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In this paper, it is shown that induction is derivable in a type-assignment 
formulation of the second-order dependent type theory λP2, extended with the 
implicit product type of Miquel, dependent intersection type of Kopylov, and a built-
in equality type. The crucial idea is to use dependent intersections to internalize a 
result of Leivant’s showing that Church-encoded data may be seen as realizing their 
own type correctness statements, under the Curry–Howard isomorphism.
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1. Introduction

Constructive type theory has been proposed as a foundation for constructive mathematics, and has found 
numerous applications in Computer Science, thanks to the Curry–Howard correspondence between construc-
tive logic and pure functional programming [29,25,13]. Pure Type Systems (PTSs) are one formalism for 
constructive type theory, based on pure lambda calculus [6]. PTSs have very compact syntax, reduction 
semantics, and typing rules, which is appealing from a foundational and metatheoretic perspective. Un-
fortunately, PTSs by themselves have not been found suitable as a true foundation for constructive type 
theory in practice, due to the lack of inductive types. At the introduction of the Calculus of Constructions 
(CC), an important impredicative PTS, induction was lacking [11]. This led the inventors of CC and their 
collaborators to extend the theory with a primitive notion of inductive types, resulting in the Calculus 
of Inductive Constructions (CIC), which is the core formalism of the prominent Coq computer-proof soft-
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ware [45,46,35,12]. In 2001, this skepticism about induction in PTSs was solidified when Geuvers proved 
that induction is not derivable in second-order dependent type theory (λP2), a subsystem of CC [20].

The adoption, in CIC and Coq, of a system for declaring primitive datatypes solved the problem of 
induction, and hence allowed formalization of a variety of results in Mathematics and Computer Science. 
A notable example among these is a Coq proof of the Four Color Theorem, which, unlike the theorem’s 
original computer proof, does not depend on unverified programs for checking a large of number of spe-
cial cases [23,4]. Thanks to the Curry–Howard isomorphism, such programs can be written and, crucially, 
proved sound within the type theory. So the addition of primitive datatypes opened up the possibility of 
formalizing complex mathematical results in type theory, that was lacking in pure CC. Other type theories 
provide mechanisms for defining inductive types. In Automath, for example, inductive types are defined 
axiomatically, simply by writing down constructors and asserting that induction holds [14]. In Martin-Löf 
type theory, one can use W-types to define inductive types, thus avoiding the need to add axioms to the 
theory for each new type; rather, the theory is extended once, with a single set of axioms for W-types [30]. 
Nevertheless, in all these cases, the pure type-theoretic core must be extended with additional operations, 
at both term and type level, to represent inductive types. At the term level, this necessitates additions to 
the usual proof of confluence of reduction of terms. In all cases, the resulting theory has now additional 
machinery requiring nontrivial metatheoretic analysis.

In this paper, we present an extension of a type-assignment formulation of λP2, in which induction 
is derivable, indeed in two slightly different ways. The extension does not in any direct way correspond 
simply to adding primitive inductive types or induction principles. Rather, the extension strengthens the 
expressiveness of the dependent typing of λP2, to take advantage of the computational power that is already 
present in impredicative type theory. The extension is with three constructs, all somewhat exotic but none 
new. The first is the implicit product ∀ x : A. B of Miquel, which allows one to generalize x of type A
without introducing a λ-abstraction at the term level [32]. Second is the dependent intersection type of 
Kopylov [26]. Intersection types have been studied for many years in theoretical Computer Science, due to 
their strong connection with normalization properties (see [7] for a magisterial presentation). If a term t can 
be assigned types A and B, then it can also be assigned the type A ∩B. With dependent intersections, this 
is strengthened to: if a term t can be assigned types A and [t/x]B (the substitution of t for x in B), then it 
can also be assigned the type x : A ∩ B. In this paper, we will use the prefix notation ι x :A. B, instead of 
Kopylov’s x : A ∩ B. The third construct in the extension is a primitive equality type, allowing expression 
of equality between terms x and y both of some common type A. While all three constructs are necessary 
for the derivations given of induction, the dependent intersections are most central to the construction, and 
so we will denote the resulting system ιλP2.

For nontrivial intersection types to be inhabited, we must work in a Curry-style (sometimes also called 
extrinsic) type theory, where we assign types to pure lambda terms. In such a theory, the same term can be 
assigned multiple inequivalent types. For example, assuming inequivalent types Bool and Nat, the term λ x. x
may be assigned the types Bool → Bool and Nat → Nat. Church-style (also called intrinsic) type theories 
usually satisfy unicity of typing, by design: a given term has at most one type, modulo type equivalence. In 
the ιλP2 type theory we consider in this paper, the terms are only the terms of pure lambda calculus; i.e., 
variables, applications, and lambda abstractions. So we see that unlike the other approaches to inductive 
types mentioned above, the approach proposed here requires no additional constructs at the term level: 
terms remain just those of pure lambda calculus. We thus have a solution to the problem of induction in 
pure type theory (i.e., type theory whose terms are just the pure lambda-calculus terms). Of course, we 
must make some addition at the type level, or be blocked from deriving induction by Geuvers’s result.

The centrality of dependent intersection for induction in ιλP2 is due to its role in internalizing a crucial 
realizability result of Leivant [28]. He observed that the proofs that data encoded as pure lambda terms 
using the well-known Church encoding satisfy their typing laws can be identified with those data themselves. 
In other words, Church-encoded numbers realize their own typings. This remarkable observation is the key 
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terms t ::= x | t t′ | λx. t

types T ::= X | ∀X :κ. T | Π x :T. T ′ | λx :T. T ′ | T t | ∀ x :T. T ′ | ι x :T. T ′ | t � t′

kinds κ ::= � | Π x :T. κ

contexts Γ ::= · | Γ, x : T | Γ, X : κ

Fig. 1. Syntax for ιλP2.

to the construction in this paper. We will use the dependent intersection type to define natural numbers 
to be those terms which are both Church-encoded natural numbers x (i.e., have type cNat, defined as 
usual to be ∀ X : � . X → (X → X) → X), and also proofs of induction, for predicates defined on cNat, 
for x. So 3, for example, will be assigned both the type cNat and also Inductive 3, where Inductive is 
a predicate on cNat x stating that for all predicates P on cNat, if P holds of the cNat 0 and is preserved 
by the usual successor operation on cNats, then P holds of x. While dependent intersection types allow us 
to make this definition of Nat, it does not follow immediately that Nat is inductive. The reason is that 
the Inductive predicate expresses induction for cNat-predicates; it is not immediate that induction holds 
then for Nat-predicates. Nevertheless, we will see two ways, both somewhat subtle, to derive induction for 
Nat-predicates, given the definition of the type Nat as comprising intrinsically cNat-inductive cNats.

Section 2 defines the ιλP2 type theory. This is a type-assignment system, and thus unsuitable for use 
as a type-checking algorithm. A system of annotations for terms must be devised to provide information 
that is otherwise missing when applying the type-assignment rules. In Section 3 we propose such a scheme, 
annotating terms with sufficient information to make typing essentially subject-directed. These annotations 
are inessential to the terms themselves, and are thus erased when checking convertibility of terms.

Section 4 gives a definition of the type of natural numbers and, using the notation of annotated ιλP2, 
constructs an inhabitant of the statement of natural-number induction for this type. Indeed, two different 
inhabitants are constructed (Sections 4.4 and 4.5), in somewhat different ways. These constructions have 
been checked in a prototype implementation of annotated ιλP2. Section 5 gives a realizability semantics 
for ιλP2, from which the existence of an uninhabited type is an easy corollary. This confirms that the 
addition of the three constructs of ιλP2 to λP2 has not led to an inconsistent theory. It also gives a 
suggestion of the more modest burden of basic metatheoretic analysis for the system. Section 6 discusses 
some of the consequences of the result, and related work. We conclude in Section 7 with future directions 
for strengthening ιλP2 to a full-featured dependent type theory.

2. The ιλP2 type theory

The syntax for ιλP2 is given in Fig. 1, where we use x for term variables and X for type variables. 
We follow standard conventions for syntactic concepts like variable scoping, capture-avoiding substitution, 
α-equivalence, etc. ∀ X :T. is impredicative universal quantification over types as in λ2 (System F). Π x :T. T ′

is the dependent function type, which is also written T → T ′ when x /∈ FV(T ′) (the set of free variables 
of T ′). λ x :T. T ′ is for type-level λ-abstraction over terms, and T t is the corresponding application. To this 
point in the syntax for types in Fig. 1, we have just the types of λP2. The extensions come next.

∀ x :T. T ′ is the implicit product of Miquel: intuitively, it is the type for terms t which may be assigned 
type T ′ for any value for x of type T [32]. ι x :T. T ′ is notation for Kopylov’s dependent intersection type. 
This is a binding notation, where the scope of bound variable x is T ′. t � t′ is notation for the equality type. 
Note that ιλP2, just like λP2, does not allow the formation of type-level λ-abstractions over types. Fig. 1
also includes the syntax for a simple language of kinds κ, which classify types; and of typing contexts Γ, 
which record assumptions about free term- and type-level variables (x and X, respectively).

The type system of ιλP2 comprises the mutually inductive definition of three judgments:

• Γ � κ expresses that kind κ is well-formed in context Γ (Fig. 2),
• Γ � T : κ expresses that type T has kind κ in context Γ (Fig. 3), and
• Γ � t : T expresses that term t may be assigned type T in context Γ (Fig. 4).
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� �

Γ � κ′ Γ � κ

Γ, X : κ′ � κ

Γ � T : � Γ � κ

Γ, x : T � κ

Γ, x : T � κ

Γ � Π x :T. κ

Fig. 2. Rules for judging that a kind is well-formed in context (Γ � κ).

Γ � κ

Γ, X : κ � X : κ
Γ � κ′ Γ � T : κ
Γ, X : κ′ � T : κ

Γ � T : � Γ � T ′ : κ
Γ, x : T � T ′ : κ

Γ, X : κ � T : �
Γ � ∀X :κ. T : �

Γ, x : T � T ′ : �
Γ � Π x :T. T ′ : �

Γ, x : T � T ′ : κ
Γ � λx :T. T ′ : Π x :T. κ

Γ � T : Π x :T ′. κ Γ � t : T ′

Γ � T t : [t/x]κ
Γ, x : T � T ′ : �
Γ � ∀ x :T. T ′ : �

Γ, x : T � T ′ : �
Γ � ι x :T. T ′ : �

Γ � t : T Γ � t′ : T
Γ � t � t′ : �

Fig. 3. Rules for judging that a type has a kind in context (Γ � T : κ).

Γ � T : �
Γ, x : T � x : T

Γ � κ Γ � t : T
Γ, X : κ � t : T

Γ � T ′ : � Γ � t : T
Γ, x : T ′ � t : T

Γ, x : T � t : T ′

Γ � λx. t : Πx :T. T ′
Γ � t : Π x :T ′. T Γ � t′ : T ′

Γ � t t′ : [t′/x]T
Γ, X : κ � t : T
Γ � t : ∀X :κ. T

Γ � t : ∀X :κ. T Γ � T ′ : κ
Γ � t : [T ′/X]T

Γ, x : T ′ � t : T
Γ � t : ∀ x :T ′. T

Γ � t : ∀ x :T ′. T Γ � t′ : T ′

Γ � t : [t′/x]T

Γ � t : T Γ � t : [t/x]T ′

Γ � t : ι x :T. T ′
Γ � t : ι x :T. T ′

Γ � t : T
Γ � t : ι x :T. T ′

Γ � t : [t/x]T ′

Γ � t : T
Γ � λx. x : t � t

Γ � t′ : t1 � t2 Γ � t : [t1/x]T
Γ � t : [t2/x]T

T =β T ′ Γ � T : � Γ � t : T ′

Γ � t : T

Fig. 4. Rules for judging that a term can be assigned a type in context (Γ � t : T ).

annotated terms t ::= x | λx. t | t t′ | ΛX. t | t · T | Λ x. t | t -t′ | [t, t′] | t.1 | t.2 | β | ρ t - t′

Fig. 5. The syntax for annotated terms.

The second and third rules in each figure are weakening rules. The last rule of Fig. 4 is a conversion rule, 
for changing a type to a β-equivalent one. The notation T =β T ′ refers to standard β-equivalence, including 
both term- and type-level β-conversion, of the classifiers in question. We do not need a similar kind-level 
conversion rule for the derivation of induction below, so this is omitted. Note that definitional equalities 
are to be distinguished from the equality type t � t′. The elimination rule for t � t′ makes it a true 
type-theoretic equality, in the sense of being substitutive. This is the bottom-left rule of Fig. 4; note that it 
arbitrarily uses λ x. x as the proof of a trivial equality.

3. Annotated ιλP2

The type-assignment formulation of ιλP2 presented in the previous section is not subject-directed: many 
rules do not change the subject of typing when passing from conclusion to premises. This means that, as 
usual with type-assignment systems, it is not obvious how to use the system as a type-checking algorithm. To 
make the derivation of induction in Section 4 more informative, this section presents an annotated version of 
ιλP2, with subject-directed versions of the term-typing rules, based on bidirectional type checking [36]. The 
relation Γ � t : T of unannotated ιλP2 is replaced in the annotated version with two relations: Γ � t ⇐ T

and Γ � t ⇒ T . In the former, Γ, t, and T are inputs; in the latter, Γ and t are inputs, and T is output. 
The syntax for annotated terms is given in Fig. 5; the constructs will be explained below, with the typing 
rules for annotated terms. The syntax for types and kinds is exactly the same, but all references to terms t
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|x| = x

|λx. t| = λx. |t|
|t t′| = |t| |t′|
|t · T | = |t|
|Λx. t| = |t|
|t -t′| = |t|
|[t, t′]| = |t|
|t.1| = |t|
|t.2| = |t|
|β| = λx. x

|ρ t - t′| = |t′|

Fig. 6. Eraser function for annotated terms.

Γ � T : Πx :T ′. κ Γ � t ⇐ T ′

Γ � T t : [t/x]κ
Γ � t ⇒ T Γ � t′ ⇐ T

Γ � t � t′ : �

Fig. 7. Modified kinding rules referring to annotated terms.

Γ � T : �
Γ, x : T � x ⇔ T

Γ � κ Γ � t ⇔ T

Γ, X : κ � t ⇔ T

Γ � T ′ : � Γ � t ⇔ T

Γ, x : T ′ � t ⇔ T

Γ, x : T � t ⇐ T ′

Γ � λx. t ⇐ Π x :T. T ′

Γ � t ⇒ Π x :T ′. T Γ � t′ ⇐ T ′

Γ � t t′ ⇒ [t′/x]T
Γ, X : κ � t ⇐ T

Γ � ΛX. t ⇐ ∀X :κ. T

Γ � t ⇒ ∀X :κ. T Γ � T ′ ⇐ κ

Γ � t · T ′ ⇒ [T ′/X]T
Γ, x : T ′ � t ⇐ T

Γ � Λ x. t ⇐ ∀ x :T ′. T

Γ � t ⇒ ∀x :T ′. T Γ � t′ ⇐ T ′

Γ � t -t′ ⇒ [t′/x]T
Γ � t ⇐ T Γ � t′ ⇐ [t/x]T ′ |t| = |t′|

Γ � [t, t′] ⇐ ι x :T. T ′

Γ � t ⇒ ι x :T. T ′

Γ � t.1 ⇒ T

Γ � t ⇒ ι x :T. T ′

Γ � t.2 ⇒ [t.1/x]T ′

Γ � t ⇒ T Γ � t′ ⇒ T |t| = |t′|
Γ � β ⇐ t � t′

Γ � t′ ⇒ t1 � t2 Γ � t ⇔ [t1/x]T
Γ � ρ t′ - t ⇔ [t2/x]T

|T | =β |T ′| Γ � T : � Γ � t ⇔ T ′

Γ � t ⇔ T

Fig. 8. Bidirectional typing rules for annotated terms.

should now be understood to be to annotated terms. Annotated terms erase to unannotated ones as shown 
in Fig. 6. We extend this function to types, kinds, and contexts in the obvious way, by applying the eraser 
function of Fig. 6 to any terms contained in expressions of those other forms.

The rules for judging kinds well-formed are unchanged in annotated ιλP2 from unannotated ιλP2. The 
kinding rules are also identical to the unannotated ones, with the exception of the rule for kinding equations 
t � t′ and the rule for kinding type-level applications T t. These rules are to be replaced by the ones in 
Fig. 7.

The typing rules for annotated terms are in Fig. 8. In a few rules we use ⇔ as a meta-variable ranging 
over {⇐, ⇒}. The rules are still not fully algorithmic: the use of weakening rules and the conversion rules are 
not subject-directed. The rule for ρ-terms is also nondeterministic, because it is not clear which instances 
of t1 to rewrite to t2 (it is sufficient for our purposes below just to rewrite them all). The weakening and 
conversion rules can be incorporated into a fully algorithmic version of the typing and kinding rules in a 
standard way, and so to avoid unnecessary technicalities, we will not carry out this step here. There is one 
caveat to this: occasionally it is necessary to change a type to a β-equivalent one, in order to expose an 
opportunity for equality elimination (ρ). For this, my ιλP2 implementation provides an explicit annotation 
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to allow the user of the system to convert a type to the exact form required to do a rewrite. We write 
χ T − t for an explicit conversion, with the following typing rule:

|T | =β |T ′| Γ � t ⇔ T

Γ � χ T − t ⇔ T ′

The erasure of χ T − t is just the erasure of t.
The rules of Fig. 8 are in one–one correspondence with the rules of Fig. 4 above. With the exceptions just 

noted (weakening and conversion), the rules are now subject-directed: there is a distinct form of annotated 
term in the conclusion of all the rules. Where the unannotated rules just use Γ � t : T in their premises 
and conclusions, the annotated rules refine this to Γ � t ⇐ T in some cases, and Γ � t ⇒ T in others (and 
allow either possibility for weakening and conversion rules). For the type form ∀ X :κ. T , we have annotation 
forms Λ X. t and t · T , for introduction and elimination respectively. Similarly, for ∀ x :T ′. T , we have Λ x. t
and t -t′ (so t′ is an erased, or implicit, argument). For the dependent intersection type, we have constructs 
[t, t′], t.1, and t.2, which look like constructs for ordered pairs, but here should be interpreted as operating 
on different views of the same term t. So [t, t′] has a dependent intersection type ι x :T ′. T iff t and t′ are 
different annotations, corresponding to different type-assignments, for the same unannotated term |t| (hence 
the requirement that |t| = |t′| in the premise). Finally, for the equality type t � t′, we have annotated terms 
β for introduction and ρ t - t′ for elimination. The former allows us to prove t � t′ when t and t′ erase to 
the same unannotated term, and both have some common type T . Combined with the conversion rule, this 
allows us to prove terms equal if their erasures are convertible. The latter construct allows us to rewrite t1
to t2 in the type of t′, when the type of t is t1 � t2.

The annotated version of ιλP2 has been designed to be subject-directed (with the exceptions noted 
above), and to enable completely routine validation of the following soundness theorem:

Theorem 1. If Γ � t ⇐ T or Γ � t ⇒ T (in annotated ιλP2), then |Γ| � |t| : |T | (in unannotated ιλP2).

4. Deriving induction in ιλP2

The central idea for the derivation of induction in ιλP2 is, as mentioned above, to internalize a realizability 
result of Leivant’s about Church-encoded natural numbers. Let us review this here briefly, for the case 
of natural numbers. The setting is a natural-deduction formulation of (single-sorted) second-order logic. 
Suppose we have a primitive unary function S and constant 0, and define a predicate N as follows, where 
∀R1 denotes universal quantification over unary predicate R, and ∀z just first-order quantification:

N x = ∀R1.(∀z.R z → R (S z)) → R 0 → R x

Then for any term n constructed from S and 0, the normal-form natural-deduction proof in second-order 
logic of the formula N n may be identified, under the Curry–Howard isomorphism, with the Church encoding 
of n (more precisely, with a type-annotated version of this term). For the proof must assume arbitrary unary 
predicate R, and then make assumptions s and z of the antecedents of the implication. Then, in essence, 
s must be applied n times to z to prove R n. Thus the proof can be seen as a type-annotated version of 
λ s. λ z. s · · · (s︸ ︷︷ ︸

n

z) – and this is indeed the Church encoding of n.

4.1. The type cNat

We internalize Leivant’s observation by first defining a type cNat of Church-encoded natural numbers, 
and their constructors cZ (zero) and cS (successor), in the usual way (due to Fortune, Leivant, and O’Don-
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cNat 
 � = ∀ X : � . X → (X → X) → X .
cZ 
 cNat = Λ X . λ z . λ s . z .
cS 
 cNat → cNat = λ x . Λ X . λ z . λ s . s (x · X z s) .

Fig. 9. Definition of Church-encoded natural numbers and their constructors.

Inductive 
 cNat → � = λ x : cNat .
∀ P : cNat → � . P cZ → (∀ y : cNat . P y → P (cS y)) → P x.

iZ 
 Inductive cZ = Λ X . λ z . λ s . z .
iS 
 ∀ x : cNat . Inductive x → Inductive (cS x) =
Λ x . λ p . Λ P . λ z . λ s . s -x (p · P z s) .

Fig. 10. The Inductive predicate and its constructors.

Nat 
 � = ι x : cNat . Inductive x.
Z 
 Nat = [ cZ , iZ ] .
S 
 Nat → Nat = λ n . [ cS n.1 , iS -n.1 n.2 ] .

Fig. 11. Definition of Nat type.

nell [19]). This is done in Fig. 9, using the notation for annotated ιλP2 presented in the previous section. 
We write

symbol 
 classifier = definiens

to indicate a global definition of symbol with the given classifier (type or kind) by the given definiens. 
Note that the code in this figure and the subsequent ones has been checked by a prototype implementation 
of ιλP2, and copied from the source file verbatim.

4.2. The predicate Inductive

Next, we define a predicate Inductive on cNat, expressing that a Church-encoded natural number x 
is inductive: for any predicate P on cNat, if P holds of cZ and is preserved by cS, then it holds of x. 
We are using an implicit product type in the statement of the successor (step) case of induction, namely 
∀ x : cNat . P x → P (cS x). This is critical for internalizing Leivant’s observation, as we can see in the 
definitions of constructors iZ and iS (also Fig. 10) for the Inductive predicate. Another way of phrasing 
Leivant’s observation is to say that the constructors cZ and iZ have the same erasure – as indeed they are 
easily seen to have – and so too cS and iS. It is for the latter that the use of implicit products is crucial, 
for it ensures that the body s -x (p · P z s) of iS erases to s (p z s), which is indeed the erasure of 
the body of cS. If instead we had a Π-abstraction Π x : cNat . P x → P (cS x) for the statement of the 
step case, the body of iS would be s x (p · P z s), whose erasure is s x (p z s); this would not match 
the erasure of the body of cS. So for the definitions of the constructors of cNat and Inductive to align, we 
need to use implicit products in the definition of Inductive.

4.3. The type Nat

We may now define the type Nat, in Fig. 11. This type is the crucial internalization of Leivant’s obser-
vation. We are defining “true” natural numbers to be those terms which are both Church-encoded natural 
numbers x and also realizers of the statement of induction specialized to x. Kopylov’s dependent intersection 
type (the ι-type in Fig. 11) is critical here, to allow us to express that x realizes its own induction principle. 
The constructors Z and S are then defined (also Fig. 11) using the annotated term construct [t,t’] to 
introduce dependent intersections. Since n.1 and n.2 both erase to n, and since we already observed that 
the constructors cZ and iZ, and cS and iS have the same erasures, we see that the two components of the 
dependent-intersection introduction have the same erasure in each case.
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Induction � Π n : Nat . ∀ P : Nat → � . P Z → (∀ m : Nat . P m → P (S m)) → P n =
λ n . Λ P . λ z . λ s .
n.2 · (λ x : cNat . ∀ X : � . (Π m : Nat . (x � m.1) → P m → X) → X )
(Λ X . λ c . c Z β z)
(Λ x . λ ih . Λ X . λ c .

ih · X (λ m . λ e . λ u . c (S m) (ρ e - β) (s -m u)))
· (P n) (λ m . λ e . λ u . ρ e - u).

Fig. 12. Derivation of induction, first method.

4.4. Proving induction for Nat, first method

We are ready now to derive induction for type Nat. We will construct an inhabitant of the type

Π n : Nat . ∀ P : Nat → � . P Z → (∀ m : Nat . P m → P (S m)) → P n

Informally, here is the basic idea. We take in arguments n, P, z, and s, for the first four abstractions in 
that type. We will then use n.2 to prove the following predicate on n.1 (of type cNat). The predicate holds 
of x of type cNat just in case there exists an m of type Nat, such that m.1 equals x and P m holds. So 
our use of n.2 will actually compute a triple (m, proof of equality, proof of P m). This triple needs to be 
Church-encoded, since ιλP2 does not provide tuples (or any other datatype!) natively.

Constructing this triple is easily done, just by an iteration of the S constructor of Nat starting with Z, 
alongside an iteration of s starting from z. The former iteration builds the value m of type Nat, and the 
latter builds the proof of P m. From outside the system, we can observe that if we iterate S starting from Z 
the same number of times as the number represented by n.2, then we will get a Church-encoded number 
also representing n.2. The equality type allows us to internalize this observation, stating that m.1 (where 
m is the Nat we are constructing) is equal to the n.1 for which n.2 is allowing us to perform a dependent 
elimination. Since the .1 annotations disappear in erasure, we can recover a proof of P n at the end of the 
iteration.

Let us now work through the details of the derivation in ιλP2, shown in Fig. 12. To aid the patient 
reader, I am using variable x to range over cNat, and n and m to range over Nat. We are defining Ind whose 
type is the induction principle for Nat. The derivation of this principle begins after the equals sign, with 
ΛP. We first take the following inputs:

• n of type Nat
• P of type Nat → �

• s of type ∀ x : Nat . P x → P (S x)
• z of type P Z

We are obliged now to produce a value of type P n. We do this following the plan described informally 
above. We begin with an elimination of n.2. From the definition of Nat and the annotated typing rule for 
n.2, the type of n.2 is:

∀ P : cNat → � . P cZ → (∀ y : cNat . P y → P (cS y)) → P n.1

So the first thing we must do when performing an elimination with n.2 is to supply the instance of P (what 
is sometimes called the motive [31]), which is the predicate discussed earlier; in the code of Fig. 12 it is on 
the third line from the top of the code:

λ x : cNat . ∀ X : � . (Π m : Nat . (x � m.1) → P m → X) → X

We are indicating that we want to compute a value of the following type (let us call it R), where x in the 
line above has been replaced by n.1, by dependent iteration:
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∀ X : � . (Π m : Nat . (n.1 � m.1) → P m → X) → X

This is indeed the type for a Church-encoded triple consisting of

• m of type Nat,
• a proof of n.1 � m.1, and
• a proof of P m

Once we have computed this triple, we can extract a proof of P n, as done in the bottom line of Fig. 12: we 
instantiate the type variable X in the type R with P n, and then return the third component of the triple, 
casting P m to P n using the second component. This is possible since n.1 � m.1 erases to n � m.

We must look now at the zero and successor cases of the dependent elimination of n.2, to complete our 
detailed examination of the code of Fig. 12. The zero case is first, on the fourth line from the top of Fig. 12:

Λ X . λ c . c Z β z

We take in inputs X of kind � and c of type

Π m : Nat . ((cZ � m.1) → (P m) → X)

We are obligated to produce a result of type X, which can only be done by applying c. This we do, to the 
triple corresponding to cZ:

• Z of type Nat,
• β which proves that the erasure of cZ is β-equivalent to the erasure of Z, and
• z which proves P Z

Now let us consider the successor case, in the fifth and sixth lines of the figure:

Λ x . λ ih . Λ X . λ c .
ih · X (λ m . λ e . λ u . c (S m) (ρ e - β ) (s -m u))

We are first taking in the following inputs (their types are determined by the type of n.2, given the motive 
we have supplied):

• x of type cNat
• ih of type ∀ X : � . ((Π m : Nat . ((x � m.1) → (P m) → X)) → X)
• X of kind �
• c of type Π m : Nat . (((cS x) � m.1) → (P m) → X)

Intuitively, the ih is the triple corresponding to x, and we must produce a triple corresponding to cS x. 
For that, we are obliged to return now something of type X, by applying c to the components of that triple 
for cS x. We first access the components of the triple for x by eliminating ih (sixth line from the top of 
Fig. 12):

ih · X (λ m . λ e . λ u . c (S m) (ρ e - β ) (s -m u))

We are trying to produce a value of type X, so that is the first argument to ih. The components of the triple 
are then made available to us as
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toNat 
 cNat → Nat = λ x . x · Nat Z S .

reflection � Π n : Nat . toNat n.1 � n =
λ n . n.2 · (λ x : cNat . (toNat x).1 � x)

β
(Λ x . λ ih . χ (cS ((toNat x).1) � cS x) - ρ ih - β) .

Fig. 13. Converting cNat to Nat is extensionally the identity.

• m of type Nat,
• e of type x � m.1, and
• u of type P m.

We pass now to c the components of the new triple (the one for cS x):

• S m of type Nat,
• ρ e - β of type (cS x) � (S m).1, and
• s -m u of type P (S m).

Let us look carefully at the typings for each of these components. First, since m is of type Nat, we have S m 
also of type Nat, since S is of type Nat → Nat. Next, to prove (cS x) � (S m).1, it suffices to rewrite x 
to m and then check that cS m is β-equivalent to S m. From the definitions of S and cS, and of erasure on 
the construct [t, t′], this is the case. Finally, to apply s we must specify an erased argument of type Nat. 
This is m. We must also supply a proof of P m, and this is u. This completes the detailed examination of the 
code in Fig. 12.

4.5. Proving induction for Nat, second method

Given the definitions of cNat and Nat above (Figs. 9, 10, and 11), there is an alternative way to derive 
induction, which we consider now. The first step is to define a function toNat that converts a cNat (call 
it x) to a Nat. This is easily done just by applying x to the constructors for Nat (i.e., Z and S), as shown 
in Fig. 13. The figure then proves a theorem, under the standard name reflection, which says that toNat 
is extensionally the identity: applying a Nat n to the Nat constructors just has the effect of rebuilding the 
number. This theorem follows directly from universality of the following predicate on cNat x: (toNat x).1 
� x. The theorem follows from this predicate applied to n.1.

The proof in Fig. 13 uses the form of induction provided by n.2, which is applicable because the predicate 
just mentioned is a predicate on cNat (not Nat). The proof of the base case (in Fig. 13) is just β. The step 
case is a little more interesting:

Λ x . λ ih . χ (S (toNat x) � S x) - ρ ih - β

We are given x of type cNat and ih of type toNat x � x. We must prove

(toNat (cS x)).1 � cS x

We use an explicit conversion (with χ) to change the goal type to the definitionally equivalent equation 
cS ((toNat x).1) � cS x. Note that the sides of this equation still type-check, at type cNat. The crucial 
point of this use of χ is to expose the subterm toNat x, which may then be rewritten using ih to just x. 
This renders the goal trivial, completing the proof.

The next step is the derivation of induction, shown in Fig. 14. This derivation is simpler than the one 
we saw in the previous section. It takes in n of type Nat, and then the predicate P and base and step cases 
z and s. Then using n.2, it shows that the predicate λ x : cNat . P (toNat x) is universal; that is, that 
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symm 
 ∀ T : � . ∀ t : T . ∀ t’ : T . (t � t’) → t’ � t
= Λ T . Λ t . Λ t’ . λ u . ρ u - β.

Induction2 
 Π n : Nat . ∀ P : Nat → � . P Z → (∀ m : Nat . P m → P (S m)) → P n =
λ n . Λ P . λ z . λ s .
ρ (symm · Nat -(toNat n.1) -n (reflection n)) -

(n.2 · (λ x : cNat . P (toNat x))
z (Λ p . λ q . s -(toNat p) q)) .

Fig. 14. Derivation of induction, second method.

compInduction2

 ∀ n : Nat . ∀ P : Nat → � . ∀ z : P Z . ∀ s : ∀ m : Nat . P m → P (S m) .

Induction2 (S n) z s � s (Induction2 n z s)
= Λ n . Λ P . Λ z . Λ s . β .

Fig. 15. Deriving the expected reduction for incomplete values S n.

P holds of the conversion of a cNat x to a Nat. The reflection theorem (of Fig. 13) then lets us drop this 
call to toNat. So the body of the derivation (of Fig. 14) indeed has type P n. An easily derived lemma of 
symmetry of equality (symm in Fig. 14) is used so that we change n in the goal type to toNat n.1, before 
checking the term headed by n.2, since that term proves P (toNat n.1).

A remarkable point: the erasure of Induction2 is λ n . λ z . λ s . n z (λ q . s q). From this term 
we have the following chain of η-equivalences:

λn. λ z. λ s. n z (λ q. s q) =η

λn. λ z. λ s. n z s =η

λn. λ z. n z =η

λn. n

Here we see a very noteworthy difference between Induction2 and Induction. The latter is not η-equivalent 
to the identity function, due to the need to destruct and construct triples during the iteration. If we 
added native existential types to the theory, then likely a version of Induction using such types would be 
η-equivalent to the identity.

The fact that Induction2 is extensionally equivalent to the identity function means that not only does 
it derive the desired reasoning principle, but also its reduction behavior is what one would like to have 
for computational use. In particular, we can prove the usual reduction rule for using Induction2 as an 
iterator with an incomplete value. This is shown in Fig. 15. Given a Nat n, predicate P, base and step cases 
z and s, we see that using Induction2 as an iterator indeed allows us to permute it over S. Furthermore, 
this permutation follows solely by β-reduction; hence the β in the last line of Fig. 15, for proving the 
equation expressing the desired reduction behavior. This says that Induction2 behaves computationally 
like an iterator. This facilitates external reasoning about functions defined using Induction2.

5. Realizability semantics for ιλP2

In this section, we sketch a realizability semantics for ιλP2 types, which may be used to show logical 
consistency of ιλP2. We use a simplified form of a similar semantics proposed in previous work [39]. The 
semantics uses set-theoretic partial functions for higher-kinded types. An application of such a function is 
undefined if the argument is not in the domain of the partial function. Any meta-level expressions, including 
formulas, which contain undefined subexpressions are undefined themselves. We write A → B for the set of 
meta-level total functions from set A to set B. We write (x ∈ A �→ b) for the (meta-level) function mapping 
input x in the set A to b.
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�X�σ,ρ = ρ(X)
�Πx : T1.T2�σ,ρ = [{λx.t | ∀E ∈ �T1�σ,ρ. [[ζ(E)/x]t]cβ ∈ �T2�σ[x �→ζ(E)],ρ}]cβ
�∀X : κ.T �σ,ρ = ∩{�T �σ,ρ[X �→S]| S ∈ �κ�σ,ρ}
�∀x : T.T ′�σ,ρ = ∩�{�T ′�σ[x �→ζ(E)],ρ | E ∈ �T �σ,ρ}
�ιx : T.T ′�σ,ρ = {E ∈ �T �σ,ρ| E ∈ �T ′�σ[x �→ζ(E)],ρ}
�λx : T.T ′�σ,ρ = (E ∈ �T �σ,ρ �→ �T ′�σ[x �→ζ(E)],ρ)
�T t�σ,ρ = �T �σ,ρ([(σt)]cβ)
�t � t′�σ,ρ = {[λx. x]cβ | σt =cβ σt′}
���σ,ρ = R
�Πx : T.κ�σ,ρ = (E ∈ �T �σ,ρ → �κ�σ[x �→ζ(E)],ρ), if �T �σ,ρ ∈ R

∩�S =
{

∩S, if S 
= ∅
[L]cβ , otherwise

Fig. 16. Semantics for types and kinds.

(σ � [x �→ t], ρ) ∈ �Γ, x : T � ⇔ (σ, ρ) ∈ �Γ� ∧ �T �σ,ρ ∈ R ∧ [t]cβ ∈ �T �σ,ρ

(σ, ρ � [X �→ S]) ∈ �Γ, X : κ� ⇔ (σ, ρ) ∈ �Γ� ∧ S ∈ �κ�σ,ρ

(∅, ∅) ∈ �·�

Fig. 17. Semantics of typing contexts Γ.

Let L be the set of closed lambda abstractions. We will write � for (full) β-reduction. We also write 
=cβ for standard β-equivalence restricted to closed terms, and [t]cβ for the set {t′ | t =cβ t′}. The latter 
operation is extended to sets S of terms by writing [S]cβ for {[t]cβ | t ∈ S}.

Definition 2 (Reducibility candidates). R := {[S]cβ | S ⊆ L}.

A reducibility candidate (element of R) is a set of cβ-equivalence classes of λ-abstractions. We will make 
use of a choice function ζ: given any set E of terms, ζ returns a λ-abstraction if E contains one, and is 
undefined otherwise. This is just a mechanism to obtain a representative of E, which in effect allows us 
to use E as a term (for example, in instantiating the body of λ x. t in the clause defining the semantics of 
Π-types, in Fig. 16).

Lemma 3 (R is a complete lattice). The set R ordered by subset forms a complete lattice, with greatest 
element [L]cβ, least element ∅, and greatest lower bound of a nonempty set of elements given by intersection.

Fig. 16 defines our semantics for types and kinds, by mutual structural recursion. The semantic functions 
take arguments σ and ρ, in addition to the type or kind to interpret. We require that σ maps term variables 
to terms, and ρ maps type variables to sets. The interpretations of types and kinds are then also sets. The 
meaning of a type can be empty, and so in interpreting ∀ x :T. T ′ we must take the intersection using ∩�, 
defined at the end of Fig. 16, which returns the top element of R if the interpretation of T is empty. 
The meaning of a kind cannot be empty, however, so we do not need to worry about this situation when 
interpreting ∀ X : κ. T . For the semantics of Πx : T.κ, if �T �σ,ρ /∈ R, then the meaning of the Π-kind is 
undefined.

Critically, the semantics makes use of Girard’s technique for interpreting impredicative higher-order quan-
tification: we interpret a syntactic quantification over types via a semantic quantification over reducibility 
candidates. This is in the clause defining �∀X : κ.T �σ,ρ in Fig. 16, where the intersection over all S ∈ �κ�σ,ρ
is essentially expressing a universal quantification over all such S; that is, a term t is in the interpretation 
of ∀X : κ.T iff it is in �T �σ,ρ[X �→S] for all S ∈ �κ�σ,ρ. So we interpret syntactic impredicative quantification 
by means of semantic impredicative quantification.

Fig. 17 defines a semantics for typing contexts, in a standard way. Disjoint union is written �. With this, 
we can prove the main theorem by mutual induction on the assumed derivations:
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Theorem 4 (Soundness of typing and kinding). If (σ, ρ) ∈ �Γ�, then

1. If Γ � κ : �, then �κ�σ,ρ is defined.
2. If Γ � T : κ, then �T �σ,ρ ∈ �κ�σ,ρ.
3. If Γ � t : T , then [σt]cβ ∈ �T �σ,ρ and �T �σ,ρ ∈ R.

For the conversion case of the proof of Theorem 4, it is crucial that our semantics has identical interpre-
tations of convertible types:

Lemma 5. If Γ � T =β T ′ and for some kinds κ and κ′, �T �σ,ρ ∈ �κ�σ,ρ and �T ′�σ,ρ ∈ �κ′�σ,ρ, then 
�T �σ,ρ = �T ′�σ,ρ.

From soundness of the typing and kinding rules for the semantics, we obtain:

Corollary 6 (Logical consistency). There is no derivation of · � t : ∀X : �.X, for any term t.

Proof. By Theorem 4 part (3) and the semantics of ∀-types, if · � t : ∀X : �.X is derivable, then t ∈ ∩R. 
But ∩R is empty since ∅ ∈ R by Lemma 3. �

Thus, ιλP2 is sound for use as a logic under the Curry–Howard isomorphism. This provides evidence that 
adding implicit products, dependent intersections, and equality types to λP2 has not spoiled the type theory. 
While it is customary to prove several other properties about a type theory such as ιλP2 – normalization 
(weak or strong) and type preservation, chiefly – those are not undertaken here. Instead, I have opted to 
present the simplest realizability semantics for types I know how to give for this system, which provides 
what I hope is a clear definition of what the types are truly intended to mean; and with respect to which 
the typing rules are sound.

6. Discussion and related work

In this section, we consider some of the ramifications and consequences of the above result, as well as 
briefly consider some related work.

6.1. Linguistic observations

By Geuvers’s Theorem, the derivation of induction we have given in ιλP2 is impossible in λP2. Indeed 
it is important to emphasize that Geuvers proved that induction is uninhabited no matter what definition 
one gives for Nat : �, S : Nat → Nat, and Z : Nat. One can thus take the current result and Geuvers’s 
together as showing that there is a true gap between ιλP2 and λP2: ιλP2 cannot be reduced in a faithful 
way to λP2. Let us consider this idea more closely. The first difference between ιλP2 and λP2 is that ιλP2
is a type-assignment system (Curry-style), where λP2 has annotated terms (Church-style – see [6] for more 
on the distinction). But Geuvers’s result holds just as well for a type-assignment version of λP2. This can 
be seen from the semantics for terms in Geuvers’s model construction (Definition 7 of [20]), which ignores 
typing annotations. So the definition, and the soundness theorem based on it (Theorem 1 of [20]), works 
just as well for a type-assignment version of λP2 as the annotated version.

So the essential difference between λP2, where induction is not inhabited, and ιλP2, where it is, is 
in the implicit products, dependent intersections, and equality types. It is worth noting that the implicit 
products were necessary so that Church-encoded numbers could realize their own induction principles: both 
the number and the proof of its induction principle require, for the successor case, a function of one explicit
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argument, namely the result of the iteration/induction for the predecessor. If we were to use Parigot-encoded 
numbers, where each number contains its predecessor as a subterm, we could drop the implicit products 
and use instead positive-recursive types. Positive-recursive types (where the recursively defined type symbol 
can appear only positively in the body of the recursive type) are needed to type Parigot-encoded numbers 
anyway [34]. In this case, both the number and the proof of its induction principle would accept for the 
successor case a function of two (explicit) arguments, namely the predecessor number and the result of 
the iteration/induction for the predecessor. The development is very similar to the one above, so it is not 
presented here (though I have checked the code with the prototype implementation of ιλP2). For more on 
the Parigot encoding, see also [40].

6.2. Broader significance

This paper has shown a much simpler way than previous proposals to extend PTSs so that induction 
is derivable. Rather than add primitive inductive types to the core typed lambda calculus, we need only 
enrich our language of types to add enough dependent-typing power, so to speak, to the already existing 
computational power of a system like λP2. As the base PTS λP2 is a relatively tame PTS – many other 
PTSs will contain λP2 as a sublanguage – the result in this paper is applicable to many other languages. 
For one obvious example, the Calculus of Constructions (CC) has λP2 as a subsystem, and hence adding 
implicit products, dependent intersections, and homogeneous equality types to CC will make it possible to 
derive induction principles in that setting as well. One can envision an alternative history in which rather 
than change the underlying computational language of CC by adding primitive inductive types, we instead 
extend the language of types as proposed in this paper, and remain within a pure typed λ-calculus. So a 
system like Coq could have been founded instead on a PTS along the lines proposed here, rather than the 
Calculus of Inductive Constructions [45] (though see the conclusion for an important caveat regarding large 
eliminations).

What are the benefits of the proposed approach over primitive inductive datatypes? There are two: 
simplicity of the language, and expressive power. Even a casual inspection of works like Werner’s dissertation 
should make it clear that defining a system of primitive inductive types is a complex matter. Because the 
type constructors themselves, and their term constructors, can have different arities (as well as there being 
different numbers of term constructors for different datatypes), the reduction and typing rules become quite 
heavy, with lots of vector notation to account for these differing arities. The addition of implicit products 
(and/or positive-recursive types), dependent intersections, and equality types entails no such complexity, as 
we have seen above for ιλP2. This opens up the possibility of a much simpler approach to formalizing type 
theory within type theory, as has been the goal for a number of researchers for some time [2,8,10,9]. It also 
should result in smaller trusted kernels for proof assistants based on type theory, as the rather heavy rules 
for primitive inductive types are not required.

For the second benefit over primitive inductive types: we have in this approach a potentially much more 
expressive language for datatypes than found in type theories with a system of primitive datatypes. The 
expressivity is along two dimensions. First, in Coq and the related language Agda, there are some strong 
restrictions placed on the form of datatypes [44]. In particular, both those systems require that each inductive 
type is mentioned only in strictly positive positions in the input types of its constructors. This rules out 
certain interesting idioms like higher-order encodings (see, e.g., [33]). With PTSs, the situation is different. 
If we wish to use Parigot encodings we have to accept the restriction to positive-recursive types. With 
Church encodings, however, there is absolutely no restriction: even datatypes with negative occurrences 
can be Church-encoded. Note, though, that exploring higher-order encodings in this setting is left to future 
work.

The second dimension of expressivity is in dependency. Type theorists have proposed inductive–recursive 
types and inductive–inductive types to allow greater intertwining between datatypes and either functions or 
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other datatypes [3,16]. With the present approach, such forms of datatypes should be definable more easily 
– though it remains to future work to confirm this. The reason is that here, we have a kind of two-level 
approach to datatypes. One first defines an impredicative type allowing only simple (non-dependent) elimi-
nations, and then uses the dependent intersection to conjoin this type with the type of proofs of dependent 
eliminations over the first type. In the example above, we first defined the cNat type, and then the Nat type 
for which we could derive induction. This two-level approach should allow the second part of the definition, 
using the dependent intersection, to perform computations or reference constructors of other datatypes 
defined along with the first, non-dependent, part of the definition. So this could lead to a new approach to 
inductive–inductive and inductive–recursive types, without any addition to the type theory. Indeed, Kopy-
lov introduced dependent intersection types for similar reasons as Hickey’s for introducing so-called very 
dependent function types: increased dependency, in their case for modeling dependent records in pure type 
theory [24].

6.3. Treating classes of inductive definitions

The form of induction we have derived in this paper is standard natural-number induction. It is reasonable 
to ask, what classes of inductive definitions can be supported in a similar manner? Following the initial 
submission of this paper, Denis Firsov and I have taken some steps to answering this question. In particular, 
we have shown how to define the least fixed-point of an arbitrary functor F , together with an induction 
principle for F , in the natural extension of ιλP2 with type-level functions (needed even to be able to express 
the idea of a functor F mapping types to types). So we derive induction for any inductive type that can be 
expressed by a type scheme F of kind � → �, a term fmap of type

∀X :�.∀Y :�. (X → Y ) → F X → F Y

together with terms whose types express the identity and composition laws for F [18]. We have found (but 
not published) that it is straightforward to make that construction work for indexed functors, from which 
one can then derive mutually inductive types, as well as indexed types like the standard example of vectors.

6.4. Metamathematical perspectives: complexity

As sketched above, consistency of ιλP2 is relatively easy to establish, while consistency proofs for CIC or 
Martin-Löf Type Theory (MLTT) with various features are generally more involved. Now in some cases, the 
complexity ensues from higher goals for the metatheoretic analysis. For example, ordinal analysis of a version 
of MLTT as in [38], or categorical semantics as in, for example, [15]. These are more complex endeavors 
than simply giving a single quotiented-term model, in order to prove logical consistency (as sketched in 
Section 5). But in other cases, the additional complexity really does arise from the additional technical 
details required to formulate the theory. For example, the analysis of CIC, notably more complex than that 
of ιλP2, is based on a similar realizability semantics – coming, as ours here, from Girard [22] – though 
aimed at more than just logical consistency, namely strong normalization [46]. There is more metatheoretic 
work to be done, as noted already, when the term language of the underlying pure type theory must be 
extended with constants for constructors of datatypes and eliminators. At the very least, the confluence 
proof of the underlying lambda calculus must be extended.

By deriving natural-number induction in ιλP2, we have a relatively simple constructive foundation for the 
fundamental mathematical concept of natural number. A point well worth emphasizing is that the relative 
simplicity of ιλP2 is coming from the power of impredicative type theory. Girard’s analysis of impredicative 
quantification, while not contributing to goals like ordinal analysis of various higher-order theories (indeed, 
ordinal analysis of full second-order arithmetic is still to be achieved), provides a simple technique for es-
tablishing consistency of the theory (relative, of course, to the consistency of the background metatheory). 
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But where other theories like CIC or MLTT incur additional complexity for inductive datatypes, impred-
icative quantification, which is from a proof-theoretic perspective much more powerful, results in a simpler 
treatment. This seems like a benefit of the approach here.

One could argue against this point, in saying that the full power of impredicativity is not needed to develop 
a suitable foundation for mathematics. And certainly if one’s goal were to devise the proof-theoretically 
weakest foundation suitable for mathematical reasoning, the approach proposed here would be a spectacular 
loser. Feferman has argued, for example, that with a few exotic exceptions, all of scientifically applicable 
mathematics can be formulated in his theory W (for Weyl), which is a conservative extension of Peano 
Arithmetic (and hence vastly weaker in proof-theoretic strength than an impredicative type theory like 
ιλP2) [17].

On the other hand, if one’s goal is to develop a powerful constructive type theory based on a core of 
minimal formal size (if not minimal proof-theoretic strength), than we have seen evidence that the approach 
proposed here is currently the best available: a compact pure type theory, just CC plus three additional 
typing constructs, in which natural-number induction can be derived. No other work I am aware of matches 
this result for minimality of the core theory.

A final note on connections with proof theory: Pimentel et al. have carried out a very interesting proof-
theoretic study of intersection types, seeking to show, among other things, how intersection types can indeed 
be viewed as a special form of conjunction, governed by different proof rules than the usual conjunction [37]. 
This gives a logical analysis of intersection types. It would be interesting to see if the authors’ analysis could 
be extended to the dependent intersections used in this paper. The authors also raise the interesting ques-
tion of which implicational operator would play the adjunctive role for the intersection type which the usual 
intuitionistic implication plays for the standard conjunction. In ιλP2, I anticipate using Church-encoded 
pairs for standard conjunction, though certainly it is only reasons of minimality that would prevent one 
from combining, as Pimentel et al. do, intersections and conjunctions in one theory.

6.5. Metamathematical perspectives: logicism

Another metamathematical question one may ask regarding the results of this paper is, what light, if 
any, they shed on the question(s) of logicism. Full consideration of this point is beyond the scope of the 
present paper, but I would like to offer a few remarks on this. First, let us take the following proposition 
from Tennant’s Stanford Encyclopedia of Philosophy entry on logicism as a fair rough description of the 
basic doctrine [43]:

“Logic is capable of furnishing definitions of the primitive concepts of these branches of mathematics 
[arithmetic and real analysis], allowing one to derive the mathematician’s ‘first principles’ therein as 
results within Logic itself.”

If one counts ιλP2 as a logic, then certainly at least as regards arithmetic, the derivations in ιλP2 seem 
to support logicism as just formulated. For with no further axioms or extensions, we have defined natural 
numbers and proven the induction principle for them, in ιλP2.

We must ask, however, if ιλP2 can indeed be viewed as a logic, not adulterated with some additional 
nonlogical principles. A related question is, to the existence of which entities does ιλP2 seem to be commit-
ted? Here, the simple answer which suggests itself to me is, that ιλP2 is committed to the existence, in some 
form, of the terms, or some semantic objects those terms denote, of pure untyped lambda calculus. Does one 
wish to maintain that such terms should be viewed as logical entities (of whatever metaphysical status)? 
Here I wish to leave the discussion, as debating the exact connection, with any metaphysical consequences, 
between constructive logic and programs seem likely to involve both intricacy and controversy.
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6.6. Related work

The closest related work is my own paper on the Calculus of Dependent Lambda Eliminations 
(CDLE) [39]. The goal with CDLE is similar to that of the present paper: extend a PTS with new type 
forms for induction and dependently typed programming. CDLE adds a type construct called constructor-
constrained recursive types. This is a form of recursive type based on the idea of preserving the typings of 
lambda-encoded constructors at each approximation (as familiar from fixed-point theory) to the recursive 
type. While adequate for deriving induction and while not requiring any change to the term language of the 
system (i.e., pure lambda calculus), constructor-constrained recursive types are still a rather complex fea-
ture, with fairly involved kinding rules. Their semantics requires a nontrivial extension to the already rather 
technical machinery needed for recursive types. The approach of this paper greatly improves on CDLE, by 
identifying a combination of reasonably simple typing constructs known already from the literature that 
suffice for deriving induction. No complex new typing construct is required. Indeed, except for the equality 
types, ιλP2 is a subsystem of CDLE. So just one simple addition is enough to obviate the entire complex 
machinery of constructor-constrained recursive types, which took several years to formulate and analyze. 
Needless to say, this was quite unexpected.

Another point of comparison between CDLE and ιλP2 is that CDLE includes a lifting operator, that 
translates simply-typed terms into simply-kinded types. This allows one to implement so-called large elim-
inations, where types may be computed by recursion on (in this case, lambda-encoded) data. Lifting is 
omitted from ιλP2 for simplicity, but its absence does mean that we cannot prove negative facts like 0 �= 1
expressing disjointness of the ranges of constructors: the standard proofs of these, even with built-in induc-
tive types, rely on large eliminations. For a full-fledged type theory, one would indeed want to add to ιλP2
lifting or some similar mechanism, to allow derivation of such facts. And indeed, one would also like to have 
type-level functions, which CDLE includes (following CC and Fω), but ιλP2 has excluded, in order to keep 
the type theory as small as possible for deriving natural-number induction.

Several recent works have sought to find compact and powerful ways to add the complexity of a datatype 
system to a pure typed lambda calculus [1,10]. Other works have sought deeper semantics for induction 
in type theory either categorically or through connections with parametricity [5,27,21]. We have already 
mentioned some of the historically decisive works which proposed adding primitive inductive types to pure 
type theory [46,35,12].

A related neo-logicist effort is in [42], where Tennant derives natural-number induction based on a def-
inition of a natural-number predicate in terms of a relation expressing that a value r can be reached from 
a value t by successive applications of a function f . That relation is introduced using meta-level predicate 
quantification to express abstractly the condition about successive applications of f . Tennant’s develop-
ment takes place within an intuitionistic relevant logic. The use of meta-level quantification allows him 
to avoid committing to a second-order logic, but has the consequence of forcing him to add new predi-
cate symbols and terms to the language, with corresponding introduction and elimination rules, instead 
of making explicit definitions in terms of second-order quantifications. This move to make use of meta-
level predicate quantification saves Tennant from committing to a second-order language, at the cost of 
requiring new metatheoretic analysis to justify soundness of each concept he adds (Tennant does not un-
dertake such an analysis in [42]). In contrast, in ιλP2, the power of explicit second-order quantification 
within the language allows us to analyze the theory once and for all, and then introduce new terms via 
explicit definition, rather than as new constructs with new logical rules. A further important difference 
is that where Tennant works within a logic, ιλP2 is a type theory, and thus supports not just formal 
reasoning, but also dependently typed programming, which is of notable current interest in Computer 
Science [41].
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7. Conclusion

We have seen what I hope for the reader is a somewhat surprising result, namely that adding three 
constructs – implicit products, dependent intersections, and equality types – to the impredicative pure type 
system λP2 is sufficient to derive induction. This overcomes Geuvers’s Theorem on the underivability of 
induction in λP2, by extending the language. We have confirmed that this extension has not trivialized the 
ιλP2 language as a logic, by giving a realizability semantics that implies logical consistency. We have also 
discussed some of the consequences of this result for devising simpler and at the same time more expressive 
constructive type theories.

Future work adding the lifting types (mentioned in Section 6.6 above) to ιλP2. Going further, ιλP2
should be extended to a system ιCC based on the extrinsic Calculus of Constructions, extended with the 
three ingredients identified here for induction. A further point, since these type theories are closed (the 
syntax of types is not intended to be extended as the theory is developed), is to explore the inclusion of a 
universe. So there is more to do before the present approach can serve as a full-featured type theory. But 
the derivation of induction in a simple extension of an impredicative pure type system is a major step in 
the direction of a PTS suitable as a foundation for constructive type theory.
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