
CSCI3390-Second Test with Solutions

April 26, 2016

Each of the 15 parts of the problems below is worth 10 points, except for the
more involved 4(d), which is worth 20. A perfect score is 100: if your score is
in excess of 100, I will treat the additional points as extra credit to be added to
either homework or test scores. These are independent of one another, so you can
work them in any order, but make sure you label clearly which question you are
answering!

1. Let Σ be a finite alphabet. Let L ⊆ Σ∗, where L ∈ NP. Answer the
following questions ‘True’, ‘False’, ‘Believed True’, or ‘Believed False’.
The last two categories are to be used if the answer depends on the truth of
a widely-believed, but not-yet-proved, conjecture.

(a) Every such L is Turing-recognizable.
Solution. True, because every L ∈ NP is decidable (see (d)).

(b) Every such L is decided by a deterministic TM that takes O(nk) steps
on inputs of length n. (Here and in the subsequent parts k > 0 is a
constant that depends on the TM but not on n.)
Solution. Believed False—this is the definition of P, so the statement
says NP ⊆ P.

(c) Some such L is decided by a deterministic TM that takes O(nk) steps
on all inputs of length n.
Solution. True, this says NP contains some problems in P (in fact it
contains every problem in P).

(d) Every such L is decided by a deterministic TM that takes O(2nk
) steps

on all inputs of length n.

1



Solution. True. This is a precise statement of what we mean when we
say that every problem in NP has a brute-force solution that consists
of trying out every possibility. The TM systematically enumerates all
possible 2nr guesses of nr bits, and on each guess runs for n` steps. The
total run-time is no more than

n` · 2nr

< 2n · 2nr

= 2n+nr

< 2nr+1

.

Of all the parts of this problem, this is the one that was most frequently
answered incorrectly.

2. Let COMPOSITE ⊆ {0, 1, . . . , 8, 9}∗ be the set of decimal representa-
tions of composite positive integers. That is, L is the set of strings

{4, 6, 8, 9, 10, 12, 14, 15, . . .}.

(a) Give a simple proof, involving no special facts from number theory, that
COMPOSITE ∈ NP.

Solution. The corresponding verifier problem is: Given integers N and
k, do we have k|N with k 6= 1 and k 6= N? We can do the division in
time quadratic in the number of digits of N and linear in the number of
digits of N, and the additional information (k) has no more digits than
N, so this is a polynomial-time verifier.

(b) The following is a ‘proof’ that COMPOSITE ∈ P: Given input N,
divideN in turn by 2, 3, . . . , N−1.Answer ‘Yes’ and halt if the remain-
der is zero, and answer ‘No’ otherwise. Since division of two integers
takes quadratic time, and we perform at most N − 2 divisions, this al-
gorithm takes time polynomial in the size of the input. This argument
is incorrect—what is the error?
Solution. The size of the input is the number of digits of N, not N
itself, so this algorithm takes exponential time in the size of the input.

(c) So, is COMPOSITE in P? You don’t have to prove your answer, you
can simply cite theorems that were discussed in class.
Solution. As mentioned in class PRIMES ∈ P, and P is closed
under complement, so we now know thatCOMPOSITE ∈ P as well.
It was common to answer this incorrectly by citing an algorithm (like
using Fermat’s Theorem, or Miller-Rabin) that does not really show
PRIMES ∈ P. The correct answer should cite the AKS algorithm.
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3. These problems concern boolean satisfiability.

(a) Consider the following propositional formula:

(p ∨ q ∨ r) ∧ (¬p ∨ ¬q) ∧ (¬p ∨ ¬r) ∧ (¬q ∨ ¬r) ∧ (¬q).

Is this formula satisfiable? If so, give all satisfying assignments. (It
may helpful to note that the first four clauses exhibit a particular pattern
that we’ve seen before.)
Solution. The first four clauses say that exactly one of p, q, r is true, and
the last that q is false, so there are exactly two satisfying assignments:
Setting p true and q, r false; and setting p, q false and r true.

(b) In class we showed that 2-SAT is in P. The formula above is not a legal
input to 2-SAT, since the first clause contains more than two literals.
Show nonetheless, satisfiability for propositional formulas that contain
at most one clause with more than 2 literals is in P. (HINT: You don’t
have to tell me the algorithm for 2-SAT, but you need to call this algo-
rithm.)
Solution. Our problem has the form θ∧φ,where φ is a 2-CNF formula,
and θ is a disjunction of literals. We can test each formula ` ∧ φ, where
` is a literal in θ separately for satisfiability, and answer yes if any of
these is satisfiable. Each such formula is a 2-CNF, so each test takes
polynomial time, and the number of tests is equal to the size of θ, thus
smaller than the size of the original formula, so this takes polynomial
time.
Some students answered this by saying, in effect, try out all satisfying
assignments for φ and test if any of them is satisfied by θ, but there may
be too many satisfying assignments for θ to do this in polynomial time.

(c) A boolean formula is a tautology if every assignment of truth values
to variables is a satisfying assignment. Is the problem of determining
whether a boolean formula in CNF is a tautology in P? Does the answer
depend on the status of the P = NP conjecture?
Solution. This is in P unconditionally. We require that each clause sep-
arately be a tautology, which happens if and only if the clause contain
both p and ¬p among its literals. We can check for this with a single
scan of the formula. (This is very similar to a homework problem about
satisfiability for DNF formulas.)
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(d) A boolean formula is a contradiction if no assignment of truth values
to variables is a satisfying assignment. Is the problem of determining
whether a boolean formula is a contradiction in P? Does the answer
depend on the status of the P = NP conjecture?
Solution. This problem is the complement of SAT. If P = NP, then
NP is closed under complement, and thus this problem is in P. Con-
versely, if this problem is in P, then since P is closed under complement,
we would bet SAT ∈ P and thus P = NP. Some students got this far
(and got full credit) but went on to say that CONTRADICTION is
NP-compete. This is (probably) not true, since CONTRADICTION
is NP is not believed to be closed under complement. However, it is
NP-hard.
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4. These problems concern the Hamiltonian Path problems for both directed
and undirected graphs, and require you to correctly identify polynomial-
time reductions. Here, to remind you, are the problems:

DIRECTED HAMILTONIAN PATH
Input: A directed graph G and two vertices s and t.
Output: Yes if and only if there is a directed path from s to t that
visits each vertex exactly once.

UNDIRECTED HAMILTONIAN PATH
The description is the same, except both the graph G and the
required path are undirected.

The first two parts of the problem involve the following two constructions
on graphs:

Construction 1:
Starting from an undirected graphG, produce a directed graphG′

with the same set of vertices by replacing each undirected edge
{i, j} by a pair of directed edges (i, j) and (j, i).

Construction 2:
Starting from a directed graph H produce an undirected graph
H ′ with the same set of vertices by replacing each directed edge
(i, j) where i 6= j by the undirected edge {i, j}.

The constructions are illustrated in the accompanying figure. Note that an
undirected graph cannot have multiple edges between the same two vertices,
nor loops at a single vertex, so if H contains a pair of edges (i, j) and (j, i),
H ′ will only have {i, j}, and if H contains loops (i, i), these will not appear
in H ′ at all.

(a) Choose which one of the following answers is appropriate, and fill in
the blanks:

Construction 1 is a polynomial-time reduction from [PROB-
LEM] to [PROBLEM]. If we already know [PROBLEM] is
NP-hard, this reduction proves [PROBLEM] is NP-hard.

OR
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Construction 1 is not a polynomial-time reduction from either
of these problems to the other because.....

Solution. Construction 1 is a polynomial-time reduction from UNDI-
RECTED HAMILTONIAN PATH to DIRECTED HAMILTONIAN
PATH. It shows that if UNDIRECTED HAMILTONIAN PATH is
NP-hard, then DIRECTED HAMILTONIAN PATH is NP-hard. Ob-
serve that in class we proved that these problems were NP-hard in the
opposite order, first showing that the directed problem was NP-hard.

(b) Answer the above question for Construction 2.
Solution. This is not a reduction in either direction. Since it con-
verts a directed graph into an undirected graph, if it were a reduction
at all, it would have to be from DIRECTED HAMILTONIAN PATH
to UNDIRECTED HAMILTONIAN PATH. But it does not preserve
the Hamiltonian Path property: Observe that in the diagram, the undi-
rected graph at bottom has a Hamiltonian path from 1 to 3, but there is
no such Hamiltonian path in the directed graph.

(c) The degree of a vertex in an undirected graph is the number of neighbors
it has. (See the caption of the accompanying figure.) Prove that if
we restrict to graphs in which every vertex has degree at most 2, then
UNDIRECTED HAMILTONIAN PATH is in P.
Solution. In a graph in which every vertex has degree no more than 2,
every connected component is either a loop or a straight line, and thus
if there is a Hamiltonian path from s to t, G must be connected, and
either s is on one end of a line and t is on the other, or s and t are ad-
jacent vertices in a loop. We thus get the following algorithm: Start at
s. If s has two neighbors, and one of the neighbors is not t, then reject.
Otherwise, visit the other neighbor, and continue visiting unvisited ad-
jacent neighbors until you can go no further. If the last vertex is t and
all vertices of the graph have been visited, accept, otherwise reject. If
s has only one neighbor, visit it, and continue visiting unvisited adja-
cent neighbors until you can go no further. If the last vertex is t and all
vertices of the graph have been visited, accept, otherwise reject. This is
just breadth-first search applied in the very special case of graphs with
maximum degree 2, and is thus a polynomial-time algorithm (in fact
linear in the number of vertices).

(d) (Harder.) What if we restrict to graphs in which every vertex has degree
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at most 3? Show that this problem is NP-complete. (You may have to
remember some proofs we did in class.)
Solution. Not just harder, but harder than I thought. If you go through
the proof of the reduction of 3-SAT to DIRECTED HAMILTONIAN
PATH you find that each vertex of the resulting directed graph has in-
degree at most 3 and out-degree at most 3, and that the subsequent
reduction to UNDIRECTED HAMILTONIAN PATH has degree at
most 4 at every vertex. So this shows that UNDIRECTED HAMIL-
TONIAN PATH for graphs with maximal degree 4 (not 3, as I first
thought) is NP-hard. The claim is still true, and requires a subsequent
conversion to graphs with maximal degree 3 that preserves the Hamil-
tonian path property, which I’m still thinking about!.
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Figure 1: Construction 1 (top) and construction 2(bottom). In the top left diagram,
vertices 1,2,3 and 6 all have degree 2, vertices 4 and 5 have degree 3. All vertices
in the lower right have degree 2.
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