
Annals of Pure and Applied Logic 169 (2018) 637–655
Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

From realizability to induction via dependent intersection

Aaron Stump
Computer Science, MacLean Hall, The University of Iowa, Iowa City, IA 52242, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 October 2016
Received in revised form 8 January
2018
Accepted 7 March 2018
Available online 13 March 2018

MSC:
03B15
03B40
68N18
68N30

Keywords:
Extrinsic typing
Lambda encodings
Derivable induction
Internalized realizability

In this paper, it is shown that induction is derivable in a type-assignment
formulation of the second-order dependent type theory λP2, extended with the
implicit product type of Miquel, dependent intersection type of Kopylov, and a built-
in equality type. The crucial idea is to use dependent intersections to internalize a
result of Leivant’s showing that Church-encoded data may be seen as realizing their
own type correctness statements, under the Curry–Howard isomorphism.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Constructive type theory has been proposed as a foundation for constructive mathematics, and has found
numerous applications in Computer Science, thanks to the Curry–Howard correspondence between construc-
tive logic and pure functional programming [29,25,13]. Pure Type Systems (PTSs) are one formalism for
constructive type theory, based on pure lambda calculus [6]. PTSs have very compact syntax, reduction
semantics, and typing rules, which is appealing from a foundational and metatheoretic perspective. Un-
fortunately, PTSs by themselves have not been found suitable as a true foundation for constructive type
theory in practice, due to the lack of inductive types. At the introduction of the Calculus of Constructions
(CC), an important impredicative PTS, induction was lacking [11]. This led the inventors of CC and their
collaborators to extend the theory with a primitive notion of inductive types, resulting in the Calculus
of Inductive Constructions (CIC), which is the core formalism of the prominent Coq computer-proof soft-

E-mail address: aaron -stump @uiowa .edu.
https://doi.org/10.1016/j.apal.2018.03.002
0168-0072/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.apal.2018.03.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apal
mailto:aaron-stump@uiowa.edu
https://doi.org/10.1016/j.apal.2018.03.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apal.2018.03.002&domain=pdf

638 A. Stump / Annals of Pure and Applied Logic 169 (2018) 637–655
ware [45,46,35,12]. In 2001, this skepticism about induction in PTSs was solidified when Geuvers proved
that induction is not derivable in second-order dependent type theory (λP2), a subsystem of CC [20].

The adoption, in CIC and Coq, of a system for declaring primitive datatypes solved the problem of
induction, and hence allowed formalization of a variety of results in Mathematics and Computer Science.
A notable example among these is a Coq proof of the Four Color Theorem, which, unlike the theorem’s
original computer proof, does not depend on unverified programs for checking a large of number of spe-
cial cases [23,4]. Thanks to the Curry–Howard isomorphism, such programs can be written and, crucially,
proved sound within the type theory. So the addition of primitive datatypes opened up the possibility of
formalizing complex mathematical results in type theory, that was lacking in pure CC. Other type theories
provide mechanisms for defining inductive types. In Automath, for example, inductive types are defined
axiomatically, simply by writing down constructors and asserting that induction holds [14]. In Martin-Löf
type theory, one can use W-types to define inductive types, thus avoiding the need to add axioms to the
theory for each new type; rather, the theory is extended once, with a single set of axioms for W-types [30].
Nevertheless, in all these cases, the pure type-theoretic core must be extended with additional operations,
at both term and type level, to represent inductive types. At the term level, this necessitates additions to
the usual proof of confluence of reduction of terms. In all cases, the resulting theory has now additional
machinery requiring nontrivial metatheoretic analysis.

In this paper, we present an extension of a type-assignment formulation of λP2, in which induction
is derivable, indeed in two slightly different ways. The extension does not in any direct way correspond
simply to adding primitive inductive types or induction principles. Rather, the extension strengthens the
expressiveness of the dependent typing of λP2, to take advantage of the computational power that is already
present in impredicative type theory. The extension is with three constructs, all somewhat exotic but none
new. The first is the implicit product ∀ x : A. B of Miquel, which allows one to generalize x of type A
without introducing a λ-abstraction at the term level [32]. Second is the dependent intersection type of
Kopylov [26]. Intersection types have been studied for many years in theoretical Computer Science, due to
their strong connection with normalization properties (see [7] for a magisterial presentation). If a term t can
be assigned types A and B, then it can also be assigned the type A ∩B. With dependent intersections, this
is strengthened to: if a term t can be assigned types A and [t/x]B (the substitution of t for x in B), then it
can also be assigned the type x : A ∩ B. In this paper, we will use the prefix notation ι x :A. B, instead of
Kopylov’s x : A ∩ B. The third construct in the extension is a primitive equality type, allowing expression
of equality between terms x and y both of some common type A. While all three constructs are necessary
for the derivations given of induction, the dependent intersections are most central to the construction, and
so we will denote the resulting system ιλP2.

For nontrivial intersection types to be inhabited, we must work in a Curry-style (sometimes also called
extrinsic) type theory, where we assign types to pure lambda terms. In such a theory, the same term can be
assigned multiple inequivalent types. For example, assuming inequivalent types Bool and Nat, the term λ x. x
may be assigned the types Bool → Bool and Nat → Nat. Church-style (also called intrinsic) type theories
usually satisfy unicity of typing, by design: a given term has at most one type, modulo type equivalence. In
the ιλP2 type theory we consider in this paper, the terms are only the terms of pure lambda calculus; i.e.,
variables, applications, and lambda abstractions. So we see that unlike the other approaches to inductive
types mentioned above, the approach proposed here requires no additional constructs at the term level:
terms remain just those of pure lambda calculus. We thus have a solution to the problem of induction in
pure type theory (i.e., type theory whose terms are just the pure lambda-calculus terms). Of course, we
must make some addition at the type level, or be blocked from deriving induction by Geuvers’s result.

The centrality of dependent intersection for induction in ιλP2 is due to its role in internalizing a crucial
realizability result of Leivant [28]. He observed that the proofs that data encoded as pure lambda terms
using the well-known Church encoding satisfy their typing laws can be identified with those data themselves.
In other words, Church-encoded numbers realize their own typings. This remarkable observation is the key

A. Stump / Annals of Pure and Applied Logic 169 (2018) 637–655 639
terms t ::= x | t t′ | λx. t

types T ::= X | ∀X :κ. T | Π x :T. T ′ | λx :T. T ′ | T t | ∀ x :T. T ′ | ι x :T. T ′ | t � t′

kinds κ ::= � | Π x :T. κ

contexts Γ ::= · | Γ, x : T | Γ, X : κ

Fig. 1. Syntax for ιλP2.

to the construction in this paper. We will use the dependent intersection type to define natural numbers
to be those terms which are both Church-encoded natural numbers x (i.e., have type cNat, defined as
usual to be ∀ X : � . X → (X → X) → X), and also proofs of induction, for predicates defined on cNat,
for x. So 3, for example, will be assigned both the type cNat and also Inductive 3, where Inductive is
a predicate on cNat x stating that for all predicates P on cNat, if P holds of the cNat 0 and is preserved
by the usual successor operation on cNats, then P holds of x. While dependent intersection types allow us
to make this definition of Nat, it does not follow immediately that Nat is inductive. The reason is that
the Inductive predicate expresses induction for cNat-predicates; it is not immediate that induction holds
then for Nat-predicates. Nevertheless, we will see two ways, both somewhat subtle, to derive induction for
Nat-predicates, given the definition of the type Nat as comprising intrinsically cNat-inductive cNats.

Section 2 defines the ιλP2 type theory. This is a type-assignment system, and thus unsuitable for use
as a type-checking algorithm. A system of annotations for terms must be devised to provide information
that is otherwise missing when applying the type-assignment rules. In Section 3 we propose such a scheme,
annotating terms with sufficient information to make typing essentially subject-directed. These annotations
are inessential to the terms themselves, and are thus erased when checking convertibility of terms.

Section 4 gives a definition of the type of natural numbers and, using the notation of annotated ιλP2,
constructs an inhabitant of the statement of natural-number induction for this type. Indeed, two different
inhabitants are constructed (Sections 4.4 and 4.5), in somewhat different ways. These constructions have
been checked in a prototype implementation of annotated ιλP2. Section 5 gives a realizability semantics
for ιλP2, from which the existence of an uninhabited type is an easy corollary. This confirms that the
addition of the three constructs of ιλP2 to λP2 has not led to an inconsistent theory. It also gives a
suggestion of the more modest burden of basic metatheoretic analysis for the system. Section 6 discusses
some of the consequences of the result, and related work. We conclude in Section 7 with future directions
for strengthening ιλP2 to a full-featured dependent type theory.

2. The ιλP2 type theory

The syntax for ιλP2 is given in Fig. 1, where we use x for term variables and X for type variables.
We follow standard conventions for syntactic concepts like variable scoping, capture-avoiding substitution,
α-equivalence, etc. ∀ X :T. is impredicative universal quantification over types as in λ2 (System F). Π x :T. T ′

is the dependent function type, which is also written T → T ′ when x /∈ FV(T ′) (the set of free variables
of T ′). λ x :T. T ′ is for type-level λ-abstraction over terms, and T t is the corresponding application. To this
point in the syntax for types in Fig. 1, we have just the types of λP2. The extensions come next.

∀ x :T. T ′ is the implicit product of Miquel: intuitively, it is the type for terms t which may be assigned
type T ′ for any value for x of type T [32]. ι x :T. T ′ is notation for Kopylov’s dependent intersection type.
This is a binding notation, where the scope of bound variable x is T ′. t � t′ is notation for the equality type.
Note that ιλP2, just like λP2, does not allow the formation of type-level λ-abstractions over types. Fig. 1
also includes the syntax for a simple language of kinds κ, which classify types; and of typing contexts Γ,
which record assumptions about free term- and type-level variables (x and X, respectively).

The type system of ιλP2 comprises the mutually inductive definition of three judgments:

• Γ � κ expresses that kind κ is well-formed in context Γ (Fig. 2),
• Γ � T : κ expresses that type T has kind κ in context Γ (Fig. 3), and
• Γ � t : T expresses that term t may be assigned type T in context Γ (Fig. 4).

640 A. Stump / Annals of Pure and Applied Logic 169 (2018) 637–655
� �

Γ � κ′ Γ � κ

Γ, X : κ′ � κ

Γ � T : � Γ � κ

Γ, x : T � κ

Γ, x : T � κ

Γ � Π x :T. κ

Fig. 2. Rules for judging that a kind is well-formed in context (Γ � κ).

Γ � κ

Γ, X : κ � X : κ
Γ � κ′ Γ � T : κ
Γ, X : κ′ � T : κ

Γ � T : � Γ � T ′ : κ
Γ, x : T � T ′ : κ

Γ, X : κ � T : �
Γ � ∀X :κ. T : �

Γ, x : T � T ′ : �
Γ � Π x :T. T ′ : �

Γ, x : T � T ′ : κ
Γ � λx :T. T ′ : Π x :T. κ

Γ � T : Π x :T ′. κ Γ � t : T ′

Γ � T t : [t/x]κ
Γ, x : T � T ′ : �
Γ � ∀ x :T. T ′ : �

Γ, x : T � T ′ : �
Γ � ι x :T. T ′ : �

Γ � t : T Γ � t′ : T
Γ � t � t′ : �

Fig. 3. Rules for judging that a type has a kind in context (Γ � T : κ).

Γ � T : �
Γ, x : T � x : T

Γ � κ Γ � t : T
Γ, X : κ � t : T

Γ � T ′ : � Γ � t : T
Γ, x : T ′ � t : T

Γ, x : T � t : T ′

Γ � λx. t : Πx :T. T ′
Γ � t : Π x :T ′. T Γ � t′ : T ′

Γ � t t′ : [t′/x]T
Γ, X : κ � t : T
Γ � t : ∀X :κ. T

Γ � t : ∀X :κ. T Γ � T ′ : κ
Γ � t : [T ′/X]T

Γ, x : T ′ � t : T
Γ � t : ∀ x :T ′. T

Γ � t : ∀ x :T ′. T Γ � t′ : T ′

Γ � t : [t′/x]T

Γ � t : T Γ � t : [t/x]T ′

Γ � t : ι x :T. T ′
Γ � t : ι x :T. T ′

Γ � t : T
Γ � t : ι x :T. T ′

Γ � t : [t/x]T ′

Γ � t : T
Γ � λx. x : t � t

Γ � t′ : t1 � t2 Γ � t : [t1/x]T
Γ � t : [t2/x]T

T =β T ′ Γ � T : � Γ � t : T ′

Γ � t : T

Fig. 4. Rules for judging that a term can be assigned a type in context (Γ � t : T).

annotated terms t ::= x | λx. t | t t′ | ΛX. t | t · T | Λ x. t | t -t′ | [t, t′] | t.1 | t.2 | β | ρ t - t′

Fig. 5. The syntax for annotated terms.

The second and third rules in each figure are weakening rules. The last rule of Fig. 4 is a conversion rule,
for changing a type to a β-equivalent one. The notation T =β T ′ refers to standard β-equivalence, including
both term- and type-level β-conversion, of the classifiers in question. We do not need a similar kind-level
conversion rule for the derivation of induction below, so this is omitted. Note that definitional equalities
are to be distinguished from the equality type t � t′. The elimination rule for t � t′ makes it a true
type-theoretic equality, in the sense of being substitutive. This is the bottom-left rule of Fig. 4; note that it
arbitrarily uses λ x. x as the proof of a trivial equality.

3. Annotated ιλP2

The type-assignment formulation of ιλP2 presented in the previous section is not subject-directed: many
rules do not change the subject of typing when passing from conclusion to premises. This means that, as
usual with type-assignment systems, it is not obvious how to use the system as a type-checking algorithm. To
make the derivation of induction in Section 4 more informative, this section presents an annotated version of
ιλP2, with subject-directed versions of the term-typing rules, based on bidirectional type checking [36]. The
relation Γ � t : T of unannotated ιλP2 is replaced in the annotated version with two relations: Γ � t ⇐ T

and Γ � t ⇒ T . In the former, Γ, t, and T are inputs; in the latter, Γ and t are inputs, and T is output.
The syntax for annotated terms is given in Fig. 5; the constructs will be explained below, with the typing
rules for annotated terms. The syntax for types and kinds is exactly the same, but all references to terms t

A. Stump / Annals of Pure and Applied Logic 169 (2018) 637–655 641
|x| = x

λx. t	= λx.	t		
t t′	=	t		t′
t · T	=	t		
Λx. t	=	t		
t -t′	=	t		
[t, t′]	=	t		
t.1	=	t		
t.2	=	t		
β	= λx. x			

|ρ t - t′| = |t′|

Fig. 6. Eraser function for annotated terms.

Γ � T : Πx :T ′. κ Γ � t ⇐ T ′

Γ � T t : [t/x]κ
Γ � t ⇒ T Γ � t′ ⇐ T

Γ � t � t′ : �

Fig. 7. Modified kinding rules referring to annotated terms.

Γ � T : �
Γ, x : T � x ⇔ T

Γ � κ Γ � t ⇔ T

Γ, X : κ � t ⇔ T

Γ � T ′ : � Γ � t ⇔ T

Γ, x : T ′ � t ⇔ T

Γ, x : T � t ⇐ T ′

Γ � λx. t ⇐ Π x :T. T ′

Γ � t ⇒ Π x :T ′. T Γ � t′ ⇐ T ′

Γ � t t′ ⇒ [t′/x]T
Γ, X : κ � t ⇐ T

Γ � ΛX. t ⇐ ∀X :κ. T

Γ � t ⇒ ∀X :κ. T Γ � T ′ ⇐ κ

Γ � t · T ′ ⇒ [T ′/X]T
Γ, x : T ′ � t ⇐ T

Γ � Λ x. t ⇐ ∀ x :T ′. T

Γ � t ⇒ ∀x :T ′. T Γ � t′ ⇐ T ′

Γ � t -t′ ⇒ [t′/x]T
Γ � t ⇐ T Γ � t′ ⇐ [t/x]T ′ |t| = |t′|

Γ � [t, t′] ⇐ ι x :T. T ′

Γ � t ⇒ ι x :T. T ′

Γ � t.1 ⇒ T

Γ � t ⇒ ι x :T. T ′

Γ � t.2 ⇒ [t.1/x]T ′

Γ � t ⇒ T Γ � t′ ⇒ T |t| = |t′|
Γ � β ⇐ t � t′

Γ � t′ ⇒ t1 � t2 Γ � t ⇔ [t1/x]T
Γ � ρ t′ - t ⇔ [t2/x]T

|T | =β |T ′| Γ � T : � Γ � t ⇔ T ′

Γ � t ⇔ T

Fig. 8. Bidirectional typing rules for annotated terms.

should now be understood to be to annotated terms. Annotated terms erase to unannotated ones as shown
in Fig. 6. We extend this function to types, kinds, and contexts in the obvious way, by applying the eraser
function of Fig. 6 to any terms contained in expressions of those other forms.

The rules for judging kinds well-formed are unchanged in annotated ιλP2 from unannotated ιλP2. The
kinding rules are also identical to the unannotated ones, with the exception of the rule for kinding equations
t � t′ and the rule for kinding type-level applications T t. These rules are to be replaced by the ones in
Fig. 7.

The typing rules for annotated terms are in Fig. 8. In a few rules we use ⇔ as a meta-variable ranging
over {⇐, ⇒}. The rules are still not fully algorithmic: the use of weakening rules and the conversion rules are
not subject-directed. The rule for ρ-terms is also nondeterministic, because it is not clear which instances
of t1 to rewrite to t2 (it is sufficient for our purposes below just to rewrite them all). The weakening and
conversion rules can be incorporated into a fully algorithmic version of the typing and kinding rules in a
standard way, and so to avoid unnecessary technicalities, we will not carry out this step here. There is one
caveat to this: occasionally it is necessary to change a type to a β-equivalent one, in order to expose an
opportunity for equality elimination (ρ). For this, my ιλP2 implementation provides an explicit annotation

642 A. Stump / Annals of Pure and Applied Logic 169 (2018) 637–655
to allow the user of the system to convert a type to the exact form required to do a rewrite. We write
χ T − t for an explicit conversion, with the following typing rule:

|T | =β |T ′| Γ � t ⇔ T

Γ � χ T − t ⇔ T ′

The erasure of χ T − t is just the erasure of t.
The rules of Fig. 8 are in one–one correspondence with the rules of Fig. 4 above. With the exceptions just

noted (weakening and conversion), the rules are now subject-directed: there is a distinct form of annotated
term in the conclusion of all the rules. Where the unannotated rules just use Γ � t : T in their premises
and conclusions, the annotated rules refine this to Γ � t ⇐ T in some cases, and Γ � t ⇒ T in others (and
allow either possibility for weakening and conversion rules). For the type form ∀ X :κ. T , we have annotation
forms Λ X. t and t · T , for introduction and elimination respectively. Similarly, for ∀ x :T ′. T , we have Λ x. t
and t -t′ (so t′ is an erased, or implicit, argument). For the dependent intersection type, we have constructs
[t, t′], t.1, and t.2, which look like constructs for ordered pairs, but here should be interpreted as operating
on different views of the same term t. So [t, t′] has a dependent intersection type ι x :T ′. T iff t and t′ are
different annotations, corresponding to different type-assignments, for the same unannotated term |t| (hence
the requirement that |t| = |t′| in the premise). Finally, for the equality type t � t′, we have annotated terms
β for introduction and ρ t - t′ for elimination. The former allows us to prove t � t′ when t and t′ erase to
the same unannotated term, and both have some common type T . Combined with the conversion rule, this
allows us to prove terms equal if their erasures are convertible. The latter construct allows us to rewrite t1
to t2 in the type of t′, when the type of t is t1 � t2.

The annotated version of ιλP2 has been designed to be subject-directed (with the exceptions noted
above), and to enable completely routine validation of the following soundness theorem:

Theorem 1. If Γ � t ⇐ T or Γ � t ⇒ T (in annotated ιλP2), then |Γ| � |t| : |T | (in unannotated ιλP2).

4. Deriving induction in ιλP2

The central idea for the derivation of induction in ιλP2 is, as mentioned above, to internalize a realizability
result of Leivant’s about Church-encoded natural numbers. Let us review this here briefly, for the case
of natural numbers. The setting is a natural-deduction formulation of (single-sorted) second-order logic.
Suppose we have a primitive unary function S and constant 0, and define a predicate N as follows, where
∀R1 denotes universal quantification over unary predicate R, and ∀z just first-order quantification:

N x = ∀R1.(∀z.R z → R (S z)) → R 0 → R x

Then for any term n constructed from S and 0, the normal-form natural-deduction proof in second-order
logic of the formula N n may be identified, under the Curry–Howard isomorphism, with the Church encoding
of n (more precisely, with a type-annotated version of this term). For the proof must assume arbitrary unary
predicate R, and then make assumptions s and z of the antecedents of the implication. Then, in essence,
s must be applied n times to z to prove R n. Thus the proof can be seen as a type-annotated version of
λ s. λ z. s · · · (s︸ ︷︷ ︸

n

z) – and this is indeed the Church encoding of n.

4.1. The type cNat

We internalize Leivant’s observation by first defining a type cNat of Church-encoded natural numbers,
and their constructors cZ (zero) and cS (successor), in the usual way (due to Fortune, Leivant, and O’Don-

A. Stump / Annals of Pure and Applied Logic 169 (2018) 637–655 643
cNat
 � = ∀ X : � . X → (X → X) → X .
cZ
 cNat = Λ X . λ z . λ s . z .
cS
 cNat → cNat = λ x . Λ X . λ z . λ s . s (x · X z s) .

Fig. 9. Definition of Church-encoded natural numbers and their constructors.

Inductive
 cNat → � = λ x : cNat .
∀ P : cNat → � . P cZ → (∀ y : cNat . P y → P (cS y)) → P x.

iZ
 Inductive cZ = Λ X . λ z . λ s . z .
iS
 ∀ x : cNat . Inductive x → Inductive (cS x) =
Λ x . λ p . Λ P . λ z . λ s . s -x (p · P z s) .

Fig. 10. The Inductive predicate and its constructors.

Nat
 � = ι x : cNat . Inductive x.
Z
 Nat = [cZ , iZ] .
S
 Nat → Nat = λ n . [cS n.1 , iS -n.1 n.2] .

Fig. 11. Definition of Nat type.

nell [19]). This is done in Fig. 9, using the notation for annotated ιλP2 presented in the previous section.
We write

symbol
 classifier = definiens

to indicate a global definition of symbol with the given classifier (type or kind) by the given definiens.
Note that the code in this figure and the subsequent ones has been checked by a prototype implementation
of ιλP2, and copied from the source file verbatim.

4.2. The predicate Inductive

Next, we define a predicate Inductive on cNat, expressing that a Church-encoded natural number x
is inductive: for any predicate P on cNat, if P holds of cZ and is preserved by cS, then it holds of x.
We are using an implicit product type in the statement of the successor (step) case of induction, namely
∀ x : cNat . P x → P (cS x). This is critical for internalizing Leivant’s observation, as we can see in the
definitions of constructors iZ and iS (also Fig. 10) for the Inductive predicate. Another way of phrasing
Leivant’s observation is to say that the constructors cZ and iZ have the same erasure – as indeed they are
easily seen to have – and so too cS and iS. It is for the latter that the use of implicit products is crucial,
for it ensures that the body s -x (p · P z s) of iS erases to s (p z s), which is indeed the erasure of
the body of cS. If instead we had a Π-abstraction Π x : cNat . P x → P (cS x) for the statement of the
step case, the body of iS would be s x (p · P z s), whose erasure is s x (p z s); this would not match
the erasure of the body of cS. So for the definitions of the constructors of cNat and Inductive to align, we
need to use implicit products in the definition of Inductive.

4.3. The type Nat

We may now define the type Nat, in Fig. 11. This type is the crucial internalization of Leivant’s obser-
vation. We are defining “true” natural numbers to be those terms which are both Church-encoded natural
numbers x and also realizers of the statement of induction specialized to x. Kopylov’s dependent intersection
type (the ι-type in Fig. 11) is critical here, to allow us to express that x realizes its own induction principle.
The constructors Z and S are then defined (also Fig. 11) using the annotated term construct [t,t’] to
introduce dependent intersections. Since n.1 and n.2 both erase to n, and since we already observed that
the constructors cZ and iZ, and cS and iS have the same erasures, we see that the two components of the
dependent-intersection introduction have the same erasure in each case.

644 A. Stump / Annals of Pure and Applied Logic 169 (2018) 637–655
Induction � Π n : Nat . ∀ P : Nat → � . P Z → (∀ m : Nat . P m → P (S m)) → P n =
λ n . Λ P . λ z . λ s .
n.2 · (λ x : cNat . ∀ X : � . (Π m : Nat . (x � m.1) → P m → X) → X)
(Λ X . λ c . c Z β z)
(Λ x . λ ih . Λ X . λ c .

ih · X (λ m . λ e . λ u . c (S m) (ρ e - β) (s -m u)))
· (P n) (λ m . λ e . λ u . ρ e - u).

Fig. 12. Derivation of induction, first method.

4.4. Proving induction for Nat, first method

We are ready now to derive induction for type Nat. We will construct an inhabitant of the type

Π n : Nat . ∀ P : Nat → � . P Z → (∀ m : Nat . P m → P (S m)) → P n

Informally, here is the basic idea. We take in arguments n, P, z, and s, for the first four abstractions in
that type. We will then use n.2 to prove the following predicate on n.1 (of type cNat). The predicate holds
of x of type cNat just in case there exists an m of type Nat, such that m.1 equals x and P m holds. So
our use of n.2 will actually compute a triple (m, proof of equality, proof of P m). This triple needs to be
Church-encoded, since ιλP2 does not provide tuples (or any other datatype!) natively.

Constructing this triple is easily done, just by an iteration of the S constructor of Nat starting with Z,
alongside an iteration of s starting from z. The former iteration builds the value m of type Nat, and the
latter builds the proof of P m. From outside the system, we can observe that if we iterate S starting from Z
the same number of times as the number represented by n.2, then we will get a Church-encoded number
also representing n.2. The equality type allows us to internalize this observation, stating that m.1 (where
m is the Nat we are constructing) is equal to the n.1 for which n.2 is allowing us to perform a dependent
elimination. Since the .1 annotations disappear in erasure, we can recover a proof of P n at the end of the
iteration.

Let us now work through the details of the derivation in ιλP2, shown in Fig. 12. To aid the patient
reader, I am using variable x to range over cNat, and n and m to range over Nat. We are defining Ind whose
type is the induction principle for Nat. The derivation of this principle begins after the equals sign, with
ΛP. We first take the following inputs:

• n of type Nat
• P of type Nat → �

• s of type ∀ x : Nat . P x → P (S x)
• z of type P Z

We are obliged now to produce a value of type P n. We do this following the plan described informally
above. We begin with an elimination of n.2. From the definition of Nat and the annotated typing rule for
n.2, the type of n.2 is:

∀ P : cNat → � . P cZ → (∀ y : cNat . P y → P (cS y)) → P n.1

So the first thing we must do when performing an elimination with n.2 is to supply the instance of P (what
is sometimes called the motive [31]), which is the predicate discussed earlier; in the code of Fig. 12 it is on
the third line from the top of the code:

λ x : cNat . ∀ X : � . (Π m : Nat . (x � m.1) → P m → X) → X

We are indicating that we want to compute a value of the following type (let us call it R), where x in the
line above has been replaced by n.1, by dependent iteration:

A. Stump / Annals of Pure and Applied Logic 169 (2018) 637–655 645
∀ X : � . (Π m : Nat . (n.1 � m.1) → P m → X) → X

This is indeed the type for a Church-encoded triple consisting of

• m of type Nat,
• a proof of n.1 � m.1, and
• a proof of P m

Once we have computed this triple, we can extract a proof of P n, as done in the bottom line of Fig. 12: we
instantiate the type variable X in the type R with P n, and then return the third component of the triple,
casting P m to P n using the second component. This is possible since n.1 � m.1 erases to n � m.

We must look now at the zero and successor cases of the dependent elimination of n.2, to complete our
detailed examination of the code of Fig. 12. The zero case is first, on the fourth line from the top of Fig. 12:

Λ X . λ c . c Z β z

We take in inputs X of kind � and c of type

Π m : Nat . ((cZ � m.1) → (P m) → X)

We are obligated to produce a result of type X, which can only be done by applying c. This we do, to the
triple corresponding to cZ:

• Z of type Nat,
• β which proves that the erasure of cZ is β-equivalent to the erasure of Z, and
• z which proves P Z

Now let us consider the successor case, in the fifth and sixth lines of the figure:

Λ x . λ ih . Λ X . λ c .
ih · X (λ m . λ e . λ u . c (S m) (ρ e - β) (s -m u))

We are first taking in the following inputs (their types are determined by the type of n.2, given the motive
we have supplied):

• x of type cNat
• ih of type ∀ X : � . ((Π m : Nat . ((x � m.1) → (P m) → X)) → X)
• X of kind �
• c of type Π m : Nat . (((cS x) � m.1) → (P m) → X)

Intuitively, the ih is the triple corresponding to x, and we must produce a triple corresponding to cS x.
For that, we are obliged to return now something of type X, by applying c to the components of that triple
for cS x. We first access the components of the triple for x by eliminating ih (sixth line from the top of
Fig. 12):

ih · X (λ m . λ e . λ u . c (S m) (ρ e - β) (s -m u))

We are trying to produce a value of type X, so that is the first argument to ih. The components of the triple
are then made available to us as

646 A. Stump / Annals of Pure and Applied Logic 169 (2018) 637–655
toNat
 cNat → Nat = λ x . x · Nat Z S .

reflection � Π n : Nat . toNat n.1 � n =
λ n . n.2 · (λ x : cNat . (toNat x).1 � x)

β
(Λ x . λ ih . χ (cS ((toNat x).1) � cS x) - ρ ih - β) .

Fig. 13. Converting cNat to Nat is extensionally the identity.

• m of type Nat,
• e of type x � m.1, and
• u of type P m.

We pass now to c the components of the new triple (the one for cS x):

• S m of type Nat,
• ρ e - β of type (cS x) � (S m).1, and
• s -m u of type P (S m).

Let us look carefully at the typings for each of these components. First, since m is of type Nat, we have S m
also of type Nat, since S is of type Nat → Nat. Next, to prove (cS x) � (S m).1, it suffices to rewrite x
to m and then check that cS m is β-equivalent to S m. From the definitions of S and cS, and of erasure on
the construct [t, t′], this is the case. Finally, to apply s we must specify an erased argument of type Nat.
This is m. We must also supply a proof of P m, and this is u. This completes the detailed examination of the
code in Fig. 12.

4.5. Proving induction for Nat, second method

Given the definitions of cNat and Nat above (Figs. 9, 10, and 11), there is an alternative way to derive
induction, which we consider now. The first step is to define a function toNat that converts a cNat (call
it x) to a Nat. This is easily done just by applying x to the constructors for Nat (i.e., Z and S), as shown
in Fig. 13. The figure then proves a theorem, under the standard name reflection, which says that toNat
is extensionally the identity: applying a Nat n to the Nat constructors just has the effect of rebuilding the
number. This theorem follows directly from universality of the following predicate on cNat x: (toNat x).1
� x. The theorem follows from this predicate applied to n.1.

The proof in Fig. 13 uses the form of induction provided by n.2, which is applicable because the predicate
just mentioned is a predicate on cNat (not Nat). The proof of the base case (in Fig. 13) is just β. The step
case is a little more interesting:

Λ x . λ ih . χ (S (toNat x) � S x) - ρ ih - β

We are given x of type cNat and ih of type toNat x � x. We must prove

(toNat (cS x)).1 � cS x

We use an explicit conversion (with χ) to change the goal type to the definitionally equivalent equation
cS ((toNat x).1) � cS x. Note that the sides of this equation still type-check, at type cNat. The crucial
point of this use of χ is to expose the subterm toNat x, which may then be rewritten using ih to just x.
This renders the goal trivial, completing the proof.

The next step is the derivation of induction, shown in Fig. 14. This derivation is simpler than the one
we saw in the previous section. It takes in n of type Nat, and then the predicate P and base and step cases
z and s. Then using n.2, it shows that the predicate λ x : cNat . P (toNat x) is universal; that is, that

A. Stump / Annals of Pure and Applied Logic 169 (2018) 637–655 647
symm
 ∀ T : � . ∀ t : T . ∀ t’ : T . (t � t’) → t’ � t
= Λ T . Λ t . Λ t’ . λ u . ρ u - β.

Induction2
 Π n : Nat . ∀ P : Nat → � . P Z → (∀ m : Nat . P m → P (S m)) → P n =
λ n . Λ P . λ z . λ s .
ρ (symm · Nat -(toNat n.1) -n (reflection n)) -

(n.2 · (λ x : cNat . P (toNat x))
z (Λ p . λ q . s -(toNat p) q)) .

Fig. 14. Derivation of induction, second method.

compInduction2

 ∀ n : Nat . ∀ P : Nat → � . ∀ z : P Z . ∀ s : ∀ m : Nat . P m → P (S m) .

Induction2 (S n) z s � s (Induction2 n z s)
= Λ n . Λ P . Λ z . Λ s . β .

Fig. 15. Deriving the expected reduction for incomplete values S n.

P holds of the conversion of a cNat x to a Nat. The reflection theorem (of Fig. 13) then lets us drop this
call to toNat. So the body of the derivation (of Fig. 14) indeed has type P n. An easily derived lemma of
symmetry of equality (symm in Fig. 14) is used so that we change n in the goal type to toNat n.1, before
checking the term headed by n.2, since that term proves P (toNat n.1).

A remarkable point: the erasure of Induction2 is λ n . λ z . λ s . n z (λ q . s q). From this term
we have the following chain of η-equivalences:

λn. λ z. λ s. n z (λ q. s q) =η

λn. λ z. λ s. n z s =η

λn. λ z. n z =η

λn. n

Here we see a very noteworthy difference between Induction2 and Induction. The latter is not η-equivalent
to the identity function, due to the need to destruct and construct triples during the iteration. If we
added native existential types to the theory, then likely a version of Induction using such types would be
η-equivalent to the identity.

The fact that Induction2 is extensionally equivalent to the identity function means that not only does
it derive the desired reasoning principle, but also its reduction behavior is what one would like to have
for computational use. In particular, we can prove the usual reduction rule for using Induction2 as an
iterator with an incomplete value. This is shown in Fig. 15. Given a Nat n, predicate P, base and step cases
z and s, we see that using Induction2 as an iterator indeed allows us to permute it over S. Furthermore,
this permutation follows solely by β-reduction; hence the β in the last line of Fig. 15, for proving the
equation expressing the desired reduction behavior. This says that Induction2 behaves computationally
like an iterator. This facilitates external reasoning about functions defined using Induction2.

5. Realizability semantics for ιλP2

In this section, we sketch a realizability semantics for ιλP2 types, which may be used to show logical
consistency of ιλP2. We use a simplified form of a similar semantics proposed in previous work [39]. The
semantics uses set-theoretic partial functions for higher-kinded types. An application of such a function is
undefined if the argument is not in the domain of the partial function. Any meta-level expressions, including
formulas, which contain undefined subexpressions are undefined themselves. We write A → B for the set of
meta-level total functions from set A to set B. We write (x ∈ A �→ b) for the (meta-level) function mapping
input x in the set A to b.

648 A. Stump / Annals of Pure and Applied Logic 169 (2018) 637–655
�X�σ,ρ = ρ(X)
�Πx : T1.T2�σ,ρ = [{λx.t | ∀E ∈ �T1�σ,ρ. [[ζ(E)/x]t]cβ ∈ �T2�σ[x �→ζ(E)],ρ}]cβ
�∀X : κ.T �σ,ρ = ∩{�T �σ,ρ[X �→S]| S ∈ �κ�σ,ρ}
�∀x : T.T ′�σ,ρ = ∩�{�T ′�σ[x �→ζ(E)],ρ | E ∈ �T �σ,ρ}
�ιx : T.T ′�σ,ρ = {E ∈ �T �σ,ρ| E ∈ �T ′�σ[x �→ζ(E)],ρ}
�λx : T.T ′�σ,ρ = (E ∈ �T �σ,ρ �→ �T ′�σ[x �→ζ(E)],ρ)
�T t�σ,ρ = �T �σ,ρ([(σt)]cβ)
�t � t′�σ,ρ = {[λx. x]cβ | σt =cβ σt′}
���σ,ρ = R
�Πx : T.κ�σ,ρ = (E ∈ �T �σ,ρ → �κ�σ[x �→ζ(E)],ρ), if �T �σ,ρ ∈ R

∩�S =
{

∩S, if S
= ∅
[L]cβ , otherwise

Fig. 16. Semantics for types and kinds.

(σ � [x �→ t], ρ) ∈ �Γ, x : T � ⇔ (σ, ρ) ∈ �Γ� ∧ �T �σ,ρ ∈ R ∧ [t]cβ ∈ �T �σ,ρ

(σ, ρ � [X �→ S]) ∈ �Γ, X : κ� ⇔ (σ, ρ) ∈ �Γ� ∧ S ∈ �κ�σ,ρ

(∅, ∅) ∈ �·�

Fig. 17. Semantics of typing contexts Γ.

Let L be the set of closed lambda abstractions. We will write � for (full) β-reduction. We also write
=cβ for standard β-equivalence restricted to closed terms, and [t]cβ for the set {t′ | t =cβ t′}. The latter
operation is extended to sets S of terms by writing [S]cβ for {[t]cβ | t ∈ S}.

Definition 2 (Reducibility candidates). R := {[S]cβ | S ⊆ L}.

A reducibility candidate (element of R) is a set of cβ-equivalence classes of λ-abstractions. We will make
use of a choice function ζ: given any set E of terms, ζ returns a λ-abstraction if E contains one, and is
undefined otherwise. This is just a mechanism to obtain a representative of E, which in effect allows us
to use E as a term (for example, in instantiating the body of λ x. t in the clause defining the semantics of
Π-types, in Fig. 16).

Lemma 3 (R is a complete lattice). The set R ordered by subset forms a complete lattice, with greatest
element [L]cβ, least element ∅, and greatest lower bound of a nonempty set of elements given by intersection.

Fig. 16 defines our semantics for types and kinds, by mutual structural recursion. The semantic functions
take arguments σ and ρ, in addition to the type or kind to interpret. We require that σ maps term variables
to terms, and ρ maps type variables to sets. The interpretations of types and kinds are then also sets. The
meaning of a type can be empty, and so in interpreting ∀ x :T. T ′ we must take the intersection using ∩�,
defined at the end of Fig. 16, which returns the top element of R if the interpretation of T is empty.
The meaning of a kind cannot be empty, however, so we do not need to worry about this situation when
interpreting ∀ X : κ. T . For the semantics of Πx : T.κ, if �T �σ,ρ /∈ R, then the meaning of the Π-kind is
undefined.

Critically, the semantics makes use of Girard’s technique for interpreting impredicative higher-order quan-
tification: we interpret a syntactic quantification over types via a semantic quantification over reducibility
candidates. This is in the clause defining �∀X : κ.T �σ,ρ in Fig. 16, where the intersection over all S ∈ �κ�σ,ρ
is essentially expressing a universal quantification over all such S; that is, a term t is in the interpretation
of ∀X : κ.T iff it is in �T �σ,ρ[X �→S] for all S ∈ �κ�σ,ρ. So we interpret syntactic impredicative quantification
by means of semantic impredicative quantification.

Fig. 17 defines a semantics for typing contexts, in a standard way. Disjoint union is written �. With this,
we can prove the main theorem by mutual induction on the assumed derivations:

A. Stump / Annals of Pure and Applied Logic 169 (2018) 637–655 649
Theorem 4 (Soundness of typing and kinding). If (σ, ρ) ∈ �Γ�, then

1. If Γ � κ : �, then �κ�σ,ρ is defined.
2. If Γ � T : κ, then �T �σ,ρ ∈ �κ�σ,ρ.
3. If Γ � t : T , then [σt]cβ ∈ �T �σ,ρ and �T �σ,ρ ∈ R.

For the conversion case of the proof of Theorem 4, it is crucial that our semantics has identical interpre-
tations of convertible types:

Lemma 5. If Γ � T =β T ′ and for some kinds κ and κ′, �T �σ,ρ ∈ �κ�σ,ρ and �T ′�σ,ρ ∈ �κ′�σ,ρ, then
�T �σ,ρ = �T ′�σ,ρ.

From soundness of the typing and kinding rules for the semantics, we obtain:

Corollary 6 (Logical consistency). There is no derivation of · � t : ∀X : �.X, for any term t.

Proof. By Theorem 4 part (3) and the semantics of ∀-types, if · � t : ∀X : �.X is derivable, then t ∈ ∩R.
But ∩R is empty since ∅ ∈ R by Lemma 3. �

Thus, ιλP2 is sound for use as a logic under the Curry–Howard isomorphism. This provides evidence that
adding implicit products, dependent intersections, and equality types to λP2 has not spoiled the type theory.
While it is customary to prove several other properties about a type theory such as ιλP2 – normalization
(weak or strong) and type preservation, chiefly – those are not undertaken here. Instead, I have opted to
present the simplest realizability semantics for types I know how to give for this system, which provides
what I hope is a clear definition of what the types are truly intended to mean; and with respect to which
the typing rules are sound.

6. Discussion and related work

In this section, we consider some of the ramifications and consequences of the above result, as well as
briefly consider some related work.

6.1. Linguistic observations

By Geuvers’s Theorem, the derivation of induction we have given in ιλP2 is impossible in λP2. Indeed
it is important to emphasize that Geuvers proved that induction is uninhabited no matter what definition
one gives for Nat : �, S : Nat → Nat, and Z : Nat. One can thus take the current result and Geuvers’s
together as showing that there is a true gap between ιλP2 and λP2: ιλP2 cannot be reduced in a faithful
way to λP2. Let us consider this idea more closely. The first difference between ιλP2 and λP2 is that ιλP2
is a type-assignment system (Curry-style), where λP2 has annotated terms (Church-style – see [6] for more
on the distinction). But Geuvers’s result holds just as well for a type-assignment version of λP2. This can
be seen from the semantics for terms in Geuvers’s model construction (Definition 7 of [20]), which ignores
typing annotations. So the definition, and the soundness theorem based on it (Theorem 1 of [20]), works
just as well for a type-assignment version of λP2 as the annotated version.

So the essential difference between λP2, where induction is not inhabited, and ιλP2, where it is, is
in the implicit products, dependent intersections, and equality types. It is worth noting that the implicit
products were necessary so that Church-encoded numbers could realize their own induction principles: both
the number and the proof of its induction principle require, for the successor case, a function of one explicit

650 A. Stump / Annals of Pure and Applied Logic 169 (2018) 637–655
argument, namely the result of the iteration/induction for the predecessor. If we were to use Parigot-encoded
numbers, where each number contains its predecessor as a subterm, we could drop the implicit products
and use instead positive-recursive types. Positive-recursive types (where the recursively defined type symbol
can appear only positively in the body of the recursive type) are needed to type Parigot-encoded numbers
anyway [34]. In this case, both the number and the proof of its induction principle would accept for the
successor case a function of two (explicit) arguments, namely the predecessor number and the result of
the iteration/induction for the predecessor. The development is very similar to the one above, so it is not
presented here (though I have checked the code with the prototype implementation of ιλP2). For more on
the Parigot encoding, see also [40].

6.2. Broader significance

This paper has shown a much simpler way than previous proposals to extend PTSs so that induction
is derivable. Rather than add primitive inductive types to the core typed lambda calculus, we need only
enrich our language of types to add enough dependent-typing power, so to speak, to the already existing
computational power of a system like λP2. As the base PTS λP2 is a relatively tame PTS – many other
PTSs will contain λP2 as a sublanguage – the result in this paper is applicable to many other languages.
For one obvious example, the Calculus of Constructions (CC) has λP2 as a subsystem, and hence adding
implicit products, dependent intersections, and homogeneous equality types to CC will make it possible to
derive induction principles in that setting as well. One can envision an alternative history in which rather
than change the underlying computational language of CC by adding primitive inductive types, we instead
extend the language of types as proposed in this paper, and remain within a pure typed λ-calculus. So a
system like Coq could have been founded instead on a PTS along the lines proposed here, rather than the
Calculus of Inductive Constructions [45] (though see the conclusion for an important caveat regarding large
eliminations).

What are the benefits of the proposed approach over primitive inductive datatypes? There are two:
simplicity of the language, and expressive power. Even a casual inspection of works like Werner’s dissertation
should make it clear that defining a system of primitive inductive types is a complex matter. Because the
type constructors themselves, and their term constructors, can have different arities (as well as there being
different numbers of term constructors for different datatypes), the reduction and typing rules become quite
heavy, with lots of vector notation to account for these differing arities. The addition of implicit products
(and/or positive-recursive types), dependent intersections, and equality types entails no such complexity, as
we have seen above for ιλP2. This opens up the possibility of a much simpler approach to formalizing type
theory within type theory, as has been the goal for a number of researchers for some time [2,8,10,9]. It also
should result in smaller trusted kernels for proof assistants based on type theory, as the rather heavy rules
for primitive inductive types are not required.

For the second benefit over primitive inductive types: we have in this approach a potentially much more
expressive language for datatypes than found in type theories with a system of primitive datatypes. The
expressivity is along two dimensions. First, in Coq and the related language Agda, there are some strong
restrictions placed on the form of datatypes [44]. In particular, both those systems require that each inductive
type is mentioned only in strictly positive positions in the input types of its constructors. This rules out
certain interesting idioms like higher-order encodings (see, e.g., [33]). With PTSs, the situation is different.
If we wish to use Parigot encodings we have to accept the restriction to positive-recursive types. With
Church encodings, however, there is absolutely no restriction: even datatypes with negative occurrences
can be Church-encoded. Note, though, that exploring higher-order encodings in this setting is left to future
work.

The second dimension of expressivity is in dependency. Type theorists have proposed inductive–recursive
types and inductive–inductive types to allow greater intertwining between datatypes and either functions or

A. Stump / Annals of Pure and Applied Logic 169 (2018) 637–655 651
other datatypes [3,16]. With the present approach, such forms of datatypes should be definable more easily
– though it remains to future work to confirm this. The reason is that here, we have a kind of two-level
approach to datatypes. One first defines an impredicative type allowing only simple (non-dependent) elimi-
nations, and then uses the dependent intersection to conjoin this type with the type of proofs of dependent
eliminations over the first type. In the example above, we first defined the cNat type, and then the Nat type
for which we could derive induction. This two-level approach should allow the second part of the definition,
using the dependent intersection, to perform computations or reference constructors of other datatypes
defined along with the first, non-dependent, part of the definition. So this could lead to a new approach to
inductive–inductive and inductive–recursive types, without any addition to the type theory. Indeed, Kopy-
lov introduced dependent intersection types for similar reasons as Hickey’s for introducing so-called very
dependent function types: increased dependency, in their case for modeling dependent records in pure type
theory [24].

6.3. Treating classes of inductive definitions

The form of induction we have derived in this paper is standard natural-number induction. It is reasonable
to ask, what classes of inductive definitions can be supported in a similar manner? Following the initial
submission of this paper, Denis Firsov and I have taken some steps to answering this question. In particular,
we have shown how to define the least fixed-point of an arbitrary functor F , together with an induction
principle for F , in the natural extension of ιλP2 with type-level functions (needed even to be able to express
the idea of a functor F mapping types to types). So we derive induction for any inductive type that can be
expressed by a type scheme F of kind � → �, a term fmap of type

∀X :�.∀Y :�. (X → Y) → F X → F Y

together with terms whose types express the identity and composition laws for F [18]. We have found (but
not published) that it is straightforward to make that construction work for indexed functors, from which
one can then derive mutually inductive types, as well as indexed types like the standard example of vectors.

6.4. Metamathematical perspectives: complexity

As sketched above, consistency of ιλP2 is relatively easy to establish, while consistency proofs for CIC or
Martin-Löf Type Theory (MLTT) with various features are generally more involved. Now in some cases, the
complexity ensues from higher goals for the metatheoretic analysis. For example, ordinal analysis of a version
of MLTT as in [38], or categorical semantics as in, for example, [15]. These are more complex endeavors
than simply giving a single quotiented-term model, in order to prove logical consistency (as sketched in
Section 5). But in other cases, the additional complexity really does arise from the additional technical
details required to formulate the theory. For example, the analysis of CIC, notably more complex than that
of ιλP2, is based on a similar realizability semantics – coming, as ours here, from Girard [22] – though
aimed at more than just logical consistency, namely strong normalization [46]. There is more metatheoretic
work to be done, as noted already, when the term language of the underlying pure type theory must be
extended with constants for constructors of datatypes and eliminators. At the very least, the confluence
proof of the underlying lambda calculus must be extended.

By deriving natural-number induction in ιλP2, we have a relatively simple constructive foundation for the
fundamental mathematical concept of natural number. A point well worth emphasizing is that the relative
simplicity of ιλP2 is coming from the power of impredicative type theory. Girard’s analysis of impredicative
quantification, while not contributing to goals like ordinal analysis of various higher-order theories (indeed,
ordinal analysis of full second-order arithmetic is still to be achieved), provides a simple technique for es-
tablishing consistency of the theory (relative, of course, to the consistency of the background metatheory).

652 A. Stump / Annals of Pure and Applied Logic 169 (2018) 637–655
But where other theories like CIC or MLTT incur additional complexity for inductive datatypes, impred-
icative quantification, which is from a proof-theoretic perspective much more powerful, results in a simpler
treatment. This seems like a benefit of the approach here.

One could argue against this point, in saying that the full power of impredicativity is not needed to develop
a suitable foundation for mathematics. And certainly if one’s goal were to devise the proof-theoretically
weakest foundation suitable for mathematical reasoning, the approach proposed here would be a spectacular
loser. Feferman has argued, for example, that with a few exotic exceptions, all of scientifically applicable
mathematics can be formulated in his theory W (for Weyl), which is a conservative extension of Peano
Arithmetic (and hence vastly weaker in proof-theoretic strength than an impredicative type theory like
ιλP2) [17].

On the other hand, if one’s goal is to develop a powerful constructive type theory based on a core of
minimal formal size (if not minimal proof-theoretic strength), than we have seen evidence that the approach
proposed here is currently the best available: a compact pure type theory, just CC plus three additional
typing constructs, in which natural-number induction can be derived. No other work I am aware of matches
this result for minimality of the core theory.

A final note on connections with proof theory: Pimentel et al. have carried out a very interesting proof-
theoretic study of intersection types, seeking to show, among other things, how intersection types can indeed
be viewed as a special form of conjunction, governed by different proof rules than the usual conjunction [37].
This gives a logical analysis of intersection types. It would be interesting to see if the authors’ analysis could
be extended to the dependent intersections used in this paper. The authors also raise the interesting ques-
tion of which implicational operator would play the adjunctive role for the intersection type which the usual
intuitionistic implication plays for the standard conjunction. In ιλP2, I anticipate using Church-encoded
pairs for standard conjunction, though certainly it is only reasons of minimality that would prevent one
from combining, as Pimentel et al. do, intersections and conjunctions in one theory.

6.5. Metamathematical perspectives: logicism

Another metamathematical question one may ask regarding the results of this paper is, what light, if
any, they shed on the question(s) of logicism. Full consideration of this point is beyond the scope of the
present paper, but I would like to offer a few remarks on this. First, let us take the following proposition
from Tennant’s Stanford Encyclopedia of Philosophy entry on logicism as a fair rough description of the
basic doctrine [43]:

“Logic is capable of furnishing definitions of the primitive concepts of these branches of mathematics
[arithmetic and real analysis], allowing one to derive the mathematician’s ‘first principles’ therein as
results within Logic itself.”

If one counts ιλP2 as a logic, then certainly at least as regards arithmetic, the derivations in ιλP2 seem
to support logicism as just formulated. For with no further axioms or extensions, we have defined natural
numbers and proven the induction principle for them, in ιλP2.

We must ask, however, if ιλP2 can indeed be viewed as a logic, not adulterated with some additional
nonlogical principles. A related question is, to the existence of which entities does ιλP2 seem to be commit-
ted? Here, the simple answer which suggests itself to me is, that ιλP2 is committed to the existence, in some
form, of the terms, or some semantic objects those terms denote, of pure untyped lambda calculus. Does one
wish to maintain that such terms should be viewed as logical entities (of whatever metaphysical status)?
Here I wish to leave the discussion, as debating the exact connection, with any metaphysical consequences,
between constructive logic and programs seem likely to involve both intricacy and controversy.

A. Stump / Annals of Pure and Applied Logic 169 (2018) 637–655 653
6.6. Related work

The closest related work is my own paper on the Calculus of Dependent Lambda Eliminations
(CDLE) [39]. The goal with CDLE is similar to that of the present paper: extend a PTS with new type
forms for induction and dependently typed programming. CDLE adds a type construct called constructor-
constrained recursive types. This is a form of recursive type based on the idea of preserving the typings of
lambda-encoded constructors at each approximation (as familiar from fixed-point theory) to the recursive
type. While adequate for deriving induction and while not requiring any change to the term language of the
system (i.e., pure lambda calculus), constructor-constrained recursive types are still a rather complex fea-
ture, with fairly involved kinding rules. Their semantics requires a nontrivial extension to the already rather
technical machinery needed for recursive types. The approach of this paper greatly improves on CDLE, by
identifying a combination of reasonably simple typing constructs known already from the literature that
suffice for deriving induction. No complex new typing construct is required. Indeed, except for the equality
types, ιλP2 is a subsystem of CDLE. So just one simple addition is enough to obviate the entire complex
machinery of constructor-constrained recursive types, which took several years to formulate and analyze.
Needless to say, this was quite unexpected.

Another point of comparison between CDLE and ιλP2 is that CDLE includes a lifting operator, that
translates simply-typed terms into simply-kinded types. This allows one to implement so-called large elim-
inations, where types may be computed by recursion on (in this case, lambda-encoded) data. Lifting is
omitted from ιλP2 for simplicity, but its absence does mean that we cannot prove negative facts like 0 �= 1
expressing disjointness of the ranges of constructors: the standard proofs of these, even with built-in induc-
tive types, rely on large eliminations. For a full-fledged type theory, one would indeed want to add to ιλP2
lifting or some similar mechanism, to allow derivation of such facts. And indeed, one would also like to have
type-level functions, which CDLE includes (following CC and Fω), but ιλP2 has excluded, in order to keep
the type theory as small as possible for deriving natural-number induction.

Several recent works have sought to find compact and powerful ways to add the complexity of a datatype
system to a pure typed lambda calculus [1,10]. Other works have sought deeper semantics for induction
in type theory either categorically or through connections with parametricity [5,27,21]. We have already
mentioned some of the historically decisive works which proposed adding primitive inductive types to pure
type theory [46,35,12].

A related neo-logicist effort is in [42], where Tennant derives natural-number induction based on a def-
inition of a natural-number predicate in terms of a relation expressing that a value r can be reached from
a value t by successive applications of a function f . That relation is introduced using meta-level predicate
quantification to express abstractly the condition about successive applications of f . Tennant’s develop-
ment takes place within an intuitionistic relevant logic. The use of meta-level quantification allows him
to avoid committing to a second-order logic, but has the consequence of forcing him to add new predi-
cate symbols and terms to the language, with corresponding introduction and elimination rules, instead
of making explicit definitions in terms of second-order quantifications. This move to make use of meta-
level predicate quantification saves Tennant from committing to a second-order language, at the cost of
requiring new metatheoretic analysis to justify soundness of each concept he adds (Tennant does not un-
dertake such an analysis in [42]). In contrast, in ιλP2, the power of explicit second-order quantification
within the language allows us to analyze the theory once and for all, and then introduce new terms via
explicit definition, rather than as new constructs with new logical rules. A further important difference
is that where Tennant works within a logic, ιλP2 is a type theory, and thus supports not just formal
reasoning, but also dependently typed programming, which is of notable current interest in Computer
Science [41].

654 A. Stump / Annals of Pure and Applied Logic 169 (2018) 637–655
7. Conclusion

We have seen what I hope for the reader is a somewhat surprising result, namely that adding three
constructs – implicit products, dependent intersections, and equality types – to the impredicative pure type
system λP2 is sufficient to derive induction. This overcomes Geuvers’s Theorem on the underivability of
induction in λP2, by extending the language. We have confirmed that this extension has not trivialized the
ιλP2 language as a logic, by giving a realizability semantics that implies logical consistency. We have also
discussed some of the consequences of this result for devising simpler and at the same time more expressive
constructive type theories.

Future work adding the lifting types (mentioned in Section 6.6 above) to ιλP2. Going further, ιλP2
should be extended to a system ιCC based on the extrinsic Calculus of Constructions, extended with the
three ingredients identified here for induction. A further point, since these type theories are closed (the
syntax of types is not intended to be extended as the theory is developed), is to explore the inclusion of a
universe. So there is more to do before the present approach can serve as a full-featured type theory. But
the derivation of induction in a simple extension of an impredicative pure type system is a major step in
the direction of a PTS suitable as a foundation for constructive type theory.

Acknowledgements

Many thanks to the anonymous APAL referee for very thoughtful and constructive discussion of an
earlier draft of the paper, and to the editor Martin Hyland for his support during the revision. Thanks
also to Denis Firsov for observing that a homogeneous equality type is sufficient – an earlier draft used
heterogeneous equality (thanks also to the referee for noting this, too). Thanks to Larry Diehl for observing
that the first derivation of induction (Fig. 12) does not exhibit the desired reduction behavior on incomplete
values. I also gratefully acknowledge NSF support under award 1524519, and DoD support under award
FA9550-16-1-0082 (MURI program). Thanks to Madeliene, Seraphina, and Oliver. AMDG.

References

[1] Thorsten Altenkirch, Nils Anders Danielsson, Andres Löh, Nicolas Oury, PiSigma: dependent types without the sugar,
in: Matthias Blume, Naoki Kobayashi, Germán Vidal (Eds.), Functional and Logic Programming, 10th International
Symposium (FLOPS), in: Lecture Notes in Computer Science, vol. 6009, Springer, 2010, pp. 40–55.

[2] Thorsten Altenkirch, Ambrus Kaposi, Type theory in type theory using quotient inductive types, in: Rastislav Bodík,
Rupak Majumdar (Eds.), Proceedings of the 43rd Annual ACM SIGPLAN–SIGACT Symposium on Principles of Pro-
gramming Languages (POPL), ACM, 2016, pp. 18–29.

[3] Thorsten Altenkirch, Peter Morris, Fredrik Nordvall Forsberg, Anton Setzer, A categorical semantics for inductive–
inductive definitions, in: Andrea Corradini, Bartek Klin, Corina Cîrstea (Eds.), Algebra and Coalgebra in Computer
Science – 4th International Conference (CALCO), in: Lecture Notes in Computer Science, vol. 6859, Springer, 2011,
pp. 70–84.

[4] K. Appel, W. Haken, Every planar map is four colorable, Bull. Amer. Math. Soc. 82 (5) (1976) 711–712.
[5] Robert Atkey, Neil Ghani, Patricia Johann, A relationally parametric model of dependent type theory, SIGPLAN Not.

49 (1) (January 2014) 503–515.
[6] H.P. Barendregt, Lambda calculi with types, in: S. Abramsky, Dov M. Gabbay, S.E. Maibaum (Eds.), Handbook of Logic

in Computer Science (vol. 2), Oxford University Press, Inc., New York, NY, USA, 1992, pp. 117–309.
[7] Hendrik Pieter Barendregt, Wil Dekkers, Richard Statman, Lambda Calculus with Types, Perspectives in Logic, Cambridge

University Press, 2013.
[8] Bruno Barras, Sets in Coq, Coq in sets, J. Formaliz. Reason. 3 (1) (2010) 29–48.
[9] James Chapman, Type theory should eat itself, Electron. Notes Theor. Comput. Sci. 228 (2009) 21–36.

[10] James Chapman, Pierre-Évariste Dagand, Conor McBride, Peter Morris, The gentle art of levitation, in: Paul Hudak,
Stephanie Weirich (Eds.), Proceedings of the 15th ACM SIGPLAN International Conference on Functional Programming
(ICFP), ACM, 2010, pp. 3–14.

[11] T. Coquand, G. Huet, The calculus of constructions, Inform. and Comput. 76 (2–3) (1988) 95–120.
[12] Thierry Coquand, Christine Paulin, Inductively defined types, in: Per Martin-Löf, Grigori Mints (Eds.), COLOG-88,

International Conference on Computer Logic, 1988, pp. 50–66.
[13] Haskell Curry, Functionality in combinatory logic, Proc. Natl. Acad. Sci. 20 (1934) 584–590.

http://refhub.elsevier.com/S0168-0072(18)30027-7/bib616C74656E6B697263682B3130s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib616C74656E6B697263682B3130s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib616C74656E6B697263682B3130s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib616C74656E6B697263682B3136s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib616C74656E6B697263682B3136s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib616C74656E6B697263682B3136s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib616C74656E6B697263682B3131s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib616C74656E6B697263682B3131s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib616C74656E6B697263682B3131s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib616C74656E6B697263682B3131s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib617070656C31393736s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib61746B65792B3134s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib61746B65792B3134s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib626172656E64726567743933s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib626172656E64726567743933s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib626172656E64726567742B3133s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib626172656E64726567742B3133s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib6261727261733130s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib636861706D616E3039s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib636861706D616E2B3130s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib636861706D616E2B3130s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib636861706D616E2B3130s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib636F713838s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib636F7175616E642B3838s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib636F7175616E642B3838s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib63757272793334s1

A. Stump / Annals of Pure and Applied Logic 169 (2018) 637–655 655
[14] N.G. de Bruijn, AUTOMATH, a Language for Mathematics, Technical Report T.H. Report 66-WSK-05, Department of
Mathematics, Eindhoven University of Technology, 1968.

[15] Peter Dybjer, Internal type theory, in: Stefano Berardi, Mario Coppo (Eds.), Types for Proofs and Programs, Selected
Papers, International Workshop TYPES’95, Torino, Italy, June 5–8, 1995, in: Lecture Notes in Computer Science, vol. 1158,
Springer, 1996, pp. 120–134.

[16] Peter Dybjer, A general formulation of simultaneous inductive–recursive definitions in type theory, J. Symbolic Logic
65 (2) (2000) 525–549.

[17] Solomon Feferman, In the Light of Logic, 1998.
[18] Denis Firsov, Aaron Stump, Generic derivation of induction for impredicative encodings in Cedille, in: June Andronick,

Amy Felty (Eds.), Certified Programs and Proofs (CPP), 2018.
[19] Steven Fortune, Daniel Leivant, Michael O’Donnell, The expressiveness of simple and second-order type structures, J. ACM

30 (1) (1983) 151–185.
[20] Herman Geuvers, Induction is not derivable in second order dependent type theory, in: Samson Abramsky (Ed.), Typed

Lambda Calculi and Applications (TLCA), in: Lecture Notes in Computer Science, vol. 2044, Springer, 2001, pp. 166–181.
[21] Neil Ghani, Patricia Johann, Clément Fumex, Fibrational induction rules for initial algebras, in: Anuj Dawar, Helmut Veith

(Eds.), Computer Science Logic, 24th International Workshop (CSL), in: Lecture Notes in Computer Science, vol. 6247,
Springer, 2010, pp. 336–350.

[22] Jean-Yves Girard, Paul Taylor, Yves Lafont, Proofs and Types, Cambridge University Press, New York, NY, USA, 1989.
[23] Georges Gonthier, Formal proof – the four-color theorem, Notices Amer. Math. Soc. 55 (11) (2008) 1382–1393.
[24] Jason Hickey, Formal objects in type theory using very dependent types, in: Foundations of Object-Oriented Languages

(FOOL) 3, 2003. Available from the NuPrl website, www .nuprl .org.
[25] William Howard, The Formulae-as-Types Notion of Construction, Academic Press, 1980, pp. 479–491.
[26] Alexei Kopylov, Dependent intersection: a new way of defining records in type theory, in: 18th IEEE Symposium on Logic

in Computer Science (LICS), 2003, pp. 86–95.
[27] Neelakantan R. Krishnaswami, Derek Dreyer, Internalizing relational parametricity in the extensional calculus of construc-

tions, in: Simona Ronchi Della Rocca (Ed.), Computer Science Logic 2013 (CSL), in: LIPIcs, vol. 23, Schloss Dagstuhl –
Leibniz-Zentrum fuer Informatik, 2013, pp. 432–451.

[28] Daniel Leivant, Reasoning about functional programs and complexity classes associated with type disciplines, in: 24th
Annual Symposium on Foundations of Computer Science (FOCS), IEEE Computer Society, 1983, pp. 460–469.

[29] Per Martin-Löf, Intuitionistic Type Theory, Bibliopolis, Napoli, 1984.
[30] Per Martin-Löf, Intuitionistic type theory, in: Notes by Giovanni Sambin of a Series of Lectures Given in Padua, June

1980, Bibliopolis, 1984.
[31] Conor McBride, Elimination with a motive, in: Paul Callaghan, Zhaohui Luo, James McKinna, Robert Pollack (Eds.),

Types for Proofs and Programs, Selected Papers, International Workshop, TYPES 2000, Durham, UK, December 8–12,
2000, in: Lecture Notes in Computer Science, vol. 2277, Springer, 2002, pp. 197–216.

[32] Alexandre Miquel, The implicit calculus of constructions extending pure type systems with an intersection type binder
and subtyping, in: Samson Abramsky (Ed.), Typed Lambda Calculi and Applications, in: Lecture Notes in Computer
Science, vol. 2044, Springer, 2001, pp. 344–359.

[33] Torben Æ. Mogensen, Efficient self-interpretations in lambda calculus, J. Funct. Programming 2 (3) (1992) 345–363.
[34] Michel Parigot, Programming with proofs: a second order type theory, in: H. Ganzinger (Ed.), European Symposium on

Programming (ESOP), in: Lecture Notes in Computer Science, vol. 300, Springer, 1988, pp. 145–159.
[35] Frank Pfenning, Christine Paulin-Mohring, Inductively defined types in the calculus of constructions, in: Michael G. Main,

Austin Melton, Michael W. Mislove, David A. Schmidt (Eds.), Mathematical Foundations of Programming Semantics, 5th
International Conference, 1989, pp. 209–228.

[36] Benjamin C. Pierce, David N. Turner, Local type inference, ACM Trans. Program. Lang. Syst. 22 (1) (2000) 1–44.
[37] Elaine Pimentel, Simona Ronchi Della Rocca, Luca Roversi, Intersection types from a proof-theoretic perspective, Fund.

Inform. 121 (1–4) (2012) 253–274.
[38] Anton Setzer, Well-ordering, proofs for Martin-Löf type theory, Ann. Pure Appl. Logic 92 (2) (1998) 113–159.
[39] Aaron Stump, The calculus of dependent lambda eliminations, J. Funct. Programming 27 (2017) e14.
[40] Aaron Stump, Peng Fu, Efficiency of lambda-encodings in total type theory, J. Funct. Programming 26 (2016) 003.
[41] Wouter Swierstra, Peter Dybjer, Special issue on Programming with Dependent Types Editorial, J. Funct. Programming

27 (2017) e15.
[42] Neil Tennant, Deriving basic laws of arithmetic, in: Anti-Realism and Logic: Truth as Eternal, Oxford University Press,

1987, chapter 25.
[43] Neil Tennant, Logicism and neologicism, in: Edward N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy, winter 2017

edition, Metaphysics Research Lab, Stanford University, 2017.
[44] The Agda development team, Agda, 2015. Version 2.4.2.2.
[45] The Coq development team. The Coq proof assistant reference manual. LogiCal Project, 2015. Version 8.4.
[46] Benjamin Werner, Une Théorie des Constructions Inductives, PhD thesis, Université Paris-Diderot – Paris VII, 1994.

http://refhub.elsevier.com/S0168-0072(18)30027-7/bib6465627275696A6E3638s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib6465627275696A6E3638s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib4479626A65723935s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib4479626A65723935s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib4479626A65723935s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib6479626A65723030s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib6479626A65723030s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib66656665726D616E3938s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib666972736F763138s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib666972736F763138s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib666F7274756E652B3833s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib666F7274756E652B3833s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib676575766572733031s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib676575766572733031s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib6768616E692B3130s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib6768616E692B3130s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib6768616E692B3130s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib6769726172643839s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib676F6E74686965723038s1
http://www.nuprl.org
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib686F776172643830s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib6B6F70796C6F763033s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib6B6F70796C6F763033s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib6B726973686E617377616D692B3133s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib6B726973686E617377616D692B3133s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib6B726973686E617377616D692B3133s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib6C656976616E743833s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib6C656976616E743833s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib6D617274696E6C6F65663834s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib6D617274696E6C6F663834s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib6D617274696E6C6F663834s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib6D6362726964653032s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib6D6362726964653032s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib6D6362726964653032s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib6D697175656C3031s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib6D697175656C3031s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib6D697175656C3031s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib6D6F67656E73656E3932s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib70617269676F743838s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib70617269676F743838s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib7066656E6E696E672B3839s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib7066656E6E696E672B3839s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib7066656E6E696E672B3839s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib7069657263652B3030s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib70696D656E74656C3132s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib70696D656E74656C3132s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib5365747A65723938s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib7374756D703137s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib7374756D7066753136s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib7377696572737472613137s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib7377696572737472613137s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib74656E6E616E743837s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib74656E6E616E743837s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib74656E6E616E743137s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib74656E6E616E743137s1
http://refhub.elsevier.com/S0168-0072(18)30027-7/bib7765726E65723934s1

	From realizability to induction via dependent intersection
	1 Introduction
	2 The ιλP 2 type theory
	3 Annotated ιλP 2
	4 Deriving induction in ιλP 2
	4.1 The type cNat
	4.2 The predicate Inductive
	4.3 The type Nat
	4.4 Proving induction for Nat, ﬁrst method
	4.5 Proving induction for Nat, second method

	5 Realizability semantics for ιλP 2
	6 Discussion and related work
	6.1 Linguistic observations
	6.2 Broader signiﬁcance
	6.3 Treating classes of inductive deﬁnitions
	6.4 Metamathematical perspectives: complexity
	6.5 Metamathematical perspectives: logicism
	6.6 Related work

	7 Conclusion
	Acknowledgements
	References

