines the typing relation of PFsub inductively, using a standard
style. For uniformity, the definition uses a single basic kind ∗ to classify types,
which themselves classify terms. There are two different classifications which
may be used: X :: Y means that X is exactly described by type Y , while X : Y
means that X satisfies type Y , where Y is viewed as a specification. The former
is the kind of type declaration we might like to have in typing contexts, while
the latter is the kind we need for λ- or Π-bound variables to get contravariant
subtyping of functional types. From a type declaration f :: ι|P → ι, it will follow
that (f x) is undefined for all x such that ¬(P x). On the other hand, it will

(ι-type)

 ι : ∗

(o-type)

 o : ∗

(sym1)
Σ A : ∗

Σ, x : A x : A
e(A) ≡ A

(weak1)
Σ A : ∗ Σ M :2 C

Σ, x : A M :2 C
e(A) ≡ A

(sym2)
Σ A : ∗

Σ, x :: A x :: A
e(A) 6≡ A

(weak2)
Σ A : ∗ Σ M :2 C

Σ, x :: A M :2 C
e(A) 6≡ A

(Π)
Σ, y :1 A B : ∗

Σ Π x :1 A. [x/y]B : ∗

(|)
Σ A : ∗ Σ P :1 A

′ → o

Σ A|P : ∗
(1), (2)

(=)
Σ A : ∗

Σ =A:: A→ A→ o

(λ)
Σ, y :1 A M :2 B Σ, y :1 A B : ∗

Σ λx :1 A. [x/y]M :2 Π x :1 A. [x/y]B

(I)
Σ α : ∗

Σ Iα :: (α→ o) → α
e(α) ≡ α

(app)
Σ M :2 Π x :1 A.B Σ N :3 A

′

Σ M N :2 [N/x]B
(2)

(strip)
Σ M :1 A|P

Σ M :1 A

Fig. 1. Type system of PFsub

be consistent to have f : ι|P → ι and yet have (f x) defined for x such that
¬(P x) holds. In Figure 1 and subsequently, the metavariables :1, :2, etc. range
over {:, ::}. The function e() does the following two things: turn every subset
type A|P1| . . . |Pn into just A, where A is not a subset type; and change every ::
into a :. When classifying an expression by ∗ or by A where e(A) ≡ A, we always
use :.

As usual in type theory, we require that typing contexts Σ contain at most
one typing declaration for a given symbol. The symbols x introduced by the
rule (sym) are drawn from a countably infinite set Symbols. [N/x]B denotes the
result of safely substituting N for x in B, where safe substitution respects λ-
and Π-bindings of variables in the usual way; bound variables may be renamed
to avoid capture. We abbreviate Π x : A.B by A → B if B does not contain x
free, and also Π x :: A.B by A⇒ B. We say that x occurs free in typing context
Σ iff there is a declaration y : A in Σ such that x occurs free in A.

The rules (=) and (I) give types to an infinite family of logical symbols for
equality and definite descriptions, respectively. We also have the following side
conditions.

1. In the rule (|), we require A 6≡ o. We gain little by allowing subsetting of
type o, and it simplifies the presentation somewhat to disallow it.

2. Also, in the rules (|) and (app), we require e(A) ≡ e(A′). As remarked previ-
ously, type checking will become undecidable if the type system attempts to
take all subset constraints into account. We avoid undecidability by having
the type system ignore constraints imposed by subset types. The ignored
constraints are taken into account in the deductive system for the logic (in
Section 2.3).

The rule (strip) enables simpler statements of some axioms below. For simplicity,
we consider only definite descriptions of things of type α, where α does not
contain subset types. We could define a second family of equality symbols, each
of type A ⇒ A ⇒ o, but again for simplicity we will not do so. Note that
(weak1) is not a special case of (weak2), due to the different side conditions; and
similarly for (sym1) and (sym2). Finally, a typing context Σ is valid iff Σ o : ∗
is derivable.

2.2 Abbreviations

This section presents some abbreviations and syntactic conventions, mostly fol-
lowing [2, 8]. We write equalities =A M N asM =A N . Abbreviations for logical
connectives are given in Figure 2. Standard precedences and associativities are
used. The unary postfix operators ↓ and ↑ are for definedness and undefinedness,
respectively. Notice that subset types are erased in the definitions. This justifies
omitting the subscripts on ↓ and ↑. These symbols will bind more tightly than
the other logical connectives and the equality symbol. The abbreviation for ∝
is introduced to allow more concise formulations of some axioms in Section 2.3
below.

T := (=o =o→o→o =o)
F := (λx : o.T =o→o λx : o. x)
φ ∧ ψ := (λC : o→ o→ o. (C φ ψ) =σ

λC : o → o→ o. (C T T))
¬φ := (φ =o F)
φ ∨ ψ := ¬(¬φ ∧ ¬ψ)
X ↓

A
:= (λx : e(A).T) X

X ↑A := ¬(X ↓A)
X 'A Y := (X ↓

A
∨ Y ↓

A
) ⊃ (X =A Y)

σ ≡ (o → o→ o) → o

X 6=A Y := ¬(X =A Y)
φ ⊃ ψ := (φ =o (φ ∧ ψ))
∀x : A. φ := (λx : A.φ 'τ λx : A.T)
∀x :: A.φ := (λx :: A. φ 'τ λx :: A.T)
∃x : A. φ := ¬(∀x : A.¬φ)
∃x :: A.φ := ¬(∀x :: A.¬φ)
∝oM := M = F

∝α M := M ↑α if α 6≡ o

τ ≡ A→ A→ o

Fig. 2. Abbreviations for logical constants

Figure 3 defines two abbreviations � and � which are crucial in what follows.
They correspond to the classifications :: and :, respectively. Roughly, t�A says
that term t, if defined, can be used where an element of type A is required. The

formula t � A makes the stronger statement that if t is defined, it is truly an
element of A. The difference is the same as the difference between :: and :.

t� o := T

t� ι := T

t�A|P := (P t) ∧ t�A
t�Π x : A.B :=

∀x : e(A).x�A ∧ (t x) ↓ ⊃ (t x) �B
t�Π x :: A.B :=

∀x : e(A).x�A ∧ (t x) ↓ ⊃ (t x) �B

t� o := T

t� ι := T

t�A|P := (P t) ∧ t�A
t�Π x : A.B :=

∀x : e(A). (¬(x�A) ⊃ ∝B(t x)) ∧
(x�A ∧ (t x) ↓ ⊃ (t x) �B)

t�Π x :: A.B :=
∀x : e(A). (¬(x�A) ⊃ ∝B(t x)) ∧

(x�A ∧ (t x) ↓ ⊃ (t x) �B)

Fig. 3. Definition of abbreviations � and �

2.3 Valid formulas

Figure 4 gives an inductive definition of the set of logically valid sequents of
PFsub. These sequents are of the form Σ ; Γ ` φ. We elide the Σ from logical
sequents in all the rules except (generalize), because it is always the same from
premises to conclusion. Many of the rules are present or inspired by those in [9,
1] for PF and Q0, but there are significant differences. For typographical reasons,
the name of each rule and any side conditions of the rule are written above the
rule.

Notation: The notation Σ 3 x :1 A means that Σ is a valid typing context
containing the type declaration x :1 A. Also, Σ 3 x1, . . . , xn means that for all
i ∈ {1, . . . , n}, Σ 3 xi :1 A holds for some :1 and A.

The side condition (**) on several of the rules is x ∈ Sym and x is not
declared in Σ. This keeps variables that were free in the premises from becoming
inappropriately bound in the conclusions of those rules. The side condition (***)
on rules (β-reduction) and (|-outer) is that �? is � if :1 is ::, and � if :1 is :.
These two places are where the connection between : and :: on the one hand and
� and � on the other is made.

The rules (replace), (generalize) and (weaken) are proper inference rules, in
the sense that they have logical premises. All the other rules are logical axioms:
they have typing sequents as premises, but not logical sequents. The rules (β-
reduction-o), (β-reduction-∧), (T), (weak equality-o) and (Leibniz) are technical,
in the sense that they are used to derive more general rules which then entail
them. The rule (Leibniz) is used in the proof of the Deduction Theorem in
the same way as in [1]. It is easily derivable using the Deduction Theorem.
The specialized β-reduction rules and the rule (T) are used to derive modus
ponens, which enables the more general (β-reduction) rule to be used. In [8],
an axiom like the general (β-reduction) rule is used without the technical rules.

(assume)
Σ φ : o

φ ` φ

(weaken)
Γ ` ψ Σ φ : o

Γ, φ ` ψ

(truth values): (**)
Σ 3 g : o→ o

` (g T ∧ g F) =o (∀x : o. g x)

(sym convergence)
Σ 3 x :1 A

` x ↓

(o-convergence)
Σ M N : o

` M N ↓

(weak equality-o)
Σ (M 'o N) : o

` (M 'o N) 'o (M =o N)

(=-convergence)
Σ A : ∗

`=A ↓

(I-convergence)
Σ A : ∗

` IA ↓

(weak equality)
Σ 3 x, y Σ (x 'A y) : o

` (x 'A y) 'o (x =A y)

(T)

` T

(λ-convergence)
Σ λx :1 A.M :1 α

` λx :1 A.M ↓

(generalize): y 6∈ FV(Γ)
Σ, y :1 A ; Γ ` φ

Σ ; Γ ` ∀x :1 A. [x/y]φ

(extensionality): (**)
Σ 3 f, g Σ (f =Π x:1C. D g) : o

` (f =Π x:1C. D g) =o

(∀x :1 C. (f x) 'D (g x))

(divergence)
Σ (M N) :1 α

` (M ↑ ∨ N ↑) ⊃ ∝α(M N)

(β-reduction): (***)
Σ (λx :1 A.M) N :2 α

` N ↓ ⊃ (N�?A) ⊃
((λx :1 A.M) N 'e(α) [N/x]M)

(|-outer): (***)
Σ M :1 A Σ A : ∗

`M ↓ ⊃ M�?A

(Leibniz)
Σ 3 h, x, y
Σ x =A′ y : o Σ (h x =o h y) : o

` x =A′ y ⊃ (h x =o h y)

(replace): A ≡ e(A) and (*)
Γ ` X 'A Y Γ ` C

Γ ` D

(β-reduction-∧): τ ≡ o→ o → o
Σ Q : o
Σ ((λC : τ. C P Q) λu : o. λ v : o.v) : o

` (λC : τ. C P Q) λu : o. λ v : o.v 'o Q

(β-reduction-o)
Σ (λx : o.M) N :1 α Σ N : o

` (λx : A.M) N 'e(α) [N/x]M

(|-=)
Σ (x =A|P y) : o

` (x =A y ∧ (P x) ∧ (P y)) =o

(x =A|P y)

(dd-1): (**), e(α) ≡ α
Σ (t =α t) : o

` t ↓ ⊃ (Iα(λx : α. x =α t) =α t)

(dd-2): (**), e(α) ≡ α
Σ (M =α→o M) : o

` (∀x : α.M 6=α→o (λ y : α. y =α x))
⊃ ∝α(Iα M)

Fig. 4. Logical rules of PFsub

This turns out to be too restrictive to allow many derivations to go through.
[9] seeks to correct this error by using an inference rule of (β-reduction). But
this then requires an additional case in the proof of the Deduction Theorem,
which is omitted in [9]. The author has not been able to reconstruct this case.
The technical axioms chosen here for PFsub are just strong enough to allow a
derivation of modus ponens, but do not require an additional inference rule. The
proof of the Deduction Theorem then proceeds much like in [1].

In the rule (replace), D is the result of replacing one occurrence of X by Y
in a valid formula C when X 'A Y is valid. A side condition (*) is needed to
deal with the case when X 'A Y contains free variables. Note that variables
occurring free in a predicate P in a subset type A|P are considered part of
the free variables of that type. The occurrence of X that is replaced cannot be
beneath a λ-binding of any symbol x which occurs free in X 'A Y and either Γ
or the typing context Σ. Furthermore, suppose x is a symbol which occurs free in
X 'A Y but not in Γ or Σ. Suppose further that Σ x :1 A is derivable. Then
it is required that if there are any λ-bindings of x above the occurrence of X
to be replaced, then the nearest enclosing λ-binding of x above that occurrence
must be of the form λx :1 A.M

′ for some M ′. Finally, if X is itself a symbol,
then the occurrence which is replaced by Y is not allowed to be the binding
occurrence of X in λX :1 A.M .

The (generalize) rule allows variables to be moved out of the typing context.
Such a rule is not needed in [9, 1], since explicit typing contexts are not used,
and a countable set of variables of every type is assumed. This approach cannot
soundly be taken here, because if we have Σ 3 x : A with Σ A : ∗, then (sym
convergence) and (|-outer) give us ` x�A. If A is something like (ι|λx : ι.F),
then the latter sequent is equivalent to ` F. So if we always had x : A available
for all types A, our system would be inconsistent. By keeping track of variables
in a typing context, we show below that we preserve consistency. For particular
choices of Σ, like one containing x : (ι|λx : ι.F), it can still happen that Σ ; ` F
is derivable.

2.4 Examples

To create a theory of lists, we can declare function symbols null, cons, car, and
cdr. It is convenient to declare that the domain type of car and cdr is

ι|λx : ι. cons? x

where cons? abbreviates

λx : ι. ∃ y : ι. ∃ z : ι. x = cons y z

Using the results developed in the sequel, this definition and suitable other
axioms about null, cons, car, and cdr lead to the validity of formulas like this

(car x = 3) ∧ (cdr x = null) ⊃ (x = cons 3 null)

where x is of type ι. This is to be contrasted with constructive type theories like
that of [15], where to type an application of car, that function would have to
be applied to an inclusion i(x), not just x. This inclusion will only be typable if
cons? x is provable, but that is not the case here. Hence, formulas like the above
would not even be typable in such type theories, let alone valid. At a high-level,
this is because logical context plays no role in typing in systems like that of [15].
The propositional constants are viewed as any other symbols for purposes of
typing. In PFsub, whether or not subset constraints are satisfied in part of an
expression is allowed to depend on the logical context determined by the rest of
the expression.

Let us compare PFsub with PVS. In PFsub, the formulas mentioned in the
Introduction are provably equivalent, assuming suitable definitions and axioms.
They are not provably equivalent in PVS. Furthermore, consider the following
formula:

1/i > 0 ⊃ i 6= 0

Following the definitions in [20], the TCC for this formula is i 6= 0, which is not
valid. Hence, this formula is not provable in PVS. It is easily provable in PFsub,
however, by the following argument. Let us assume 1/i > 0. For this to be true,
it must be the case that i 6= 0. This is because if i = 0, the term 1/i is undefined,
and hence the assumption is false.

3 Basic proof theory of PFsub

In this section we prove that modus ponens is derivable, and show a few other
basic derived rules. Using modus ponens, we can derive the Tautology Theo-
rem, which states that all propositional tautologies with the usual propositional
connectives including =o are derivable. Using the Tautology Theorem, the De-
duction Theorem can be derived, which states that Γ, φ ` ψ implies Γ ` φ ⊃ ψ.
The proofs of the Tautology Theorem and the Deduction Theorem may be found
in the Appendix. In the following derivation of modus ponens, whenever the typ-
ing context is elided from a logical sequent, it is Σ; and whenever the logical
context is elided, it is empty.

Derivation ('-refl): Reflexivity of ' is derived by using (β-reduction-o)
twice to derive two copies of (λx : o.A) T 'e(α) A where x is not free in A
and Σ A : α. Then (replace) is used to replace the left hand side of one of the
copies of the equation with A, to get A 'e(α) A. We can use (replace) because
e(o) ≡ o. 2

Derivation ('-symm): Symmetry of ' is derived by using (replace) with
Γ ` A 'e(α) B to replace the left occurrence of A in A 'e(α) A. 2

Derivation (=o-refl): Reflexivity of =o follows from ('-refl) and (weak
equality-o) using (replace). 2

Derivation (=o-replace): We can derive a version of (replace) that uses left
premise A =o B instead of A 'o B by using (weak equality-o), ('-symm), and
(replace) to get A 'o B, and then using (replace) to get the desired conclusion
from the right premise. 2

Derivation (=o-symm): Symmetry of =o follows from (=o-refl) and (=o-
replace). 2

Derivation (∧E-r): From Γ ` p ∧ q we can derive Γ ` q. Recall that
p ∧ q abbreviates λC : o → o → o. C p q =o λC : o → o → o. C T T. We
use two instances of (β-reduction-∧) which apply the left and right sides of the
above equation, respectively. Then we get q =o T by using ('o-replace) twice
with the results of the (β-reduction-∧)s on the expansion of p ∧ q. Now we
use (=o-symm) to get T =o q, and then (=o-replace) with that equation and T,
which we have by axiom (T). This gives us q, as we desired. 2

Derivation (modus ponens): Since p ⊃ q is an abbreviation for p = (p ∧ q),
we first apply (=o-replace) to the assumption p to get p∧q. Then we use (∧E-r).

2

We carry out a few other derivations to show how basic reasoning is done in
PFsub.

Derivation (∀E): This rule of universal instantiation is also derivable,

Σ M :1 A
′ Γ `M ↓ Γ `M�?A Γ ` ∀x :1 A. φ

Γ ` [M/x]φ

where e(A′) ≡ e(A) and �? is � if :1 is : and � otherwise. We use (replace)
with the fourth premise on a suitably weakened instance of (=o-refl) for (λx :1
A. φ) M , followed by two uses of (β-reduction) and (replace). The (β-reduction)s
are enabled by (modus ponens) and several premises. This gives Γ ` [M/x]φ =o

T. We use (T), (=o-symm), and (=o-replace) to get the desired conclusion. 2

Derivation (subst-keep): Now that (modus ponens) is available, we can
derive the following substitution rule. Suppose e(α) ≡ α, and x :1 γ is the last
declaration in Σ, but x is not free in Γ or α. Then

Γ ` C�?γ Γ ` C ↓ Σ ; Γ ` A 'α B
Γ ` [C/x]A 'α [C/x]B

where �? is � if :1 is : and � otherwise. The (replace) rule is used to replace
the second occurrence of A by B in the following instance of ('-refl), which
has been suitably weakened with Γ : Γ ` (λx :1 γ.A) C 'α (λx :1 γ.A) C.
Then it uses equations obtained with (modus ponens) and two of the premises
on (β-reduction), and then (replace). This derives Γ ` [C/x]A 'α [C/x]B. 2

Derivation (subst): From all the premises of (subst-keep) together with
the additional premise that C does not contain the replaced variable x free,
we can derive the same conclusion as (subst-keep), but without retaining the
declaration of x in the typing context. We just use (generalize) to get Γ `
∀x :1 γ. [C/x]A 'α [C/x]B, and then we use (∀E) to instantiate that quantified
formula with C. Since the quantified formula contains no free occurrences of x,
its instantiation is just [C/x]A 'α [C/x]B. But the variable x has been removed
from the typing context. 2

4 Subtyping in PFsub

In this section, a subtyping relation <: between types is defined, and standard
subtyping rules are shown to be derivable. For types A and B with e(A) ≡ e(B),
define A<:B to be an abbreviation for

∀x : e(A). x �A ⊃ x�B

For types A and B with e(A) 6≡ e(B), we just define A<:B to be F. This makes
e(A) ≡ e(B) a necessary condition for A<:B, which is reasonable in our system.

Figure 5 gives subtyping rules in terms of <:. Theorem 1 states that these
are derivable in PFsub. The rules generalize standard ones like those in Section
10.2 of [18] and, for dependent function types, [3], by giving subtyping rules for
subset types under logical hypotheses. The formal semantics of PVS presented
in [20] does not define a subtyping relation between types. A further difference
is that in PVS, subtyping is not contravariant in the domain of functional types,
whereas the proof below of derivability of rule (<:-Π) shows that subtyping is
contravariant in PFsub. We first make this observation:

Lemma 1 The rule (<:-|) is not invertible: the conclusion can hold where the
premises fail to hold.

Proof. A counter-example to invertibility is given by the following two types, for
predicate symbols P and Q: ι|P |Q and ι|Q|P . Clearly, ι|P <: ι|Q is not valid.
A canonical form for type expressions could probably defined in such a way that
(<:-|) is invertible, but this is not necessary. The above definition of <: makes
these two types subtypes of each other without putting them in a canonical form.
2

(<:-refl)
Γ ` A<:A

(<:-trans)
Γ ` A<:B Γ ` B<:C

Γ ` A<:C

(<:-Π)
Σ ; Γ ` A′<:A Σ, y : A ; Γ ` [y/x]B<:[y/x]B′

Σ ; Γ ` Π x : A.B <:Π x : A′. B′

(<:-|)
Γ ` A<:A′ Γ ` ∀x : A. (P x) ⊃ (P ′ x)

Σ ; Γ ` A|P <:A′|P ′

(subsume)
Γ `M ↓ Γ `M �A Γ ` A<:A′

Γ `M �A′

Fig. 5. Subtyping rules derivable in PFsub

Theorem 1 (derivability of subtyping rules) The subtyping rules in Fig-
ure 5 are derivable in PFsub.

Proof. Omitting some details, we prove derivability of (<:-Π). Expanding the
definition of <: and using the Deduction Theorem, it suffices to prove (f x)�B ′

using the following assumptions (both typing assumptions and logical ones), in
addition to the premises of the rule:

1. f : Π x : e(A). e(B(x))
2. ∀x : e(A). x�A ∧ (f x) ↓ ⊃ (f x) �B
3. x : e(A′)
4. x�A′

5. f x ↓

From the left premise of (<:-Π), and (4) we get x � A. We use this together
with (5) to conclude (f x) � B from (2). Using (generalize), we conclude ∀ y :
A. [y/x]B<:[y/x]B′ from the right premise of (<:-Π). We instantiate this using
x� A to get B<:B′. From this and the previously deduced fact (f x) �B, we
conclude (f x) �B′, which we desired to prove.

The derivations of the other rules of Figure 5 are easier. The need for the left
premise in (subsume) is demonstrated by the following example. Suppose M : ι
and M ↑ holds. Clearly M � ι, since this just abbreviates T. It is also easily seen
that ι<:(ι|λx : ι.T) holds. But M� (ι|λx : ι.T) is equivalent to M ↓. Hence, as
long as PFsub is consistent, the latter cannot be derived without contradicting
the assumption M ↑. So derivability of (subsume) requires M ↓. 2

Note that a rule similar to (<:-Π) for subtyping Π-abstractions of the form
Π x :: A.B is not derivable. Formally, a modified version of the proof above for
(<:-Π) gets stuck where we would try to conclude x � A from x � A, which is
not in general valid. Intuitively, Π x :: A.B is the type for functions which take
in an x of exactly type A and return a B. Contravariance should not hold for
such types.

5 Reduction to PF

In this section, we show that a sequent S is derivable in PFsub iff t(S) is derivable
in PF, where t() is a translation eliminating subset types.

5.1 Translation from PFsub to PF

The definition of a translation tΣ(), which forms the basis for our translation
of sequents, is given in Figure 6. This function tΣ() is used to get rid of subset
types. We omit the subscript Σ when it is the empty context. For simplicity, we
assume that bound variables have been named in such a way that the context
Σ that is built up contains at most one declaration for any symbol x. This can
readily be done. Recall that we require A ≡ e(A) to type IA, so we do not need
to translate definite description operators to anything other than themselves.

tΣ(c) := c, if c ∈ Σ
tΣ(=A) := λx : e(A). λ y : e(A).

x�A ∧ y �A ∧ x =e(A) y
tΣ(IA) := IA

tΣ(M N) := (tΣ(M) tΣ(N))

Σ λx : A.M : Π x : A.B

tΣ(λx :1 A.M) := λx : e(A). (ue(B) tΣ(x�?A) tΣ+(M))
where

Σ+ ≡ Σ, x :1 A
�? is � if :1 is : and � otherwise
(uB φ t) := (IB (λ y : B. φ ∧ y = t)).

Fig. 6. Definition of the translation t()

Sequents S of PFsub are translated into sequents t(S) of PF as follows. A
logical sequent Σ ; Γ ` φ is translated to

e(Σ) ; t(m(Σ)), tΣ(Γ) ` tΣ(φ).

where tΣ() is extended homorphically to logical contexts; the function e() is
extended in the natural way to erase all subset types from typing contexts and
turn :: into : everywhere; and m() is defined to map typing contexts to logical
contexts like this:

Definition 5.1

m(∆, x : A) := m(∆), (x �A)

m(∆, x :: A) := m(∆), (x �A)

5.2 Elimination theorem

The elimination theorem is then as follows, where we write S ∈ X to indicate
that sequent S is derivable in system X .

Theorem 2 (Elimination) Let S be Γ ; Σ ` φ. Then S ∈ PFsub iff t(S) ∈ PF.

The outline for the proof is the following. The first step is to show that
Σ ; Γ ` φ is derivable in PFsub iff the following also is:

e(Σ) ; Γ,m(Σ) ` φ

This shows how to eliminate subsets from the typing context Σ. Second, we
prove that Σ M : A implies `M 'e(A) tΣ(M). If the translation of a sequent
is derivable in PF, it certainly is derivable in PFsub. So we can simply use the
fact that terms equal their translations to replace translations with terms. This
shows that a sequent with no subset types in its typing context is derivable in
PFsub if its translation is derivable in PF. The converse of this is proved by
induction on the structure of PFsub derivations.

A crucial lemma used in the first step is the following.

Lemma 2 (Weakening at a type declaration) If Σ1, x :1 e(A), Σ2 ; Γ ` φ
is derivable in PFsub, then so is Σ1, x :1 A,Σ2 ; Γ ` φ, as long as Σ1, x :1 A,Σ2

is a valid typing context.

For this lemma to go through smoothly, the rules of Figure 4 have been
carefully designed so that except for (|-outer), types A in the premises of the
rule which could be changed by changing the type of a symbol in the typing
context do not appear in the conclusion unless in e(A). For example, in (β-
reduction), two types in the premises appear in the conclusion, namely the type
A of the λ-bound variable, and the type α of the β-redex. But in the conclusion
α appears just in an expression e(α), and the type of a λ-bound variable cannot
change by strengthening a type declaration in the typing context.

The only exception to this property is in the rule (|-outer). In that case,
suppose M :2 B is derivable in the context with x :1 e(A), and M :2 B′ is
derivable in the context with x :1 A. We argue by induction on the structure of
types that M�?B′ implies M�?B, where �? is the appropriate one of {�,�}.
This shows how to derive the conclusion of (|-outer) when a type declaration has
been strengthened (thus weakening the whole sequent).

6 Meta-theory of PF

We take PF to be PFsub without the typing rule (|), without the logical rules
(|-outer) and (|-=), and with the conclusion of (β-reduction) not requiringN�A
orN�A. Also, we can drop uses of e(), since no types contain subset constraints.
Similarly, we need only the single type classifier :. We can drop ::. The logical
rule (|-outer) is clearly redundant in the absence of (|), since it is easily shown
that if A ≡ e(A), M �A and M �A are both equivalent to T. The basic proof
theory of PFsub as developed in Section 3 continues to hold.

The model theory of PF can then be developed following [8], where it is
carried through in detail. One minor difference is that PF as presented in [8]
requires the interpretations of all predicates to be defined. Here, we have simpli-
fied matters somewhat by insisting just that the interpretations of formulas are
defined. The interpretation of a predicate may be undefined. For this reason, we
have taken the rule (o convergence) in Figure 4 instead of a rule stating that all
predicates are defined.

7 Conclusion

A uniform system PFsub of subset types and partial functions has been studied.
This system retains decidability of type-checking by ignoring subset constraints,
which are then handled in the logical part of the system. The approach makes
certain formulas valid which intuitively seem desirable to have valid, but which
are not even typable in systems like that of [15] or have unprovable TCCs in
PVS.

Future work could examine further extensions of the type system, for example
to include predicative polymorphism. This would eliminate the need for special
typing rules for =A and IA, since a polymorphic type could be assigned to a
single equality symbol and a single definite description operator. One must, of
course, be careful to avoid paradoxes like those discussed in [13, 6, 7]. Another
interesting extension would be to try to add type constructors. This would be
sufficient to yield a type theory similar to LF [14]. In addition to the constraints
arising from subset types, one would also get equality constraints when checking
whether a type like array 6 is equivalent to a type like array (3 + 3). To retain
decidability of type checking, these constraints will also need to be handled in
the logical part of the system.

It would also be useful to try to get an elimination theorem like the one
in Chapter 4 of [24], which reduces validity of φ in a first-order logic of par-
tial functions to validity of a translation of φ in classical first-order logic. The
translation conjoins definedness conditions for the terms of φ with the atomic
formulas containing those terms. This assumes that function symbols have an
associated predicate saying exactly when they are defined and when they are
undefined. This result immediately applies to the first-order fragment of PF,
and should extend to larger fragments, if not the whole system. A further ques-
tion is whether or not one could translate from PFsub to PF in a reasonable
way without using definite description operators, which are quite essential to
the translation given here. Another refinement would be to try to optimize the
logical rules to remove some of the technical ones like (β-reduction-∧).

One could consider logics where functions need not be strict. For example,
it would be nice to define a non-strict if-then-else operator. In a certain sense,
however, PF can already support non-strict operators. While we will not con-
sistently be able to have if-then-else (at type ι, say) as a function symbol and
have it be non-strict, we can define (if φ then M else N) as an abbreviation for
(ite φ (λx : o.M) (λx : o.N)), where ite is a function symbol with axioms

φ ⊃ (ite φ F G) ' (F T)
¬φ ⊃ (ite φ F G) ' (G T)

Since λ-abstractions are always defined in PF, these definitions will allow an
if-then-else expression to be defined even in cases where the then- or else-parts
are undefined.

The author thanks Nikolaj Björner for valuable critcism and encouragement
about this work, Bill Farmer for numerous profitable exchanges about PF, and
John Mitchell for encouragement about studying type theory with subset types.

References

1. P. Andrews. An Introduction to Mathematical Logic and Type Theory: to Truth

through Proof. Academic Press, 1965.
2. P. Andrews. A Transfinite Type Theory with Type Variables. North-Holland, 1965.
3. D. Aspinall and A. Compagnoni. Subtyping dependent types. Theoretical Com-

puter Science, 266(1-2), 2001.

4. M. Beeson. Foundations of Constructive Mathematics: Metamathematical Studies.
Springer, 1985.

5. A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56–68, 1940.

6. T. Coquand. An analysis of Girard’s paradox. In 1st Symposium on Logic in

Computer Science, pages 227–236, 1986.
7. T. Coquand. A new paradox in type theory. In 9th International Conference on

Logic, Methodology, and Philosophy of Science, pages 555–570, 1994.
8. W. Farmer. A partial functions version of Church’s simple theory of types. The

Journal of Symbolic Logic, 55(3):1269–91, 1990.
9. W. Farmer. A simple type theory with partial functions and subtypes. Annals of

Pure and Applied Logic, 64(3), 1993.
10. W. Farmer and J. Guttman. A Set Theory with Support for Partial Functions.

Logica Studia, 66(1):59–78, 2000.
11. S. Feferman. Definedness. Erkenntnis, 43:295–320, 1995.
12. H. Geuvers. Logics and Type systems. PhD thesis, University of Nijmegen, Septem-

ber 1993.
13. J.Y. Girard. Une extension de l’interpretation de Gödel a l’analyse, et son appli-

cation a l’elimination des coupures dans l’analyse et la theorie des types. In 2nd

Scandinavian Logic Symposium, pages 63–92, 1971.
14. R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics. Journal

of the Association for Computing Machinery, 40(1):143–184, January 1993.
15. B. Jacobs. Categorical Logic and Type Theory. Elsevier, 1999.
16. M. Kerber and M. Kohlhase. A Mechanization of Strong Kleene Logic for Par-

tial Functions. In A. Bundy, editor, 12th International Conference on Automated

Deduction, volume 814 of LNAI, pages 371–385. Springer Verlag, 1994.
17. M. Kerber and M. Kohlhase. Mechanising Partiality without Re-Implementation.

In 21st Annual German Conference on Artificial Intelligence, volume 1303 of LNAI,
pages 123–134. Springer Verlag, 1997.

18. J. Mitchell. Foundations for Programming Languages. The MIT Press, 1996.
19. S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Verification System. In

D. Kapur, editor, 11th International Conference on Automated Deduction, volume
607 of LNAI, pages 748–752. Springer-Verlag, 1992.

20. Sam Owre and Natarajan Shankar. The formal semantics of PVS.
http://www.csl.sri.com/papers/csl-97-2/, March 1999.

21. F. Pfenning. Logical Frameworks, chapter XXI. Volume 2 of Robinson and
Voronkov [22], 2001.

22. A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning. Elsevier
and MIT Press, 2001.

23. J. Rushby, S. Owre, and N. Shankar. Subtypes for Specifications: Predicate Subtyp-
ing in PVS. IEEE Transactions on Software Engineering, 24(9):709–720, Septem-
ber 1998.

24. A. Stump. Checking Validities and Proofs with CVC and flea. PhD thesis, Stanford
University, 2002. available from http://www.cs.wustl.edu/˜ stump/.

25. A. Stump. Subset types and partial functions. draft paper available from author’s

homepage, 2003.

A Proofs of the Tautology and Deduction Theorems

The proofs of the Tautology Theorem and the Deduction Theorem follow [1]
closely.

A.1 Tautology Theorem

Derivation (=-refl): If α ≡ e(α), we can derive Γ ` A =α A from Γ ` A�α
and Γ ` A ↓ as follows. We get (A 'α A) 'o (A =α A) from (weak equality)
using (subst). Then we use ('-refl) and (replace). 2

Derivation ('-to-=): Suppose we have the following:

– e(α) ≡ α
– Γ ` Ai � α, for 1 ≤ i ≤ 2
– Γ ` Ai ↓, for 1 ≤ i ≤ 2

Then from Γ ` A1 'α A2, we can derive Γ ` A1 =α A2 by using (subst) twice
to get Γ ` (A1 'α A2) 'o (A1 =α A2) from (weak equality), suitably weakened;
and then using (replace). Similar reasoning allows us to conclude Γ ` A1 'α A2

from Γ ` A1 =α A2. 2

Derivation (=-replace): We can now derive a version of (replace) that uses
left premise A1 =α A2 instead of the premise with 'α by using ('-to-=) to
get A1 'α A2, and then using (replace) to get the desired conclusion from the
right premise. This requires Γ ` Ai � α and Γ ` Ai ↓, for 1 ≤ i ≤ 2, as well as
e(α) ≡ α. 2

Derivation (T =-refl): We derive Γ ` T =o (A =α A) from Γ ` A�α and
Γ ` A ↓, where e(α) ≡ α, as follows. Let Id temporarily abbreviate λ y : α. y. By
(extensionality) and (subst), we have Γ ` (Id =α→α Id) =o ∀x : α. Id x 'α Id x.
For this inference to go through, we need a proof of Id ↓, which we get by (λ-
convergence); and a proof of Id � α → α, which we get by (|-outer) and (modus
ponens). Then using (=o-replace) on the equation just derived and an instance
of (=-refl), we get Γ ` ∀x : α. Id x 'α Id x. We next get an instance of (=-refl)
enabled by

((λx : α. Id x 'α Id x) A) ↓,

which we have by (o-convergence); and then use (replace) on that instance and
the equation derived just before, making use of the definition of ∀, to get

(λx : α.T) A =o (λx : α. Id x 'α Id x) A.

Then using (β-reduction) and (modus ponens) twice with the hypotheses about
A, we get T =o (Id A 'α Id A). Another (β-reduction) and two more uses of
(replace), followed by ('-to-=) and (replace), give the desired conclusion. 2

Derivation (∧I-=o): We can derive Γ ` (A =o B) ∧ (C =o D) from
Γ ` A =o B and Γ ` C =o D as follows. We use (=o-replace) on the first
hypothesis and T =o (A =o A), which we have by (T =-refl); and similarly for
T =o (C =o C) with the second hypothesis. We then use two instances of (=o-
replace) with the results and T∧T, which we have by (=-refl) and the definition
of ∧. 2

Derivation (T ∧T): We derive (T ∧T) =o T as follows. Let Z abbreviate
λ y : o.T. By (subst) on (truth values), we get ((Z T) ∧ (Z F)) =o ∀x : o. Z x.
Using three (β-reduction-o)s and three (replace)s, we get (T ∧ T) =o ∀x : o.T.
To conclude, we use (=o-replace) on this formula with (∀x : o.T) =o T, which

we get as follows. We instantiate (T =-refl) using λx : o.T and then use (=o-
symm). This gives us (λx : o.T =o→o λx : o.T) =o T. We can use (subst) on
(weak equality) and then (replace) to change the =o→o on the left hand side of
this equation into 'o→o. This gives us (∀x : o.T) =o T, by the definition of
∀. To use (subst), we need λx : o.T ↓, which we have by (λ-convergence), and
λx : o.T � o → o, which we have by (|-outer) and (modus ponens). 2

Derivation (F2): We derive F =o ∀x : o. x from an instance of (=o-refl)
for ∀x : o. x using (replace) with the equation

∀x : o. x 'o F

which, by the definitions of F and ∀, is derived using (subst) on (weak equality).
This use of (subst) requires λx : o.T ↓ and λx : o. x ↓, which we have by (λ-
convergence); and also λx : o.T � o→ o and λx : o. x � o→ o. The latter two
formulas are obtained using (|-outer) and (modus ponens). 2

Derivation (T ∧ F): We derive (T ∧ F) =o F as follows. Let Id abbreviate
λ y : o. y. By (subst) on (truth values), we get ((Id T) ∧ (Id F)) =o ∀x : o. Id x.
Using three (β-reduction-o)s and three (replace)s, we get (T∧F) =o ∀x : o. x. We
next use (=o-symm) on (F2) and then (=o-replace) to get the desired formula.

2

Derivation (cases): The following is derivable:

Σ x : o Γ ` [T/x]A ∧ [F/x]A
Γ ` A

From our logical premise we get Γ ` ((λx : o.A) T) ∧ ((λx : o.A) F) by
first using (replace) with Γ ` [T/x]A 'o (λx : o.A) T , which we get by (β-
reduction-o) and ('-symm); and then using (replace) with a similar equation
that has F instead of T. Then we use (subst) to obtain a suitable instance
of the axiom (truth values), which we use with (replace) and the conjunction
just derived to obtain Γ ` ∀x : o. (λx : o.A) x. Note that to use (subst), we
need a proof of λx : o.A ↓, which we get by (λ-convergence); and a proof of
λx : o.A�o→ o, which we get using (|-outer). We use (∀E) to get (λx : o.A) x,
and then (β-reduction-o) to get A. 2

Derivation (T∧): If Σ A : o, we can derive (T ∧A) =o A as follows. We
conjoin the formulas of (T∧T) and (T∧F) using (∧I-=o), and then use (cases)
followed by (subst). 2

Derivation ((T = F) = F): We derive (T =o F) =o F as follows. Let Z
temporarily abbreviate λx : o.T =o x. By (subst) on (truth values), we get
((Z T) ∧ Z F) =o ∀x : o. Z x. From this we get ((T =o T) ∧ (T =o

F)) =o ∀x : o.T =o x by three uses of (β-reduction-o) and (replace). By
(subst) on (T =-refl) followed by (=o-symm), we get (T =o T) =o T, which we
use with (=o-replace) on the last derived equation to get (T ∧ (T =o F)) =o

∀x : o.T =o x. We can simplify this to (T =o F) =o ∀x : o.T =o x using
(=o-replace) and (T∧). We then conclude by using (=o-replace) on this last
equation and (∀x : o.T =o x) =o F, which we derive as follows. We can use
(subst) on (extensionality), followed by two (β-reduction-o)s and two (replace)s

to get ((λx : o.T) =o→o (λx : o. x)) =o ∀x : o. (T =o x). The left hand
side of this equation is the definition of F, so we just need (=o-symm) to get
∀x : o. (T =o x) =o F. 2

Derivation (T ==): We derive (T =o A) =o A by first conjoining (T =o

T) =o T and (T =o F) =o F using (∧I-=o). The first conjunct we get by (subst)
on (T =-refl) followed by (=o-symm). The second is from ((T = F) = F). Then
we use (cases) on the conjunction, followed by (subst). 2

Derivation (F∧): We prove (F ∧ A) =o F as follows. First, note that by
the definition of ⊃ and (=o-symm), it suffices to prove F ⊃ A. Recall that F
abbreviates (λx : o.T =o→o λx : o. x). We can use (subst) on (Leibniz) with
these two functions to get (writing ζ for o→ o)

F ⊃ ((λ f : ζ. f A) λx : o.T =o (λ f : ζ. f A) λx : o. x).

where f does not occur in A. By (β-reduction-o) and (replace) four times, we
get F ⊃ (T =o A). Then by (T ==) and (=o-replace), we get the desired
conclusion. 2

Derivation (Tautology Theorem): Suppose A is a propositional formula; i.e.,
one built just from propositional variables, T, F, and propositional connectives
=o, ¬, ∧, ∨, and ⊃. If A is a propositional tautology in the usual sense, then
` A is derivable. This is proved by induction on the number of (propositional)
variables in A. If there are n+1 such including x, then [T/x]A ∧ [F/x]A is clearly
also a tautology, and the induction hypothesis applies, so ` [T/x]A ∧ [F/x]A.
Then (cases) can be used to conclude A. If there are no variables in A, then we
prove by induction on the structure of A that ` A =o T holds if A evaluates to
T, and ` A =o F holds if A evaluates to F. The result will then follow by (T),
(=o-symm), and (=o-replace).

If A is T, then we get A =o T by (=o-refl); and similarly for F. Suppose
A is ¬A′ for some A′. If A′ evaluates to F, then by the induction hypothesis,
` A′ =o F. We then use (=o-replace) on this equation and (A′ =o F) =o (T =o

(A′ =o F)), which we get by (subst) from (T ==), followed by a (=o-symm).
We use (=o-symm) to get (A′ =o F) =o T, which is what we desired to prove.
On the other hand, if A′ evaluates to T, we get ` A′ =o T by the induction
hypothesis, and then ` T =o A

′ by (=o-symm). We then obtain ` ¬A′ = F by
(=o-replace) with ((T = F) = F).

Now suppose A is of the form A1 ∧ A2. Using the induction hypothesis and
then (=o-replace) twice, it suffices to prove the four instances of (P ∧ Q) =o R
for P,Q ∈ {T,F} and suitable R. We have two instances by (T∧T) and (T∧F).
We get the other two instances by (subst) from (F∧).

If A is of the form A1 ⊃ A2, similar reasoning to the case for A ≡ A1 ∧ A2

is used. (F ⊃ P) =o T is obtained from (F∧), the definition of ⊃, and then
(=o-replace) with an instance of (T ==), reversed using (=o-symm). The cases
(T ⊃ T) =o T and (T ⊃ F) =o F follow easily from instances of T∧ and similar
use of (T ==).

If A is of the form A1 ∨ A2, we use similar reasoning as in the previous two
cases. We use the definition of ∨ and then the definition of ¬ with either (T =o

F) =o F or (F =o F) =o T, which are easily obtained using ((T = F) = F) and
(T =-refl), respectively. This allows us to reduce the cases for ∨ to the cases for
∧.

If A is of the form A1 =o A2, similar reasoning using ((T = F) = F), or
(T ==) and (T =-refl) works for all cases but (F =o T) =o F, which is derived
as follows. Temporarily let H abbreviate λx : o.¬x. By (subst) on (Leibniz),
we obtain, (F =o T) ⊃ (H F =o H T). By two (β-reduction-o)s and two
(replace)s, we then get (F =o T) ⊃ ((F =o F) =o (T =o F)). The consequent
of this implication is easily replaced by just F, using the reasoning for the other
subcases of this derivation when A is an equation. By the definition of ⊃, we then
have (F =o T) =o ((F =o T) ∧ F). We can replace the right hand side of this
equation with F, using (=o-replace) with a formula obtained by using (subst)
on (x∧F) =o F. This latter formula is readily proved using (cases), making use
of (∧I-=o) and the reasoning from the part of this derivation for when A is a
conjunction. 2

A.2 Deduction theorem

In this section we prove the Deduction Theorem, which states that if Γ, φ ` ψ
is derivable, then so is Γ ` φ ⊃ ψ.

Lemma 3 ((sym-rename)) Suppose Σ M : A and x′ is a symbol not de-
clared in Σ. Let x :1 α be a declaration in Σ. Then Σ ′

 M ′ : A′, where Σ′

contains x′ :1 α instead of x :1 α, and y :2 [x′/x]γ instead of y :2 γ for all other
declarations y :2 γ. Similarly, M ′ ≡ [x′/x]M and A′ ≡ [x′/x]A.

Proof. Easy induction on the structure of typing derivations.

Derivation (trivial-�): Suppose Σ e(A) : ∗ and Σ M : A. Then
Γ ` (M � e(A)) =o T is derived as follows by induction on the structure of A.
The cases for A ≡ ι and A ≡ o follow using (=o-refl) and the definition of �. If
A is of the form A′|P , we use (strip) and then the induction hypothesis. Suppose
A is of the form Π x :1 C.D. For some z not declared in Σ, we can use (weak1)
to get Σ, z : e(C) Mz : [z/x]D. By the induction hypothesis, we can now get
((M z)� [z/x]D) =o T. By tautological reasoning (i.e., a combination of (modus
ponens), (subst), and the Tautology Theorem), followed by (generalize) and a
little more tautological reasoning, we then get our desired sequent, where �? is
the appropriate on of {�,�} :

Σ ; ` (∀x : C. ((x�?C) ∧ (M x) ↓) ⊃ (M x) �D) =o T

2

Lemma 4 ((extended weaken)) If Σ1, Σ2 ; Γ ` φ is derivable and Σ1, x :
A,Σ2 is a valid typing context, then Σ1, x : A,Σ2 ; Γ ` φ is derivable.

Proof. Easy induction on the structure of derivations. Note that (generalize)
allows symbols to be renamed when they are added to the typing context.

Derivation (Deduction Theorem): We proceed by induction on the deriva-
tion d of sequent Γ, φ ` ψ. The derivation cannot be by any logical axiom except
(assume), since all logical axioms except (assume) require the logical context
to be empty. Suppose d ends in (assume). By the Tautology Theorem we get
` P ⊃ P , which we instantiate with (subst) to get ` ψ ⊃ ψ. Suppose d ends in
(weaken). By the Tautology Theorem we have P ⊃ (Q ⊃ P), which we can in-
stantiate with (subst) to get ψ ⊃ (φ ⊃ ψ). By (modus ponens) with this formula
and the left premise of the instance of (weaken), we get φ ⊃ ψ.

Suppose d ends in (generalize), with φ of the form ∀x :1 A.ψ′. By the
induction hypothesis, we can derive Σ, x :1 A ; Γ ` φ ⊃ ψ′. By the Tautol-
ogy Theorem we have (P ⊃ Q) ⊃ (¬P ∨ Q), which we can instantiate with
(subst) and then apply using (modus ponens) to get Σ, x :1 A ; Γ ` ¬φ ∨ ψ′.
Then we use (generalize) to get Σ ; Γ ` ∀x :1 A.¬φ ∨ ψ′. From this we de-
rive Σ ; Γ ` ¬φ ∨ ∀x :1 A.ψ′ as follows; note that from this sequent we
can get the desired one using the Tautology Theorem and (modus ponens)
again. We get (∀x :1 A.T ∨ ψ′) ⊃ (T ∨ ∀x :1 A.ψ′) by using (subst) on
the tautology P ⊃ (T ∨ Q), proved by the Tautology Theorem. We next get
∀x :1 A.ψ

′ ⊃ ∀x :1 A.ψ
′ by (subst) on a tautology. With this formula, we use

the fact, whose proof is easily obtained from the case for ∨ in the proof of the Tau-
tology Theorem, that (F∨A) =o A, to get (∀x :1 A.F ∨ ψ′) ⊃ (F ∨ ∀x :1 A.ψ

′)
using (=o-replace). We then conjoin this formula with the similar one derived
just previously using (∧I-=o). We then get the desired formula using (cases) and
(subst).

Suppose d ends in (replace), with left premise Γ, φ ` X 'A Y and right
premise Γ, φ ` C, where A ≡ e(A). By the induction hypothesis, we can get
sequents Γ ` φ ⊃ (X 'A Y) and Γ ` φ ⊃ C. Let {x1, . . . , xn} be the set
of variables occurring free in X 'A Y and bound above the occurrence of X
replaced in C to get D. If there are no such variables, the reasoning is simpler
than what follows, so suppose n > 0. The side condition on (replace) ensures
that these variables are not free in Γ ,φ, or the typing context. By induction on
n, we can derive

Σ ; Γ ` φ ⊃ ∀x1 :1 α1. . . . ∀xn :n αn. X 'A Y

for suitable types α1, . . . , αn, and suitable :1, . . . :n; this is done using a similar
argument as in the case for (generalize) just above. One minor difference is that
we keep Σ the same. This can be done by using (extended weaken). We then
use tautological reasoning with this sequent, Γ ` φ ⊃ C, and

` (∀x1 :1 α1. . . .∀xn :n αn. X 'A Y) ⊃ (C =o D)

to get Γ ` φ ⊃ D. (Recall that =o in C =o D is considered a propositional
operator.) This last displayed sequent is derived as follows.

Let π be the position of the occurrence of A in C that gets replaced to get D.
Let G be C except with z x1 . . . xn instead of A at position π. For Q ∈ {X,Y },
let FQ be λx1 :1 α1. . . . λ xn :n αn. Q. We can use (subst) on (Leibniz) to get

(FX =ζ FY) ⊃ ((λ z : ζ.G) FX) =o ((λ z : ζ.G) FY)

where ζ abbreviates Π x1 :1 α1. . . .Π xn :n αn. A. We use (λ-convergence) and
(trivial-�) to establish the conditions needed to use (subst). In a similar way,
we get the formulas needed to use (modus ponens) on (β-reduction) with the
left and right hand sides of the equation in the consequent of the displayed
implication. Using (replace), we can finally get

(FX =ζ FY) ⊃ (C =o D)

We just need the following and we are done:

(FX =ζ FY) =o ∀x1 :1 α1. . . . ∀xn :n αn. X 'A Y

We prove this by induction on n as follows. If n = 1, we first get

(FX =ζ FY) =o ∀x1 : α1. (FX x1) 'A (FY x1)

by (subst) on (extensionality). We easily reduce (FX x1) toX using (β-reduction),
and similarly for (FY x1); recall that the variable x1 was retained in the typing
context.

If n = n′ + 1, we get

(F ′

X =ζ F ′

Y) =o ∀x1 :1 α1. . . .∀xn−1 :n−1 αn−1. (X
′ 'Π xn:nαn. A Y ′)

by the induction hypothesis, where X ′ is λxn :n αn. X and similarly for Y ′.
Then using (=o-replace) with a similar equation to the one we derived for the
base case of the proof, we can replace λxn :n αn. X 'Π xn:nαn. A λxn :n αn. Y
in the displayed formula with ∀xn :n αn. X 'A Y to get the desired formula. 2

