Verified Translation to Directional Combinators

Megan Bailey
May 4, 2008

1 Introduction

It is well-known that lambda calculus terms involving bound variables can be
translated into combinator terms without bound variables [2]. In performing
these translations, it is valuable to have a set of combinators that produces a
smaller, more manageable, more readable output as well as an implementation
of a program to determine that output. By implementing the program in a
functional programming language that allows for internal type verification, we
can verify that the translator preserves the types of all elements throughout a
translation. This validates the correctness of the translated expression, and thus
validates the combinators themselves along with their functions. Directional
Combinators and the algorithm for their translation were developed with these
ideas and implemented in the Guru language.

2 The Algorithm

The idea that serves as the foundation of Directional Combinators is that an
argument is not passed into a branch of a lambda expression where the corre-
sponding variable is not present. This type of optimization is commonly seen
in combinatory logic, from the typical optimization of the combinator K, to the
B and C combinators that only send arguments into the left or right branches.
This basic idea is seen in Turner’s Supercombinators [3]. To simplify imple-
mentation and readability, however, Turner’s algorithm is expanded to include
two lambda functions and additional combinators to accommodate the extra
function.

The set is constructed so that an argument can be sent into the left branch,
right branch, both, or neither by simply adding a combinator onto the front of a
string of combinators preceding the two branches. This idea, however, requires
that any input must be of the form C t; t; where C is a chain of combinators
followed by the two terms. Thus, Directional Combinators must include an
additional lambda function, one that puts any expression into this form and is
called first. Other combinators are also needed to handle the inputs of the form

C t1. In the end, we have two lambda functions and nine combinators that give
the desired type of output.

2.1 Directional Combinators

They are called ”directional” because when an argument is passed into an ex-
pression, the combinator at the beginning of each chain tells you which direction
to go. L, R, B, and N point the argument to the left term, right term, both,
or neither respectively. P and Q determine whether to send it into the solitary
term or not. The base three, S, K, and I, are used as the building blocks for the
primary lambda function in transforming an expression into the correct form.
Now each Directional Combinator and its reduction rule will be discussed in
more detail.

2.1.1 The SKI Combinators

The set of Directional Combinators includes the original combinators S and
K, first developed by Curry and Feys [2]. S takes in three arguments and
applies the last argument to each of the first. K takes only two arguments
and simply returns the first. Any lambda expression can be translated into an
expression using only these two combinators. The combinator I is conveniently
used as an identity combinator but is not completely necessary because it can
be defined using S and K. It takes in one argument and returns it unaltered.
Their reduction rules are

S tl tg a I (tl a) (tg a)
Ktia — a
Ila — a
Although these three combinators are not the most efficient for translations,
they can be optimized or serve as a foundation for larger sets as seen in Turner’s
Supercombinators and other BC optimizations. In a similar manner, additional

combinators have been added to them to create the set of Directional Combi-
nators that ultimately produce shorter translated expressions.

2.1.2 The P and Q Combinators

P and Q are used for translating expressions that only have one term after the
combinator chain. Because there is only one term, there are only two options,
either to pass the argument into the term or to do nothing. P and Q handle
those cases respectively. Their reduction rules are

Pcta — c(ta)

Qcta — ct

2.1.3 The L, R, B, and N Combinators

The final four combinators direct an argument when there are two terms ap-
plied to each other following the combinator chain. They represent the option
of taking the left, right, both, or neither path. The left and right combinators
are based on the B and C combinators found in Turner’s algorithm, and the
”both” combinator could be compared to his S’ combinator. The four reduction
rules for them are

Letiteoa — c(tya)ts
Rct1t2a — Ct1(t2a)
Betitaa — c¢(tpa) (t2 a)

Nectitoa — ctyts

2.2 Lambda One and Lambda Star Functions

Lambda and Lambda Star can translate any expression into combinators by
using Lambda One for the first variable abstraction and then Lambda Star for
all subsequent abstractions. If the expression (z y) z is submitted as input, a
translation setup would be

AT Ay M2 (T y) 2
The order that the variables are abstracted out of the expression is not restricted.
It is only required that the first abstraction use Ap.

2.2.1 Control Combinators

The A; function is a way to transform formulas through the first variable abstrac-
tion into a form that A\, accepts. It does this by inserting control combinators.
These combinators are S, K, and I, and act as the last element in every chain
of combinators during the translation. Having these markers signaling the end
of a combinator string creates forms suitable for multiple variable abstractions.

2.2.2 Transfomation Rules for Lam

Mz.x = 11
)\1 x.t = Kt
)\1 X. tl t2 = S ()\1 xX. tl) ()\1 x. tg)

These three rules result in expressions of the form C ¢; t2 or C' t; with S, K,
or I as the control combinator. The A\, function assumes it is given input that
satisfies this property.

2.2.3 Transformation Rules for Lamstar

Mz.Ct = QCt

Mz.Cx = PCI
M. Ctits = BC Az ty) (A ta)
Aex.Ctite = LC Az tg)ts
M. Ctita = RCUt (A to)
Mx.Ctity = NCtit

2.3 Translation Size

For a translation of a term of size n with m variables abstractions, the length of
the output using our algorithm is §(m=*n). This is just as efficient as other similar
sets of combinators and their abstraction algorithms. Joy, Smith, and Burton
[4] provide a clear summary of many common sets of combinators and the upper
bounds of their translation lengths. These upper bounds range asymptotically
from exponential to linear in terms of n. At the exponential end, they analyze
the basic SKI scheme with no optimization techniques, called CL-SKI with an
additional Y combinator, showing it has an upper bound of 3" — (3™ — 1)/2.
On the more efficient end of the range, the set of ten combinators called CL-
J also outputs lengths of size (m % n). Although it is not improving on this
expression, the set of Directional Combinators remain at the linear end of the
range of upper bounds for combinatory logic.

3 Type Preservation

It is useful not only to develop the set of combinators, but also implement
the translation algorithm in a way that preserves every term’s type throughout
the translation. This involves including and updating the formula that the
translation proves as each combinator, and its corresponding formula, is applied
to the expression. This ensures that combinators are not added to the expression
incorrectly. Terms being applied to the combinator must have the correct form
to fit into the combinator’s proof formula. This type checking also ensures that
translation rules along with their implementation are correct.

Also included is a list of assumptions with every term in the input. This list
decreases in size as each abstraction occurs, and when every variable abstraction
has been performed, every term’s list should be empty. The lambda functions
are designed to use the first assumption found in the list. Each assumption
contains a number corresponding to its position in the list as well as a proof
that that number is correct. As assumptions are removed from the list, these
numbers decrease until the last item is removed. This data allows the user to
know how many variable abstractions are left to perform.

3.1 Formulas Proven by Combinators

(P~Q—R) ~(P~Q) PR
P—-Q—P

P—-P
(@Q@—95) = (P-Q)— (P —25)
Q—8)—Q—(P—5)

—~

)
) Q—>(P—R)—P—S
)

Z N0 N~ W

4 Guru Implementation

Guru is a functional programming language that allows the desired type of
implementation to be created. Programs written using Guru can contain proofs,
so verification of properties of data types occurs internally. Data types are built
using the keyword ’Inductive’ and type constructors. These constructors have
the option of taking in arguments using the ’fun’ command, indicating that we
are defining something that is a function of the following parameters. The last
expression following a period, or a colon if no arguments are declared, specifies
the return type. Functions are created using the ’Define’ instruction and use
similar syntax to the 'Inductive’ command. More information about the Guru
programming language can be found at http://cl.cse.wustl.edu/.

4.1 Key Data Types

Inductive form:type:=
imp:Fun(p q:form).form
|var:Fun(x:nat) .form

The basis of any input given to the algorithm is the data type 'form’. It includes
many common formula operators such as ’and’, ’or’, and implication. The rest
of the data types are built from these as well as from the list type which is
defined in the Guru library.

Inductive pf:Fun(f:form)(l:<list form>).type:=
Mp:Fun(f f’:form) (1:<list form>) (p:<pf(imp f £’) 1>)
(p?:<pf £ 1>).<pf £’ 1>

|Assump:Fun(p:form) (1:<list form>) (n:nat)
(u:{(nth form n 1)=p}).<pf p 1>

The ’pf’ data type takes in a form and a list of forms, the list of assumptions
that is kept up-to-date throughout the algorithm. There are only two types of
proofs, Mp and Assump. Mp stands for modus ponens and indicates and an
application of one argument with type f onto another with type (imp f f').
Therefore, Mp is a proof of formula f/. Assump is simply an assumption of some
argument along with the previously discussed proof that it is where it claims to
be in the master list of assumptions.

Inductive control:Fun(f:form).type:=

I:Fun(p:form).<control (imp p p) >

|s:Fun(p q r:form).<control (imp (imp p (imp q r))
(imp (imp p q) (imp p r)))>

|K:Fun(p q:form).<control (imp p (imp q p))>

|[P:Fun(p q s:form) (c:<control (imp q s)>).
<control (imp (imp p q) (imp p s))>

[Q:Fun(p q r:form) (c:<control (imp q r)>).
<control (imp q (imp p r))>

|IL:Fun(p q r s:form) (c:<control (imp q (imp r s))>).
<control (imp (imp p q) (imp r (imp p s)))>

[R:Fun(p q r s:form) (c:<control (imp q (imp r s))>).
<control (imp q (imp (imp p r) (imp p s)))>

[B:Fun(p q r s:form) (c:<control (imp q (imp r s))>).
<control (imp (imp p q) (imp (imp p r) (imp p s)))>

IN:Fun(p q r s:form) (c:<control (imp q (imp r s))>).
<control (imp q (imp r (imp p s)))>

[Mp2:Fun(p q:form) (c:<control (imp p q)>).<control g>

The ’control’ data type includes the nine previously defined directional combi-
nators. S, K, and I take forms and return a proof of their respective formula
using those forms. The rest of the combinators must be added onto the front
of a list so in addition to the forms, they require the first term of their proof
formula and return a proof of the second half of the outermost implication.

Inductive pf2:Fun(f:form) (1:<1list form>).type:=
CtrlMp:Fun(p q r:form)(1l:<list form>)
(c:<control (imp p (imp q r))>) (tl:<pf2 p 1>)

(t2:<pf2 q 1>).<pf2 r 1>

[CtrlI:Fun(p r:form) (1:<list form>) (c:<control (imp p r)>).
<pf2 r 1>

[CtrlVar:Fun(p r:form) (1:<list form>) (c:<control (imp p r)>)
(n:nat) .<pf2 r 1>

The 'pf2’ data type is used for the A, function and is similar to the first proof
type. It includes three terms called CtrlMp, Ctrll, and CtrlVar. These differ
based on what will be found after the chain of combinators whether it is an ap-
plication, a term without any free variables, or a term with free variables. They
require the typical forms and list of assumptions along with a control argument
indicating the first combinator chain and the terms applied to it.

Inductive lamstar_result:Fun(f1l f2:form) (1:<list form>).type :=
resultl:Fun(f1 f2:form) (1:<list form>) (p:<pf2 (imp £2 f1) 1>).
<lamstar_result f1 £f2 1>
|[result2:Fun(f1 f2:form) (1:<list form>) (p:<pf2 f1 1>).
<lamstar_result f1 £f2 1>

Finally, the ’'lamstar_result’ data type is an indicator of whether the current
variable being abstracted, f2, was found in the branch that was traversed, f1.
The resultl instance of this means that it was found, and thus, requires a proof
that the assumption implies the translated expression. Result2 on the other
hand requires only a proof of the expression, unchanged because the variable
was absent so no combinators were needed.

4.2 Types of Functions

The implementation includes two main functions, one for A\; and one for A,.
The lamstar function also requires the use of two helper functions called casel
and case2.

Define lam :=
fun lam(f1 f2:form) (1:<1list form>) (p:<pf f1 (cons form f2 1)>):
<pf2 (imp £2 £1) 1>.

Lam takes in the variable being abstracted (form f2), the expression being
translated (form fl1), and a proof of that expression under an assumption of
2. After translating it into combinators using the rules in section 2.2.2, that

assumption does not appear in the corresponding list, and the function outputs
a proof2 that f2 implies f1.

Define lamstar :=
fun lamstar(f1 f2:form) (1:<list form>) (p:<pf2 f1 (cons form £2 1)>):
<lamstar_result f1 £f2 1>.

Lamstar implements the translation rules found in section 2.2.3. It requires
almost identical inputs as lam but instead of taking in a proof, it takes in a
proof2, which by construction is in the correct form to run correctly in the A,
translation. Instead of returning a proof2, this function returns a lamstar_result
which actually holds the proof2 inside of it while indicating whether the variable
was ever used in the expression.

Define casel :=
fun casel(fl f2:form) (1:<list form>) (p:<pf2 f1 (cons form f2 1)>):
<lamstar_result f1 £f2 1>.

Within the A, function, two helper functions are used called casel and case2.
They have the same signature and handle the two main types of expressions
given to A.. Casel deals with input of the form C ¢; while case 2 deals with
the form C t; t; where C is a string of combinators. In the first case, P and Q
combinators must be added to the front whether the input variable is present
or not. This is due to the fact that there is only one term so as each variable is
put back into the equation, each one needs to know whether to be passed into
the one term or not. The second case does not add Q combinators anywhere.
When the translation gets deep enough to be in the case where there is one term
and it does not find it there, a chain of combinators outside this one term will
reflect that fact, so no Q is needed.

5 Conclusion
This paper has developed a verified translation to Directional Combinators.
This approach may have applications to more general verified compilation.

References

[1] Bunder, M.W. Some Improvements to Turner’s Algorithm for Bracket Ab-
straction. The Journal of Symbolic Logic, 55 (1990), 656-669.

[2] Currey, H.B., Feys R. ”Combinatory Logic.” Vol. 1. North-Holland, Ams-
terdam, 1958.

Jones, Simon Peyton. ”SK Combinators.” The Implementation of Functional
Programming Languages. Prentice Hall, 1987. 260-280.

Joy, M.S., Rayward-Smith, V.J., Burton, F.W. Efficient combinator code
Computer Languages, 10 (1985), 211-224.

Noshita, Koohei, and Hikita, Teruo. The BC-Chain Method for Represent-
ing Combinators in Linear Space. Lecture Notes in Computer Science, 220
(1986), 292-306.

