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1 Recursive types

A recursive type is one whose definition may reference the type itself. An example is

rec X. 1 +X

where 1 is the unit type with just one inhabitant triv, and + is a sum type. We will use this example in this
note.

There are different ways to set this up, but in my opinion the most desirable typing rules for recursive types
allow us to fold and unfold them:

Γ ⊢ t ∶ [rec X. T /X]T
Γ ⊢ t ∶ rec X. T

Γ ⊢ t ∶ rec X. T
Γ ⊢ t ∶ [rec X. T /X]T

The above rules are type-assignment rules: they are not changing the subject term t of typing. For algorithmic
typing, one approach is to tell the type-checker where to do a fold or an unfold, by putting an annotation on
the term t. But for theoretical study, the type-assignment rules are sufficient (at least for many purposes).

2 Fixed points and recursive types

Suppose we are trying to give some kind of semantics for recursive types, with respect to which the above
typing rules will be sound. What do we need from such a semantics? Really just one thing: we need to know
that the meaning of the recursive type is the same as the meaning of its unfolding. Then (for simplicity
assuming Γ is empty) the meaning t ∈ Jrec X. T Kρ of the conclusion of the rule for folding the definition will
be equivalent to the meaning t ∈ J[rec X. T /X]T Kρ of the conclusion. (The semantics will need to use a
variable assignment ρ to map type variables to semantic types.)

The traditional way to achieve this is to define J[rec X. T /X]T K to be a fixed point of the meta-level function
S ↦ JT Kρ[X↦S] (where the variable assignment ρ[X ↦ S] behaves just like ρ except that it maps X to S).
But the question is, which fixed point?

For recursive types are not the same as inductive or coinductive types, which at least in type theory should
come with recursors or corecursors. So from the point of view of semantics we are free to take any fixed
point we like.

1



3 Infinite trees

We can think of a recursive type as a finite notation for an infinite type. For our example recursive type,
this tree is

+

1 +

1 ⋯

4 Least fixed-point

If we define the semantics as the least fixed-point, we can build this up as

⋃
n∈N

(Fn ⊥)

where ⊥ is the smallest semantic type – it could be ∅ for example, if semantic types are being interpreted
as sets of terms (let us suppose they are); and F is the meta-level function S ↦ Unit ⊎ S arising from
interpreting the body of our example recursive type.

With this interpretation, the interpretation of the type will include all the terms of the form (with n ∈ N)

injn2 (inj1 unit)

where
inj1 ∶ ∀X.∀Y. X →X + Y
inj1 ∶ ∀X.∀Y. Y →X + Y
unit ∶ Unit

These values correspond to all the leaves in our infinite unfolding (above) of the recursive type. They can be
viewed as an encoding of natural numbers, and the semantics then can be seen as interpreting rec X. 1 +X
as the set of natural numbers.

5 Greatest fixed-point

On the other hand, suppose we define the semantics as the greatest fixed-point, which we can construct as

⋂
n∈N

(Fn ⊺)

where ⊺ is some greatest semantic type. It might be the set of all closed terms, for example.

What difference will there be with the least fixed-point? By definition, all the elements of the least fixed-
point will be in the greatest one (since the least is a subset of all the fixed points). So the question is, are
there any extra elements in the meaning of rec X. 1 +X as greatest fixed points?

Consider again the infinite unfolding of our example type:
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+

1 +

1 ⋯

We already have values for all the paths to the leaves. Is there a value for the infinite path down the right
side of the tree? Such a value would need to be of the form:

inj2 (inj2 (inj2 ⋯))

We could denote this as inj∞2 .

Suppose our language has a fixed-point operator fix at the term level, satisfying

fix f = f (fix f)

where let us consider that the notion of equality is equality of infinite unfolding of defining equations. Then
we have this equality:

inj∞2 = fix inj2

It is type-correct to apply fix to inj2: fix requires a function whose type is of the form T → T for some type
T . inj2 (implicitly instantiating its quantifiers) has type

(rec X. (1 +X))→ 1 + (rec X. (1 +X))

and rec X. (1 +X) unfolds to the codomain type (so inj2 does have type of the form T → T ).

We can identify inj∞2 with an infinite number ω. We thus have the coinductive type of co-naturals, using the
semantics with the greatest fixed-point.

6 Which fixed point is best?

Thanks to contravariance of function types, if we pick the greatest fixed-point for the interpretation of
rec X. T , as being the most liberal, we will end up with smaller interpretations of function types: functions
would need to deal not just with the finite terms injn2 (inj1 unit), but also the “infinite” term inj∞2 . So
there is no obvious correct default fixed-point to choose. Indeed, in programming it is not obvious whether
inductive types (ML languages) or coinductive types (Haskell) by default is best (though maybe we should
give the nod to inductive types if we are thinking of mathematical reasoning, where they are by far more
common generally).
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