
BLAISE COMPILER

by

Austin Laugesen

A project submitted in partial fulfillment of the requirements
for graduation with Honors in the Department of Computer

Science

Aaron Stump
Honors Project Director

Spring 2011

All requirements for graduation with Honors in the Department
of Computer Science have been completed.

Cesare Tinelli
Computer Science Honors Advisor

BLAISE COMPILER

by

Austin Laugesen
Spring 2011

Aaron Stump
Project Director from Computer Science

What if a programming language could have the safety and expressiveness of
a functional programming language without the performance hit and complexity of
garbage collection? BLAISE, currently in early development, has such properties.
Over the last academic year, I helped implement a compiler for a new programming
language called BLAISE. Thousands of programming languages exist because each
language tries to do something unique or outdo other languages. All languages have
a trade-off between machine robustness and programmer convenience because it
is hard to provide both. There is hope that BLAISE will provide both robustness,
due to the absence of garbage collection, and the convenience of a concise high-
level programming language. Furthermore, programmers will find memory errors
at compile time, instead of runtime.

The first two steps in creating a programming language are specifying a formal
grammar and developing a compiler that generates machine executable code. I im-
plemented three significant parts of the BLAISE compiler: currying support, foreign-
function interface (FFI) support, and tail-recursion optimization. Currying is a func-
tional programming staple, therefore it is necessary to implement. Foreign-function
interfacing is useful for tying an external code library to an existing language with-
out modifying the compiler. Tail-recursion optimization is a typical component of
compilers because it significantly speeds up the execution of tail-recursive code. In
addition to compiler development, I evaluated BLAISE’s efficiency by comparing
it to OCaml in execution time on a well-known algorithm: mergesort. Over the
last nine months Dr. Aaron Stump, Dr. Garrin Kimmell, Geoffrey Roughton, Josh
Meyer and I successfully created the BLAISE-to-C compiler.

The BLAISE compiler is complete and is ready for a type checking system
to be built on top of it. BLAISE code successfully compiles to C code, which
can be compiled to produce an executable. On average, BLAISE’s execution per-
formance is comparable to or better than OCaml. While implementing BLAISE

I learned a lot about programming language design and compiler development.
For instance, I learned the difference between under-saturated, saturated and over-
saturated function calls because I implemented currying support. Likewise, I imple-
mented and witnessed the exceptional efficiency increase from tail-recursion opti-
mization. Thanks to my individual research project I am a proud contributor to the
BLAISE compiler. I helped make it more robust and useful for future research.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Intro to Functional Programming Languages 2
1.3 Memory Management with Garbage Collection 4
1.4 The BLAISE Approach . 5
1.5 Functional Programming with Explicit Memory Management 5
1.6 Static (Compile-Time) Analysis for Safe Memory Usage 6
1.7 Related Work on Cyclone . 7

2 The BLAISE Language 8
2.1 Key Constructs . 8

3 The BLAISE Compiler 11
3.1 Development Timeframe . 11
3.2 Overview - High Level Structure 11
3.3 My Contributions . 13

3.3.1 Currying with Partial Applications 13
3.3.2 Tail Recursion Optimization 16
3.3.3 Foreign Function Interface 17
3.3.4 Other Contributions . 17
3.3.5 Evaluation and Case Studies 19

4 Conclusion 22
4.1 Next Steps . 22
4.2 Discussion . 23

4.2.1 My Experience . 23
4.2.2 How does this influence my thinking? 23
4.2.3 Lessons Learned . 25

Appendices 29

A BLAISE Grammar 29
A.1 Blaise.gra . 29

i

B Source Code 32
B.1 Mergesort.bls - BLAISE . 32
B.2 MergesortMutable.ml - Mutated memory - OCaml 33
B.3 Mergesort.ml - OCaml . 35
B.4 Python Evaluation Script . 36

ii

Chapter 1

Introduction

1.1 Motivation

BLAISE is a functional programming language, developed to explore whether or

not a programming language can have the safety and expressiveness of functional

programming languages without the performance hit and complexity of garbage

collection. Many programming languages exist because each language attempts to

do something different than other languages. Over the last year I helped implement

a new programming language called BLAISE. Anyone who studies programming

languages will find that all languages are designed around a trade off between ro-

bustness on a machine and convenience for a programmer, because it is hard to

provide both. There is hope that BLAISE is both robust, due to explicit memory

management, and provides the convenience of a concise functional language. When

BLAISE is fully implemented with the proper type-checker and compiler, program-

mers will find memory errors at compile time, instead of runtime.

1

1.2 Intro to Functional Programming Languages

Functional programming (FP) languages are designed to reflect the way people think

mathematically rather than reflect the structure of the machine on which that code

executes. These languages are founded on lambda calculus, a simple model for

computation. It is arguably easier to reason formally with programs written in a FP

language due to FP’s theoretical math foundation [5]. There are a number of reasons

to use a FP language and there are a handful of commonly used languages such as

Haskell, OCaml, ML, and Scheme.

Functional languages strive to represent everything as pure mathematical func-

tions. For instance, FP languages view the = operator as an expression of an equa-

tion. This contrasts with imperative languages such as C, which use = as an as-

signment operator to store values inside of variables that represent cells in memory.

Take the following FP declaration as an example.

v a r x = f (y) ;

This line of code introduces a variable named x and asserts that x is equivalent to

f(y) is true. As noted earlier, functional languages abstract code from the machine,

so there is no notion of a memory cell in the declaration above. If one were to write

the following line

v a r x = x + 1 ;

in a functional language, the program would be nonterminating or the compiler

would refuse to compile this code. The previous statement doesn’t have a finite

solution, whereas in C the value in memory cell x would be incremented [5].

Function definitions can be viewed as assertions much like variables. Consider

the following declaration

d e f i n e f = fun (x : i n t) (y : i n t) .
x ∗ y

2

which introduces the function f and states that for any x and y f(x,y) is equal to x

* y. Notice that the function parameters x and y are not manipulated inside of the

function, because FP languages do not allow such operations. In FP, as in mathe-

matics, the value of a function is uniquely determined by its inputs. This is not at

all true for imperative languages [5]. Consider invoking a function to get the time

of day, generally this sort of function doesn’t take any arguments but always returns

a different value.

Variables in functional languages cannot be modified after an initial assertion,

and therefore repetition cannot make use of loops but uses recursion instead[5].

Let’s review the factorial function in both FP and imperative programming. Con-

sider the following functional example:

d e f i n e f a c t o r i a l = fun (x : i n t) .
c a s e x == 0 of

1 −> x
| 0 −> x ∗ f a c t o r i a l (x − 1)

Now compare the example above to the imperative example below.

i n t f a c t o r i a l (i n t x) {
i n t p r ev = −1;
f o r (x ; x > 0 ; x−−){

i f (p r ev == −1)
p rev = x ;

e l s e
p rev ∗= x ;

}
r e t u r n p rev ;

}

Clearly, the functional example is much more concise and avoids directly modify-

ing variables with the use of recursion. In contrast, the imperative example takes

advantage of the fact variables can be directly manipulated. Every iteration of the

loop reassigns the variable prev, thus a loop is used to compute the factorial.

3

1.3 Memory Management with Garbage Collection

Garbage collection (GC), or automatic memory management, is an algorithm im-

plemented under the hood of many modern programming languages that allows

a programmer to easily release memory back to a machine. Every time software

runs on a computer it stores information in memory. The tools used to develop the

software dictate whether or not memory is handled with GC or handled by the pro-

grammer. When software no longer needs to remember information stored in a cell

of memory it should give the memory back to the machine. GC makes the process

of giving memory back to a machine quite simple for the programmer, improving

productivity [7].

Many programming languages use heap storage with GC. Allocated cells of

memory that are not reachable in the runtime stack through a chain of pointers are

garbage. One commonly used algorithm for GC is mark-and-sweep where garbage

is collected for re-use by a traversal algorithm. This algorithm passes through the

heap and marks all reachable cells using depth-first search and then collects all of

the unmarked cells [2]. Consider the following line of garbage-collected code in

C#.

O b j e c t o b j = new O b j e c t () ;
o b j = n u l l ;

Initially, obj is a handle to an object of type ’Object’ that consumes memory. Once

the variable obj is set to null, C# removes the pointer it had set to the memory

containing the ’Object’ object. Then sometime later, when C# decides to run its

garbage collector it collects the memory that obj had a handle on.

Programmers that use languages with GC don’t have to worry about monitoring

heap-allocated cells of memory. This means the programmer can write less code

that is more straightforward. However, garbage collectors are often slow and expen-

sive, and these straightforward programs are less efficient because they use garbage

4

collection [2].

1.4 The BLAISE Approach

The goal of BLAISE is to create a programming language where GC is unnecessary,

since the language provides the programmer with statically enforced abstractions

to safely manage memory. At compile time, BLAISE enforces a set of memory

management rules that if followed guarantee the absence of memory errors [11].

Other languages have been created with this idea in mind, but typically results have

imposed severe restraints on programs, e.g. scoped regions which make code hard

to follow, maintain, and reuse [4]. The abstractions enforced by BLAISE are much

less restrictive. Dr. Stump’s working hypothesis is that ”BLAISE’s abstractions are

flexible enough to accommodate common programming idioms and data structures”

[11]. Without GC BLAISE is expected to be highly performant and potentially useful

for real-time systems [11].

1.5 Functional Programming with Explicit Memory

Management

What happens to memory if a language doesn’t have GC? The programmer must

explicitly manage memory, which entails writing bookkeeping code to keep track

of heap-allocated cells and explicitly freeing them when necessary. This task can be

tedious, error prone and often makes software longer and more complex. Explicit

memory management can make it hard to modularize code as well as make software

more prone to memory leaks [2]. However, BLAISE is different than most languages

without GC. First, it is a functional language which is more concise than imperative

languages. Second, BLAISE is designed to find memory errors at compile time, op-

posed to run-time, which will help the programmer debug their code. The following

5

BLAISE code exemplifies explicit memory management.

d a t a t y p e
t y p e node

cons : C e l l (number : i n t) (n e x t : node) . node
n i l : C e l l () . node

end
end

d e f i n e mn =
v a r x = new Node (5 , n i l) ;
d e l e t e x

In this example x points to an instantiated ’node’ datatype that occupies the newly

allocated memory. The ’new’ construct allocates memory. ’Delete’ demonstrates

how the programmer deallocates memory. The memory that x points to is released

back to the machine and is no longer accessible from x. Typically, functional lan-

guages abstract from the machine as much as possible which means the programmer

doesn’t have to manage memory. BLAISE is not a typical functional language and

requires explicit memory management so it finds memory errors at compile time.

1.6 Static (Compile-Time) Analysis for Safe Memory

Usage

The overarching goal of BLAISE is to eliminate the need for GC by giving the pro-

grammer statically enforced abstractions to safely manage memory. Static memory

management replaces runtime GC [1]. These enforced abstractions allow the com-

piler to make abstract interpretations on the source code it compiles. Conceptually,

source code represents computations in a domain of objects. Abstractly interpreting

source code includes using that representation to describe computations in an alter-

native domain of abstract objects. The results of abstract interpretation gives some

information related to the actual computation.

A fairly simple example of abstract interpretation, borrowed from [10], is the

6

rule of signs. The computation -2 * 1 may represent computations in the abstract

universe { (+), (-), (+) (-) } where the semantics of the arithmetic operators is

defined by the rule of signs. The abstract execution

−2 ∗ 1 => −(+) ∗ (+) => (−) ∗ (+) => (−)

proves that -2 * 1 is a negative number. It gives a summary of some portions of the

actual execution of a program. Although, the summary is easy to obtain it is not

always accurate, consider the following example.

−2 + 1 => −(+) + (+) => (−) + (+) => (+) | (−)

The abstract interpretation is unable to determine if the result is positive or negative.

Despite not receiving definitive results in certain circumstances, abstract interpre-

tation allows the programmer or the compiler to answer questions that do not need

full knowledge of the program executions [3]. With the proper typing system and

statically enforced abstractions the BLAISE compiler will be able to reason about

memory management.

1.7 Related Work on Cyclone

As mentioned earlier, other programming languages have approached solving the

same problem as BLAISE, such as Cyclone, a type-safe dialect of C. Similar to

BLAISE, Cyclone provides the performance of a low level language with type safety

parallel to languages such as Java. This language uses programmer-supplied anno-

tations, a type system, a flow analysis and run-time checks to verify that programs

are type-safe [6]. More recent versions of Cyclone integrate unique pointers into

the memory management framework which are utilized by the type system. Unlike

BLAISE, Cyclone uses a garbage collector. However, Cyclone’s compiler and type

system minimize the use of GC and avoids utilizing GC whenever possible [8].

7

Chapter 2

The BLAISE Language

2.1 Key Constructs

What does BLAISE code look like and what constructs are available for the pro-

grammer to use? Also, how does it compare to other conventional functional lan-

guages? BLAISE is a functional language that resembles a mix between OCaml and

C, which can be observed in the code examples that follow. Typically, every pro-

gramming language has a way to use variables, and in BLAISE the programmer can

assert that a variable is equivalent to an expression, as simply as

v a r x = ” H e l l o ! ” ;

The statement above asserts that x is equivalent to the string ”Hello!”. Another

common feature in programming is defining and invoking functions. A function

definition requires the ’define’ keyword followed by a function name, an = sign that

is followed by the keyword ’fun’ with zero or more parameters, and terminated with

a period ’.’. Parameters are denoted by parentheses that encase a variable name,

colon, and type, e.g. (num : int). The ’define’ keyword also denotes bodies of code

that need to be executed, these constructs do not have the ’fun’ keyword following

an = sign. An example is ’mn’ below.

8

d e f i n e f = fun (message : s t r i n g) .
p r i n t s t r i n g (” I r e c e i v e d t h e f o l l o w i n g argument : ”) ;
p r i n t s t r i n g (message)

d e f i n e mn =
f (” Here i s my message . ”)

As shown, f’s definition contains two calls to the print string function. The only

invocation of f appears inside of mn, where it is passed the string ”Here is my

message.”. After execution the strings ”I received the following argument: ” and

”Here is my message” print out to console.

Other constructs worth mentioning include the programmer’s freedom to declare

custom datatypes, instantiate a datatype, and use ’case <expression> of’ constructs

for pattern matching datatypes to a specific type and accessing attributes. The ex-

ample below demonstrates these four constructs.

d a t a t y p e
t y p e node

cons : C e l l (number : i n t) (n e x t : node) . node
n i l : C e l l () . node

end
end

d e f i n e setNodeNumber = fun (num : i n t) (n : node) .
c a s e n of

cons −> n . number = num
| n i l −> ()

d e f i n e mn =
v a r x = new cons (5 , n i l) ;
setNodeNumber (3 , x)

The programmer defines a datatype node, where a node is one of two types, cons

or nil. Cons nodes have two attributes: number of type int and next of type node.

Nil nodes don’t have any attributes, and are akin to enumerated types in C, so the

new keyword isn’t required for instantiation. Further in the program, x becomes

equivalent to a node initialized with the values 5 and nil and then passed as an

argument to setNodeNumber. Any node passed to setNodeNumber goes into a ’case

9

<expression> of’ statement, which identifies the type of node it is passed, e.g.

cons or nil. Those familiar with functional programming may begin to see BLAISE

resemblance to OCaml. Other than very specific memory management constraints

and mutable datatypes BLAISE is a lot like conventional functional languages.

It is worth noting that the ’case <expression> of’ construct is may be used like

if-else statements, as shown below.

d e f i n e g = fun (n : i n t) .
c a s e n == 1 of

1 −> p r i n t s t r i n g (” t r u e ”)
| 0 −> p r i n t s t r i n g (” f a l s e ”)

For comparison purposes, here is g’s definition written in OCaml:

l e t g (n : i n t) =
match n == 1 wi th

t r u e −> p r i n t s t r i n g (” t r u e ”)
| f a l s e −> p r i n t s t r i n g (” f a l s e ”)

; ;

Lastly, what would an introduction to a programming language be without a

demonstration of ”Hello, World!”? One can see that BLAISE is quite succinct and

doesn’t require a lot of source code to get a program up and running.

B l a i s e
d e f i n e mn =

p r i n t s t r i n g (” H e l l o World ! ”)

Also, for comparison I’ve provided a ”Hello, World!” example in OCaml, which is

just one line shorter.

(∗ OCaml ∗)
p r i n t s t r i n g (” H e l l o World ! ”)

Clearly, BLAISE isn’t too complex but provides the programmer with a lot of con-

trol.

10

Chapter 3

The BLAISE Compiler

3.1 Development Timeframe

The implementation of BLAISE started in the summer of 2010 and has included a

handful of people: Dr. Aaron Stump, Dr. Garrin Kimmell, Geoffrey Roughton, Josh

Meyer and myself. From time to time I may use the term ’we’, I am referring to the

aforementioned individuals who helped develop this project. Initially, Dr. Stump

created an ENBF grammar, Blaise.gra, which can be found in the appendix. Early

in the summer Geoffrey started to develop the BLAISE to C compiler. Near the

middle of the summer Geoffrey left the BLAISE project for a full-time job. It wasn’t

until the fall semester when Josh and I picked up BLAISE where Geoffrey left off.

During the fall semester Dr. Kimmell was brought on the project to help guide the

compiler development.

3.2 Overview - High Level Structure

What is required to execute a new programming language on a computer? First, a

formal grammar is needed to specify the syntax of the language. A grammar is used

to mold the software necessary for processing source code. Second, a parser is used

11

to make syntactic sense of source code. Parsers verify that source code adheres to

the formal grammar, and builds an abstract syntax tree (AST) of the code. Lastly, the

AST is handed off to a translator that converts source code into the target language

code which a machine can execute. BLAISE source code is translated to C code.

Conveniently, parsers can be automatically generated or manually written. We

opted for an auto-generated parser. A lot of auto-generated parsers are created with

yacc, ’Yet Another Compiler Compiler’, and this is also true for the BLAISE com-

piler. We use an ocaml variant of yacc, known as ocamlyacc, it turns a BNF gram-

mar into a parser. To add another layer the process, Dr. Stump and Josh Meyer

developed gt, Grammar Tool, which turns an EBNF grammar into a BNF gram-

mar that is then given to ocamlyacc, and in return ocamlyacc produces a parser.

EBNF grammars are a superset to BNF grammars and are more convenient to write.

Blaise.gra, an EBNF grammar, is the only required input for gt to get a parser. Since

the BLAISE parser is automatically generated Geoffrey, Josh, and I developed the

translator that turns BLAISE source code to C code.

Blaise.gra Gt BNF grammar OCamlyacc Parser

From the developer’s perspective turning BLAISE source code into an executable

file is a matter of passing their code to the BLAISE compiler. Under hood of the

BLAISE compiler one will find that there are a number of steps that the machine

goes through to create an executable. Initially, source code goes through the parser,

which generates an AST. Then the AST undergoes linearization, a process which

removes certain nested expressions which cannot be directly compiled to C. Follow-

ing linearization, the AST is given to the code translator that produces C code. This

C code is then compiled with gcc which produces an executable.

Blaise code Parser AST Linearize

Translator C Gcc Executable

12

3.3 My Contributions

3.3.1 Currying with Partial Applications

BLAISE is designed to be a functional programming language, and therefore it’s nec-

essary to include common features found in conventional functional languages, such

as currying. Currying allows the programmer to invoke a function with too many,

too few, or the expected number for arguments. It also enables the programmer to

pass a function as an argument to another function. Hence, the BLAISE compiler

supports currying. Admittedly, the examples below are contrived but they serve well

for demonstrating how currying works. Consider the following code sample.

d e f i n e g = fun (a rg1 : ’ a) (a rg2 : ’ a) (a rg3 : ’ a) =
(∗ f u n c t i o n body ∗)

d e f i n e mn =
v a r x = g (1 , 2) ;
v a r y = x (3)

Above, g’s definition requires three arguments to be passed to g to execute. The

first time g is called it is passed two arguments, this is an instance of currying. The

function is under-saturated and it is not invoked. Instead, a data-structure, called a

partial application, is created to remember the function and the arguments passed

to it [9]. The resulting partial application is stored in the variable x. Now x can be

passed arguments to saturate g so it can be executed. Further in the example one

can see that x is passed one argument. Since x is a partial application waiting for

one argument it is now able to invoke g with the arguments: 1, 2, and 3. Below is

an example of code where the variable y acquires the same value as the variable y

above, in the curried example.

d e f i n e mn =
v a r y = g (1 , 2 , 3)

13

As mentioned earlier currying allows the programmer to pass a function as an

argument to another function. This means that the compiler must recognize when

parameters in a function definition are invoked like a function. Up until now cur-

rying has been explained and exemplified where a global scope function is curried.

However, there are points where the compiler must deal with unknown functions

that are curried. The code below demonstrates how a curried function can be passed

as an argument to another function.

d e f i n e f1 = fun (a rg1 : i n t) (a rg2 : i n t) (a rg3 : i n t) .
(a rg1 + a rg2 + a rg3)

d e f i n e f2 = fun (a rg1 : f u n c t i o n) (a rg2 : i n t) .
a rg1 (a rg2)

d e f i n e mn =
v a r x = f1 (1 , 2) ;
f2 (x , 3)

The variable x takes on the value of a partial application. It is then passed to f2 as

an argument. During the invocation of f2 the parameter arg1 acquires the value of

x, a partial application. Inside of f2’s definition one can see that arg1 is invoked like

a function. While compiling a function definition it is important that the compiler

notices that a parameter is used like a function. The compiler emits special C code

to ensure that the partial application handles itself properly, an example of this can

be found in the C code below.

vo id ∗ f1 (vo id ∗ arg1 , vo id ∗ arg2 , vo id ∗ a rg3) {
f 1 g o t o : {

vo id∗ t m p 1 ;
t m p 1 = (i n t) a rg1 +(i n t) a rg2 +(i n t) a rg3 ;

r e t u r n t m p 1 ;
}
}
a u s t
p a r t i a l a p p h e a d e r ∗ p a r t i a l a p p h e a d e r f 2 ;

vo id ∗ f2 (vo id ∗ arg1 , vo id ∗ a rg2) {
f 2 g o t o : {

vo id∗ t m p 2 ;
vo id ∗ otherTMP0 ;

vo id ∗ a r r [] = { a rg2 } ;

i f ((((p a r t i a l a p p ∗) a rg1)−>numArgsNeeded − 1) == 0){
i n t i ;
f o r (i = 0 ; i < 1 ; i ++){

(((p a r t i a l a p p ∗) a rg1)−>a r g s [((p a r t i a l a p p ∗) a rg1)−>numArgsNeeded − 1]) = a r r [i] ;
((p a r t i a l a p p ∗) a rg1)−>numArgsNeeded−−;

}
otherTMP0 = ((FUN PTR) ((p a r t i a l a p p ∗) a rg1)−>header−>e n t r y) (a rg1) ;

}
e l s e i f ((((p a r t i a l a p p ∗) a rg1)−>numArgsNeeded − 1) < 0){

14

otherTMP0 = arg1 ;
i n t c o u n t = 0 ;

w h i l e (c o u n t < 1){
(((p a r t i a l a p p ∗) o therTMP0)−>a r g s [((p a r t i a l a p p ∗) o therTMP0)−>numArgsNeeded − 1]) = a r r [c o u n t] ;
((p a r t i a l a p p ∗) o therTMP0)−>numArgsNeeded−−;

c o u n t ++;
i f (((p a r t i a l a p p ∗) o therTMP0)−>numArgsNeeded == 0){

otherTMP0 = ((FUN PTR) ((p a r t i a l a p p ∗) o therTMP0)−>header−>e n t r y) (o therTMP0) ;
}

}
}
e l s e{

i n t i ;
f o r (i = 0 ; i < 1 ; i ++){

(((p a r t i a l a p p ∗) a rg1)−>a r g s [((p a r t i a l a p p ∗) a rg1)−>numArgsNeeded − 1]) = a r r [i] ;
((p a r t i a l a p p ∗) a rg1)−>numArgsNeeded−−;

}
otherTMP0 = arg1 ;

}
t m p 2 = otherTMP0 ; ;

r e t u r n t m p 2 ;
}
}

s t a t i c vo id∗ mn ;
vo id mn0 (){

vo id∗ x ;
vo id∗ t m p 3 ;

vo id ∗ otherTMP1 = MakePar t i a lApp (3) ;
((p a r t i a l a p p ∗) o therTMP1)−>h e a d e r = p a r t i a l a p p h e a d e r f 1 ;

((p a r t i a l a p p ∗) o therTMP1)−>a r g s [((p a r t i a l a p p ∗) o therTMP1)−>numArgsNeeded − 1] = 1 ;
((p a r t i a l a p p ∗) o therTMP1)−>numArgsNeeded−−;
((p a r t i a l a p p ∗) o therTMP1)−>a r g s [((p a r t i a l a p p ∗) o therTMP1)−>numArgsNeeded − 1] = 2 ;
((p a r t i a l a p p ∗) o therTMP1)−>numArgsNeeded−−;

i f (((p a r t i a l a p p ∗) o therTMP1)−>numArgsNeeded == 0){
otherTMP1 = ((FUN PTR) ((p a r t i a l a p p ∗) o therTMP1)−>header−>e n t r y) (o therTMP1) ;

}

t m p 3 = otherTMP1 ; ;
x = t m p 3 ;
vo id∗ y ;
vo id∗ t m p 4 ;

vo id ∗ otherTMP2 = f2 (x , 3) ;
t m p 4 = otherTMP2 ; ;

y = t m p 4 ;
mn = y ;

}

In the emitted C, f2’s definition contains quite a bit of code to determine if arg1,

a partial application, should be executed when it is passed another argument. The

code evaluates whether or not the function has too few, too many, or just enough

arguments to execute.

The only time a function may have already been defined but is unknown in

certain parts of code is when a function is a parameter for another function. Any

function definition that requires a function as an argument does not know which

function is passed to it. This results in unknown functions inside the body of func-

tion definitions. As displayed above, if a parameter is invoked like a function while

compiling a function definition the compiler must produce logic that handles pass-

ing arguments to partial applications. The extra logic evaluates whether or not a

partial application is ready to execute. In spite of the extra code that is emitted,

15

partial applications are very useful and are a necessity of every functional language.

3.3.2 Tail Recursion Optimization

Anytime the last expression inside of the body of a function definition is a function

call to itself, a recursive call, it is tail recursive. Execution of this code moves from

the bottom of the body to the top of the body of code. This works just like a loop.

Normally with recursion the compiled program pushes an environment onto stack

memory and moves into the new recursive function call with a free environment to

write local variables to. With tail recursion it is not necessary to push onto stack

memory; the code can be transformed into a loop. The BLAISE compiler imple-

ments this optimzation. Below is a tail recursive function

d e f i n e h = fun (a rg1 : i n t) .
body of f u n c t i o n
h (new arg1) # t a i l r e c u r s i v e c a l l

When the example function above is compiled to C, a ’goto’ statement and target

label is used to turn the function into a loop.

vo id ∗ h (vo id ∗ a rg1){
h g o t o :

/∗ body of f u n c t i o n ∗ /
/∗ t a i l r e c u r s i v e c a l l removed ∗ /
a rg1 = new arg1 ;
go to h g o t o ;

}

Notice how the recursive call is turned into variable reassignments and a goto

statement that moves execution to a target, e.g. ’h goto:’ at top of the function

body. Tail recursion optimization saves the machine from consuming unnecessary

resources, such as stack memory, and significantly decreases execution time.

16

3.3.3 Foreign Function Interface

BLAISE has a Foreign Function Interface (FFI), which means functions from an

external library can be used in the programmer’s source code. This external library

is written in C so external functions that are invoked don’t need to be translated

from BLAISE to C. I originally modified the compiler so arrays could be made in

BLAISE. Initially, the compiler to looked for pre-defined function names at every

function call. All array function calls were intercepted by logic that utilized specific

external functions. I abstracted this idea and re-factored the compiler to have a

FFI. Now the compiler looks for external function declarations. These external

declarations tell the compiler which functions come from an external library. Every

time the programmer invokes a function the compiler checks to see if it is declared

external. If it is, the compiler trusts that the programmer is calling a supported

external function. Here is a snippet of BLAISE code.

e x t e r n a l Array make [t y p e I n f o] : [t y p e I n f o]
e x t e r n a l A r r a y g e t [t y p e I n f o] : [t y p e I n f o]

d e f i n e mn =
v a r a r r = Array make (5 , 1) ;
p r i n t i n t (A r r a y g e t (a r r , 0))

Foreign Functions are useful because it is easier for program language developers

to supplement a programming language without modifying the compiler.

3.3.4 Other Contributions

Debugging

Anyone that has written software knows debugging consumes a lot of time, and

given the scale of this project, I spent a fair amount of time debugging code. I

learned very quickly that chasing down bugs in a compiler is much more difficult

than in the other software projects I’ve worked on. First, OCaml doesn’t have a

17

graphical user interface debugger so I did all of my debugging via injected com-

ments in compiled code. Second, the compiler is built with mutually recursive func-

tions so the same debug comments are printed numerous times. I found tracing

through these debug comments can be very disorienting.

More often than not a lot of the bugs introduced to the compiler came from un-

expected dependencies between different pieces of code. For example, the function

that decides how to print partial applications uses the return value that is passed

as an argument to numerous functions. At one point in development the standard

return value changed, therefore all of the logic that looked for the standard return

value had to change. This experience has helped me reconfirm how important it is

to design software to be as modular as possible, especially before implementation,

this is discussed in further detail in ’Lessons Learned’.

Develop Test Scripts

Software development has three key aspects - design, develop, and test. Unfortu-

nately, automated-testing for BLAISE was an afterthought that came after quite a bit

of manual testing. As discussed in ’Lessons Learned’ automated regression testing

is a must-have for long term projects. To my dismay automated regression test-

ing isn’t used much in practice at the University of Iowa. We attempted to set up

an automated test infrastructure, but, due to some external complications, BLAISE

doesn’t have automated testing. To circumvent our regression testing issue I devel-

oped a Bash script, test.sh, that helps developers verify that existing features in the

compiler still work. Test.sh executes a series of BLAISE files and prints the output

and expected output of each Blaise file. If there is an inconsistency between the

true and expected output the developer can easily recognize when a bug needs to be

fixed.

18

3.3.5 Evaluation and Case Studies

BLAISE is meant to provide high performance, therefore it is essential that we eval-

uate how fast it is compared to an alternative programming language. I ran a series

of tests to compare BLAISE to OCaml on a well known algorithm: mergesort. There

are two implementations of mergesort. One implementation, found in mergesort.bls

and mergesortMutable.ml, which takes advantage of mutable memory. The second

implementation, mergesort.ml, follows the conventional functional paradigm and

does not mutate memory. Six average execution times were compared: BLAISE

with and without gcc optimization, OCaml with mutation with and without GC, and

the conventional FP OCaml implementation with and without GC. Figures 3.1 to

3.5 compare average runtimes for all of the implementations.

Comparison to Ocaml

BLAISE executes faster than OCaml on lists larger than 10,000 elements, although,

OCaml sorts lists with less than 10,000 elements faster than BLAISE. Each merge-

sort implementation creates and sorts 100 lists, and the average running time is used

to compare different implementations. The following graphs are standardized to the

mutable OCaml implementation which is the baseline, ’1’. The independent vari-

able is the size of the list to be sorted (number of elements) and time is the dependent

variable. The list sizes start at one hundred elements and go up to one million ele-

ments. For our purposes we pay most attention to BLAISE’s performance with gcc

optimization turned on.

19

Figure 3.1: List size = 100 elements.

Figure 3.2: List size = 1,000 elements.

Figure 3.3: List size = 10,000 elements.

20

Figure 3.4: List size = 100,000 elements.

Figure 3.5: List size = 1,000,000 elements. The conventional OCaml FP implementation is
excluded from this graph because the machine experiences a stack overflow, due to the large
list size.

21

Chapter 4

Conclusion

4.1 Next Steps

The BLAISE Compiler is complete; however, BLAISE still needs a type-checking

system before it can be used to find memory errors with static analysis. Also, when

BLAISE implementation is complete it needs to go through more benchmark testing

on both basic datatype-benchmarks and examples from real-time systems [7]. After

this semester Dr. Stump will continue to bring students onto the BLAISE project to

finish a type checking system. Then BLAISE will be used to research the practical

use of explicit memory management with abstractions and use of static analysis to

find memory errors.

This semester marks the end of my undergraduate career. However, I am en-

rolled in the computer science BS/MCS program, so I will attend the University of

Iowa next fall as a graduate student. There is a chance that I will work on BLAISE

in the future.

22

4.2 Discussion

4.2.1 My Experience

The time I spent on BLAISE is invaluable: everyone that attends college should

pursue a guided independent study. I believe working on an ongoing project is

experience everyone should have before going into industry. Furthermore, I had a

great time learning more than I ever imagined about programming language design

and implementation. Due to the large amount of time I spent developing BLAISE a

lot of the magic behind compilers has been stripped from my mind. Also, I have a

new found respect for research, programming languages and compiler developers.

Lastly, BLAISE re-inspired my interest in academia and I look forward to graduate

school next year.

4.2.2 How does this influence my thinking?

BLAISE development has helped me compare the software development process

between two different institutions, academic research and industry. I worked for

State Farm Insurance for two and a half years and I spent one academic year working

on BLAISE. I’ve noticed that the academic software development process is much

more dynamic, because of the nature of school, students come and go. It is hard

to maintain continuity on a project aside from the project advisor. In academia a

considerable amount of time can potentially be spent bringing new project members

up to speed. Generally, industry employees tend to work and focus solely on a

project for a longer period of time: e.g., employees forgo moving to new projects

until a milestone is hit. In academia students are around on a semesterly basis with

frequent breaks, such as summer and winter break. Furthermore, students are split

between coursework and research. There are more obstacles that limit software

development productivity in academia compared to industry.

23

I also observed, based on my experience at State Farm, that it is easier to receive

project support by the institution in industry. For example, at State Farm I needed

a server to supplement a project. Within a week I was given a server by a support

group. At the University of Iowa our research team asked our Computer Support

Group (CSG) to configure a server with software useful for automated testing, but

we were denied our request. Given CSG’s limited resources and ample requests to

maintain student technical support our research project wasn’t granted support.

This was the first time I’ve been denied service by a support group. I asked

for Hudson ’Continuous Intergration’ to be installed on a university server to aid

our group’s software development process. Hudson is built for automated testing so

a developer can configure Hudson to automatically run tests on a project residing

in a repository and notify the development team of any problems. To compensate

for not acquiring Hudson I created a Bash script, test.sh, which executes various

test files and prints out their status. The pitfall of this approach is that it is up

to the compiler developers, Josh and I, to manually execute test.sh which tests a

slew of BLAISE files. Although this solution isn’t perfect it serves as a sufficient

workaround for testing. Not receiving support from CSG was a new experience for

me. It helped me realize that organizations face hard problems when it comes to

managing resources and prioritizing goals. At a high level, The University of Iowa

wants to educate students and allow professors to conduct research and publish their

results. Although both of these goals are important the university must allocate its

finite resources meticulously and as a rule of thumb: top priority goals receive more

resources than the rest.

Lastly, the more time I spend on large scale projects I realize that documenta-

tion is essential. Regardless of where software development takes place, industry or

academia, it is important that a project has specifications that express what the end

product will be and is a guide to software developers in terms of product design. In

both BLAISE and some larger scale projects at State Farm it would have been nice

24

to have specifications from the beginning of development. Albeit, it can be fun to

work on a semi-ad hoc software project. Documentation and high-level designs, e.g.

a flow chart, which display how constituents connect to other constituents, is use-

ful. Furthermore, it is important to maintain documentation for an ongoing project

which outlines: how a project is assembled, how it is tested, its status, what needs

to be done, and who to should be contacted for questions. Documentation preserves

valuable knowledge that is useful before, during and after product development.

4.2.3 Lessons Learned

Modularization

Breaking a large project into modular components is extremely helpful especially

before project development begins. Software development with a team can be a

lot of fun, but it is hard to manage properly. Usually teams are formed to build

large software because a team is typically more productive than an individual. A

modular design allows members to work on their constituents without having to

depend on nuances of their team’s code. Without modularization it is hard for teams

to continuously communicate important information to all team members. Team

members don’t want to break one another’s code. A strong modular design from the

beginning of software development can alleviate un-intended code dependencies

later on.

Early in the spring semester I added tail recursion optimization to BLAISE. It

worked quite well for a while until a team member changed a piece of code unrelated

to tail recursion. A relatively minor code change lead to an unexpected break in the

tail recursion optimization. Sadly, this created more work for the team. We had to

figure out what caused tail recursion optimization to break and then we had to figure

out how to fix the problem. Ideally, with a modular design, a team can anticipate

potential side effects from changing code and handle problems as they arise, instead

25

of finding problems weeks after they occur.

Regression testing

Automated testing is a godsend and should be used whenever possible, especially

regression testing. Near the end of the fall semester I found that Josh and I were

manually compiling scripts from BLAISE to C to verify that the compiler was work-

ing properly. This procedure was fine for our initial tests, but as we added more

features to the compiler this became a problem. I noticed after a while that our tests

were quite narrow in scope. It was common practice to create one BLAISE script

that was directly impacted by the most recent feature we worked on, and compile

it. We didn’t bother to test parts of the compiler that worked in the past. The as-

sumption that ’it worked before, it should work now,’ is a bad approach to software

development. I learned how this practice isn’t too effective while refactoring code

that supposedly worked, I found that it had been broken. Automated regression

testing brings bugs to the developer’s attention much sooner than if the developer

stumbles upon it.

26

References

[1] Alexander Aiken, Manuel Fähndrich, and Raph Levien. Better static mem-
ory management: improving region-based analysis of higher-order languages.
SIGPLAN Not., 30:174–185, June 1995.

[2] Andrew Appel. Garbage collection can be faster than stack allocation, 1987.

[3] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of fix-
points. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Prin-
ciples of programming languages, POPL ’77, pages 238–252, New York, NY,
USA, 1977. ACM.

[4] Morgan Deters and Ron K. Cytron. Automated discovery of scoped memory
regions for real-time java. In Proceedings of the 3rd international symposium
on Memory management, ISMM ’02, pages 132–142, New York, NY, USA,
2002. ACM.

[5] Benjamin Goldberg. Functional programming languages. ACM Comput. Surv.,
28:249–251, March 1996.

[6] Dan Grossman, Michael Hicks, Trevor Jim, and Greg Morrisett. Cyclone: A
type-safe dialect of C. C/C++ User’s Journal, 23(1), January 2005.

[7] Matthew Hertz and Emery D. Berger. Quantifying the performance of garbage
collection vs. explicit memory management, 2005.

[8] Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Experience
with safe manual memory-management in cyclone. In In Proc. of the 4th in-
ternational symposium on Memory management (ISMM), pages 73–84, 2004.

[9] Simon Marlow and Simon Peyton Jones. Making a fast curry: push/enter vs.
eval/apply for higher-order languages. J. Funct. Program., 16:415–449, July
2006.

[10] Michel Sintzoff. Calculating properties of programs by valuations on specific
models. In Proceedings of ACM conference on Proving assertions about pro-
grams, pages 203–207, New York, NY, USA, 1972. ACM.

[11] Aaron Stump. Blaise: Memory-safe programming without garbage collection,
2010. This is an internal document available from the author on request.

27

Appendices

28

Appendix A

BLAISE Grammar

A.1 Blaise.gra
b l a i s e

(∗ commands ∗)
Program : program −> { e x t e r n }∗ { command }∗

E x t e r n : e x t e r n −> EXTERNAL ID t y p COLON t p
Typ : t y p −> LSQUARE t p { COMMA t p }∗ RSQUARE

D a t a t y p e : command −> DATATYPE { d t }+ { a l i a s }∗ { u p d a t e }∗ END
Def : command −> DEFINE ID o p t t p EQUALS trm

(∗ d a t a t y p e s t a t e m e n t s ∗)
Dt : d t −> TYPE ID { TVAR }∗ { c t o r }∗ END
DtCtor : c t o r −> ID COLON c e l l t p
D t A l i a s : a l i a s −> ALIAS ID DOT ID ID DOT ID
DtUpdate : u p d a t e −> UPDATE ID TO ID

(∗ c e l l t y p e s ∗)
Ce l lTp : c e l l t p −> CELL o p t t p a r a m s i n p u t s DOT ID o p t i n s t

(∗ t e r m s Th i s has changed∗)
Fun : t rm −> FUN o p t t p a r a m s i n p u t s DOT trm
Rec : t rm −> FUN ID o p t t p a r a m s i n p u t s COLON t p DOT trm
Case : t rm −> CASE atom OF b r a n c h e s
Body : t rm −> body
Seq : body −> s i m p l e SEMI body
Let : body −> VAR v a r I d EQUALS s i m p l e SEMI body
Simple : body −> s i m p l e

VarId : v a r I d −> ID o p t t p

(∗ c a s e b r a n c h e s Th i s has changed∗)
B r a n c h e s S t a r t : b r a n c h e s −> b ra nc h
BranchesCons : b r a n c h e s −> b ra nc h BAR b r a n c h e s
B r a n c h e s D e f a u l t : b r a n c h e s −> UNDERSCORE ARROW body
B r a n c h I n t : b r an ch −> INT ARROW body
Branch : b r a nc h −> ID ARROW body

(∗ s i m p l e t e r m s . These behave somewhat l i k e i m p e r a t i v e s t a t e m e n t s . ∗)
Ass ign : s i m p l e −> d e r e f p l u s EQUALS s i m p l e
Update : s i m p l e −> UPDATE d e r e f TO ID [LPAREN comma atoms e RPAREN]
Connect : s i m p l e −> CONNECT d e r e f p l u s d e r e f p l u s
A s s e r t : s i m p l e −> ASSERT d e r e f EQUALS d e r e f
D e l e t e : s i m p l e −> DELETE d e r e f
Clone : s i m p l e −> CLONE d e r e f
D i s c o n n e c t : s i m p l e −> DISCONNECT d e r e f p l u s
Atom : s i m p l e −> atom
R e a s s i g n : s i m p l e −> ID EQUALS s i m p l e

(∗ d e r e f t e r m s ∗)
De re fAcces s : d e r e f −> ID { DOT ID }∗
D e r e f P l u s : d e r e f p l u s −> ID { DOT ID }+

(∗ a t om ic t e r m s Th i s has changed ∗)
(∗ Tuple : atom −> LPAREN atom { COMMA atom } + RPAREN∗)
New : atom −> NEW ID o p t i n s t LPAREN comma atoms e RPAREN
A r i t h : atom −> a d d i t i o n
S t r i n g L i t : atom −> STRINGLIT

(∗ t y p e s Th i s has changed∗)
TFun : t p −> TFUN o p t t p a r a m s LPAREN comma atom tps RPAREN DOT a t o m t p
TAtom : t p −> a t o m t p

29

TVar : a t o m t p −> v t y p e
S t r i n g T y p e : v t y p e −> STRING
TVarType : v t y p e −> TVAR
I n t T y p e : v t y p e −> INTTYPE
TApp : a t o m t p −> ID o p t i n s t
TTuple : a t o m t p −> LSQUARE comma atom tps RSQUARE
TTp : a t o m t p −> LPAREN t p RPAREN

(∗ B a s i c O p e r a t i o n s ∗)
A d d i t i o n : a d d i t i o n −> f a c t o r { ops f a c t o r }∗

AddOpPlus : ops −> PLUS
AddOpMinus : ops −> MINUS
MulOpTimes : ops −> TIMES
MulOpDivide : ops −> DIVIDE
MulOpMod : ops −> MOD
MulOpGT : ops −> GT
MulOpGTE : ops −> GTE
MulOpLTE : ops −> LTE
MulOpLT : ops −> LT
MulOpEQ : ops −> EQ
MulOpNotEQ : ops −> NEQ
MulOpAND : ops −> AND
MulOpOR : ops −> OR

App : f a c t o r −> d e r e f o p t i n s t LPAREN comma atoms e RPAREN
F a c t o r I n t : f a c t o r −> INT
F a c t o r D e r e f : f a c t o r −> d e r e f
Abor t : f a c t o r −> ABORT
Trm : f a c t o r −> LPAREN trm RPAREN
Unary : f a c t o r −> unaryop f a c t o r

UnaryNot : unaryop −> NOT
UnaryNegate : unaryop −> MINUS

(∗ i n p u t l i s t s ∗)
Inpu t sNone : i n p u t s −> LPAREN RPAREN
InputsSome : i n p u t s −> { LPAREN [cons umpt i on an no] ID COLON t p RPAREN }+

ConsumeAnno : c onsu mpt io n ann o −> CONSUME
UpdateAnno : c onsu mpt io n ann o −> UPDATE

(∗ h e l p e r s Th i s has ∗)
OptTParams : o p t t p a r a m s −> [LSQUARE v t y p e { COMMA v t y p e }∗ RSQUARE]

CommaAtomse : comma atoms e −> [atom { COMMA atom }∗]

O p t I n s t : o p t i n s t −> [LSQUARE t p { COMMA t p }∗ RSQUARE]

CommaAtomTps : comma atom tps −> [a t o m t p { COMMA a t o m t p }∗]

(∗ o p t t p ∗)
OptTp : o p t t p −> [COLON t p]

(∗ l e x i c a l c l a s s e s ∗)
DATATYPE=” d a t a t y p e ”
EXTERNAL=” e x t e r n a l ”
ABORT=” a b o r t ”
TYPE=” t y p e ”
TFUN=”Fun ”
VAR=” v a r ”
COMMA=” ,”
DELETE=” d e l e t e ”
CLONE=” c l o n e ”
CELL=” C e l l ”
ASSERT=” a s s e r t ”
UPDATE=” u p d a t e ”
CONSUME=” consume ”
CONNECT=” c o n n e c t ”
DISCONNECT=” d i s c o n n e c t ”
TO=” t o ”
END=” end ”
LT=”<”
GT=”>”
LTE=”<=”
GTE=”>=”
LPAREN=”(”
RPAREN=”)”
LSQUARE=”[”
RSQUARE=”]”
ALIAS=” a l i a s ”
COLON= ” : ”
EQ=”==”
NEQ=”!=”
AND=”&&”
OR= ” | |”
NOT=” n o t ”
EQUALS=”=”
DOT= ” . ”
FUN=” fun ”
CASE=” c a s e ”
OF=” of ”
ARROW=”−>”

30

BAR=” |”
NEW=”new”
SEMI = ” ; ”
DEFINE=” d e f i n e ”
STRING=” s t r i n g ”
INTTYPE=” i n t ”
UNDERSCORE=” ”
PLUS=”+”
MINUS=”−”
TIMES=”∗”
MOD=”\%”
DIVIDE = ” / ”

TVAR = {{ ’\ ’ ’ [’ a ’−’z ’ ’A’−’Z ’] + }}
ID = {{ [’ a ’−’z ’ ’A’−’Z ’] [’ a ’−’z ’ ’A’−’Z ’ ’0 ’− ’9 ’ ’\ ’ ’ ’ ’]∗ }}
INT = {{ [’0 ’− ’9 ’] [’0 ’− ’9 ’]∗ }}
STRINGLIT = {{ ’” ’ ((#[’\\ ’ ’ ” ’]) | (’\\ ’))∗ ’” ’ }}

31

Appendix B

Source Code

B.1 Mergesort.bls - BLAISE

Node t h a t w i l l go i n s i d e o f t h e l i s t
d a t a t y p e

t y p e node
cons : C e l l (number : i n t) (n e x t : cons) . node

n i l : C e l l () . node
end

end

d e f i n e g e t l i s t l e n g t h = fun (node : ’ a) .
c a s e node of

n i l −> 0
| cons −> (1 + g e t l i s t l e n g t h (node . n e x t))

Th i s f u n c t i o n r e t u r n s a p o i n t e r t o t h e second l i s t .
d e f i n e s p l i t L i s t = fun (node : ’ a) (c u r r I n d e x : i n t) (s t a r t I n d e x : i n t) .

(c a s e c u r r I n d e x < s t a r t I n d e x of
1 −>

(c a s e node of
n i l −> n i l

| cons −>
s p l i t L i s t (node . nex t , (c u r r I n d e x + 1) , s t a r t I n d e x)

)
| 0 −>
(c a s e c u r r I n d e x == s t a r t I n d e x of

1 −> (c a s e node of
n i l −> n i l

| cons −> v a r s e c o n d L i s t = node . n e x t ;
node . n e x t = n i l ;

s e c o n d L i s t
)

| 0 −> n i l
)

)

p r i n t e v e r y e l e m e n t i n a l i s t .
d e f i n e p r i n t L i s t = fun (node : ’ a) .

c a s e node of
n i l −> p r i n t s t r i n g (” ”)

| cons −> p r i n t i n t (node . number) ;
p r i n t s t r i n g (” ”) ;
p r i n t L i s t (node . n e x t)

d e f i n e append = fun (l 1 : ’ a) (l 2 : ’ a) .
c a s e l 1 o f

n i l −> l 2
| cons −> l 1 . n e x t = l 2 ; l 1

m e r g e I n P l a c e d e m o n s t r a t e s t a i l r e c u r s i o n .
and was used t o t e s t t a i l−r e c u r s i o n o p t i m i z a t i o n .

d e f i n e m e r g e I n P l a c e = fun (l 1 : ’ a) (l 2 : ’ a) (b : a) (endd : a) .
c a s e l 1 o f

n i l −>
(c a s e endd of

n i l −> l 2
| cons −> endd . n e x t = l 2 ; b
)

| cons −>
(c a s e l 2 o f

n i l −>
(c a s e endd of

n i l −> l 1

32

| cons −> endd . n e x t = l 1 ; b
)

| cons −>
(c a s e l 1 . number < l 2 . number o f

0 −>
(c a s e l 2 o f

n i l −> n i l # Th i s s h o u l d n e v e r be r e a c h e d
| cons −>

v a r t e m p l 2 T a i l = l 2 . n e x t ;
l 2 . n e x t = n i l ;
v a r tmp = append (endd , l 2) ;
(c a s e b of

n i l −> b = tmp
) ;
m e r g e I n P l a c e (l1 , t e m p l 2 T a i l , b , l 2)

)
| 1 −>

(c a s e l 1 o f
n i l −> n i l # Th i s s h o u l d n e v e r be r e a c h e d

| cons −>
v a r t e m p l 1 T a i l = l 1 . n e x t ;
l 1 . n e x t = n i l ;
v a r tmp = append (endd , l 1) ;
(c a s e b of

n i l −> b = tmp
) ;
m e r g e I n P l a c e (t e m p l 1 T a i l , l2 , b , l 1)

)
)

)

d e f i n e c r e a t e L i s t H e l p e r = fun (number : i n t) (l : l i s t) .
c a s e number o f

0 −> (c a s e l o f
n i l −> n i l

| cons −> l . n e x t = n i l
)

| −>
(c a s e (number % 2) == 0 of

1 −> v a r tmp = new cons ((number + 5) , n i l) ;
(c a s e l o f

n i l −> n i l
| cons −> l . n e x t = tmp
) ;
c r e a t e L i s t H e l p e r ((number − 1) , tmp)

| 0 −> v a r tmp = new cons (number , n i l) ;
(c a s e l o f

n i l −> n i l
| cons −> l . n e x t = tmp
) ;
c r e a t e L i s t H e l p e r ((number − 1) , tmp)

)

d e f i n e c r e a t e L i s t = fun (number : i n t) .
v a r b e g i n = new cons (0 , n i l) ;
c r e a t e L i s t H e l p e r ((number − 1) , b e g i n) ;
b e g i n

d e f i n e s o r t = fun (l i s t : ’ a) (l i s t L e n g t h : i n t) .
(c a s e l i s t L e n g t h <= 1 of

1 −> l i s t
| 0 −>

v a r l i s t L e n g t h D i v T w o = (l i s t L e n g t h / 2) ;
v a r l i s t 2 = s p l i t L i s t (l i s t , 1 , l i s t L e n g t h D i v T w o) ;
v a r s u b 1 S o r t e d = s o r t (l i s t , l i s t L e n g t h D i v T w o) ;
v a r s u b 2 S o r t e d = s o r t (l i s t 2 , (l i s t L e n g t h D i v T w o + (l i s t L e n g t h \% 2))) ;

v a r m e r g e d L i s t = m e r g e I n P l a c e (sub1 Sor t ed , sub2Sor t ed , n i l , n i l) ;
m e r g e d L i s t

)

d e f i n e loop = fun (i t e r a t i o n s L e f t : i n t) (s i z e O f L i s t : i n t) .
c a s e i t e r a t i o n s L e f t > 0 of
1 −>

v a r l s t = c r e a t e L i s t (s i z e O f L i s t) ;
v a r s o r t e d = s o r t (l s t , s i z e O f L i s t) ;
l oop ((i t e r a t i o n s L e f t − 1) , s i z e O f L i s t)

d e f i n e mn =
loop (1 0 0 , 100)

B.2 MergesortMutable.ml - Mutated memory - OCaml

(∗
A u s t i n Laugesen
M e r g e s o r t

33

∗)

(∗ C r e a t e a l i s t o f random numbers up t o a s p e c i f i e d l e n g t h ∗)
l e t r e c c r e a t e l i s t (number : i n t) =

i f (number > 0) t h e n
(

i f ((number mod 2) = 0) t h e n
(number + 5) : : (c r e a t e l i s t (number −1))

e l s e
number : : (c r e a t e l i s t (number −1))

)
e l s e
(

[]
)

; ;

l e t r e c s p l i t L i s t s l i s t (c u r r I n d e x : i n t) (m id P o i n t : i n t) =
match l i s t w i th

x : : l i s t ’ −> i f (c u r r I n d e x = m i d P o i n t) t h e n (
([] , l i s t)

)
e l s e (

l e t tmp = (s p l i t L i s t s l i s t ’ (c u r r I n d e x + 1) m i dP o i n t) i n
(x : : f s t (tmp) , snd (tmp))

)
| −> (∗ Thi s p o i n t s h o u l d n e v e r be r e a c h e d . ∗)

([] , [])

; ;

(∗ Merge two l i s t s ∗)
l e t r e c merge l i s t 1 l i s t 2 =

match l i s t 1 wi th
[] −> l i s t 2

| x : : l i s t 1 ’ −>
match l i s t 2 wi th

[] −> l i s t 1
| y : : l i s t 2 ’ −>

i f (x > y) t h e n
(

y : : (merge l i s t 1 l i s t 2 ’)
)
e l s e
(

x : : (merge l i s t 1 ’ l i s t 2)
)

; ;

(∗ S o r t a l i s t u s i n g M e r g e s o r t ∗)
l e t r e c s o r t l i s t s i z e O f L i s t =

i f ((L i s t . l e n g t h l i s t) <= 1) t h e n
(

l i s t
)
e l s e
(

l e t t w o L i s t s = s p l i t L i s t s l i s t 0 (s i z e O f L i s t / 2) i n
l e t s u b l i s t 1 = f s t (t w o L i s t s) i n
l e t s u b l i s t 2 = snd (t w o L i s t s) i n

l e t s u b 1 S o r t e d = s o r t s u b l i s t 1 (s i z e O f L i s t / 2) i n
l e t s u b 2 S o r t e d = s o r t s u b l i s t 2 ((s i z e O f L i s t / 2) + (s i z e O f L i s t mod 2)) i n

(merge s u b 1 S o r t e d s u b 2 S o r t e d)

)
; ;

l e t r e c p r i n t L i s t l i s t =
match l i s t w i th

[] −> p r i n t s t r i n g ”\n ”
| x : : l i s t ’ −> p r i n t i n t x ;

p r i n t s t r i n g ” ” ;
p r i n t L i s t l i s t ’

; ;

l e t r e c loop i t e r a t i o n s s i z e O f L i s t =
i f (i t e r a t i o n s > 0) t h e n
(

l e t l i s t = c r e a t e l i s t s i z e O f L i s t i n
l e t s o r t e d l i s t = (s o r t l i s t s i z e O f L i s t) i n
(∗ (p r i n t L i s t s o r t e d l i s t) ; ∗)
(l oop (i t e r a t i o n s − 1) s i z e O f L i s t)

)
; ;

(l oop 100 1 0 0 0) ; ;

34

B.3 Mergesort.ml - OCaml

(∗ C r e a t e a l i s t o f random numbers up t o a s p e c i f i e d l e n g t h ∗)
l e t r e c c r e a t e l i s t (number : i n t) =

i f (number > 0) t h e n
(

i f ((number mod 2) = 0) t h e n
(number + 5) : : (c r e a t e l i s t (number −1))

e l s e
number : : (c r e a t e l i s t (number −1))

)
e l s e
(

[]
)

; ;

(∗
Given a l i s t and two i n d i c e s c r e a t e a s m a l l e r l i s t c o n s i s t i n g o f a l l t h e e l e m e n t s
between t h e s p e c i f i e d i n d i c e s

∗)
l e t r e c g e t s u b l i s t l i s t c u r r s t a r t I n d e x endIndex =

i f (c u r r < s t a r t I n d e x) t h e n
(

match l i s t w i th
[] −> []

| x : : l i s t ’ −> (g e t s u b l i s t l i s t ’ (c u r r + 1) s t a r t I n d e x endIndex)
)
e l s e
(

i f (s t a r t I n d e x = endIndex) t h e n
(

[]
)
e l s e
(

match l i s t w i th
[] −> []

| x : : l i s t ’ −> x : : (g e t s u b l i s t l i s t ’ (c u r r + 1) (s t a r t I n d e x + 1) endIndex)
)

)
; ;

(∗ Merge two l i s t s ∗)
l e t r e c merge l i s t 1 l i s t 2 =

match l i s t 1 wi th
[] −> l i s t 2

| x : : l i s t 1 ’ −>
match l i s t 2 wi th

[] −> l i s t 1
| y : : l i s t 2 ’ −>

i f (x > y) t h e n
(

y : : (merge l i s t 1 l i s t 2 ’)
)
e l s e
(

x : : (merge l i s t 1 ’ l i s t 2)
)

; ;

(∗ S o r t a l i s t u s i n g M e r g e s o r t ∗)
l e t r e c s o r t l i s t s i z e O f L i s t =

i f ((L i s t . l e n g t h l i s t) <= 1) t h e n
(

l i s t
)
e l s e
(

l e t s u b l i s t 1 = (g e t s u b l i s t l i s t 0 0 (s i z e O f L i s t / 2)) i n
l e t s u b l i s t 2 = (g e t s u b l i s t l i s t 0 (s i z e O f L i s t / 2) (s i z e O f L i s t)) i n

l e t s u b 1 S o r t e d = s o r t s u b l i s t 1 (s i z e O f L i s t / 2) i n
l e t s u b 2 S o r t e d = s o r t s u b l i s t 2 ((s i z e O f L i s t / 2) + (s i z e O f L i s t mod 2)) i n

(merge s u b 1 S o r t e d s u b 2 S o r t e d)

)
; ;

l e t r e c p r i n t L i s t l i s t =
match l i s t w i th

[] −> p r i n t s t r i n g ”\n ”
| x : : l i s t ’ −> p r i n t i n t x ;

p r i n t s t r i n g ” ” ;
p r i n t L i s t l i s t ’

; ;

l e t r e c loop i t e r a t i o n s s i z e O f L i s t =
i f (i t e r a t i o n s > 0) t h e n
(

35

l e t l i s t = c r e a t e l i s t s i z e O f L i s t i n
l e t s o r t e d l i s t = (s o r t l i s t s i z e O f L i s t) i n
(∗ (p r i n t L i s t s o r t e d l i s t) ; ∗)
(l oop (i t e r a t i o n s − 1) s i z e O f L i s t)

)
; ;

(l oop 100 1 0 0) ; ;

B.4 Python Evaluation Script

i m p o r t os
i m p o r t s y s

r e q u i r e d argument f o r t h i s s c r i p t : # o f i t e r a t i o n s o f m e r g e s o r t i n r e s p e c t i v e e x e c u t e d f i l e .
e . g . py thon compareTimes . py 100

d e f fo rma tT imeou t (t i m e O u t F i l e , l o o p s) :
f = open (t i m e O u t F i l e)

rea lSum = 0 . 0
userSum = 0 . 0
sysSum = 0 . 0

c o u n t = 0

f o r l i n e i n f :
c o u n t += 1
i f (c o u n t == 1) :

p a s s
e l i f (c o u n t == 2) :

minsAndSeconds = l i n e . s p l i t () [1] . s p l i t (’m’)
rea lSum += (i n t (minsAndSeconds [0]) ∗ 60) + f l o a t (minsAndSeconds [1] . s p l i t (” s ”) [0])

e l i f (c o u n t == 3) :
minsAndSeconds = l i n e . s p l i t () [1] . s p l i t (’m’)
userSum += (i n t (minsAndSeconds [0]) ∗ 60) + f l o a t (minsAndSeconds [1] . s p l i t (” s ”) [0])

e l i f (c o u n t == 4) :
c o u n t = 0
minsAndSeconds = l i n e . s p l i t () [1] . s p l i t (’m’)
sysSum += (i n t (minsAndSeconds [0]) ∗ 60) + f l o a t (minsAndSeconds [1] . s p l i t (” s ”) [0])

p r i n t (” Average t ime computed from : ” + t i m e O u t F i l e)

p r i n t (” r e a l : ” + s t r (rea lSum / l o o p s))
p r i n t (” u s e r : ” + s t r (userSum / l o o p s))
p r i n t (” s y s : ” + s t r (sysSum / l o o p s))

d e f execu t eAdo tOu t (t i m e O u t F i l e) :
p r i n t ” c a l l ’ t ime . / a . out ’ 1 t ime and s t o r e r e s u l t s i n ” + t i m e O u t F i l e
os . sys tem (” rm ” + t i m e O u t F i l e)

os . sys tem (” t ime (. / a . o u t) 2>> ” + t i m e O u t F i l e)
fo rma tT imeou t (t i m e O u t F i l e , i n t (s y s . a rgv [1]))

d e f c o m p i l e F i l e (compileCommand , t i m e O u t F i l e) :
p r i n t compileCommand

compi l e Ocaml o r B l a i s e t o c
os . sys tem (compileCommand)

compi l e C code t o . / a . o u t
i f (t i m e O u t F i l e == ” b l a i s e ”) :

p r i n t ” gcc −w −O0 c L i b s /∗ mergesort CHECK . c ”
os . sys tem (” gcc −w −O0 c L i b s /∗ mergesort CHECK . c ”)
execu t eAdo tOu t (t i m e O u t F i l e + ” . t i m e o u t ”)

p r i n t ” gcc −w −O4 c L i b s /∗ mergesort CHECK . c ”
os . sys tem (” gcc −w −O4 c L i b s /∗ mergesort CHECK . c ”)
execu t eAdo tOu t (t i m e O u t F i l e + ” Opt imized . t i m e o u t ”)

e l s e :
p r i n t (” With GC”)
os . sys tem (” e x p o r t OCAMLRUNPARAM= ’ ’”)
execu t eAdo tOu t (t i m e O u t F i l e + ” . t i m e o u t ”)
p r i n t (”\n Withou t GC”)
os . sys tem (” e x p o r t OCAMLRUNPARAM= ’ s =1024k , v=0x015 ’ ”)
execu t eAdo tOu t (t i m e O u t F i l e + ” . t i m e o u t ”)

b l a i s e = ” . / b l a i s e . . / t e s t s / m e r g e s o r t . b l s > mergesort CHECK . c ; ”
ocaml = ” ocamlop t . . / t e s t s / m e r g e s o r t . ml ”
ocamlTRMutable = ” ocamlop t . . / t e s t s / m e r g e s o r t M u t a b l e . ml ; ”

c o m p i l e F i l e (b l a i s e , ” b l a i s e ”)
c o m p i l e F i l e (ocaml , ” ocaml ”)
c o m p i l e F i l e (ocamlTRMutable , ” ocamlTRMutable ”)

36

