
CSCI3390-First Test Solutions

February 25, 2016

In this test you never have to give a low-level description of a Turing machine
complete with states and transitions (like the kind given in Figure 1). In 1(e) and
3 you are asked to give high-level descriptions: these are written in language like,
’the machine scans its input left-to-right, replacing all occurrences of a by X and
then writes aaa at the right end of the tape’.

In Problem 2, you should give the answers as informal descriptions of algo-
rithms; you do not need to talk about Turing machines at all.

While Problem 4 refers to the construction in Problem 3, you can do Problem
4 even if you could not carry out the construction.

1 A Turing Machine
(30 points, 10 points for parts (b) and (e) and 5 points for each remaining part)
The Turing machineM pictured in the figure recognizes the language L ⊆ {a, b}∗
consisting of all the strings in which the number of a’s is less than or equal to the
number of b’s.

(a) Let Q be the set of the states of the machine and Γ the tape alphabet. Let

δ : (Q− {accept, reject})× Γ→ Q× Γ× {L,R}

be the next-state function. What are the values of δ(1, X) and δ(1, a)?

Solution.
δ(1, X) = (1, X, L).

δ(1, a) = (5, X, L).

1



Figure 1: The Turing machine for Problem 1. The initial state is 0.

2



(b) Show the run of the machine (the complete configurations) on the inputs bab
and a for ten steps, or until the machine halts, whichever comes first.

0bab

b0ab

bX4b

bXX2�

bX1X

b1XX

1bXX

1�bXX

accept

0a

X4�

5X

5�X

4X

X4�

Note that we have repeated the configuration X4�, so the machine will now
cycle endlessly.

(c) DoesM decide the language L? Explain briefly (a sentence will do).

Solution. No, because it loops endlessly on some inputs (like a).

3



(d) Is the language L decidable? Explain briefly.

Solution. Yes, because obviously there is a pencil-and-paper algorithm for
determining whether or not a string has more a’s than b’s! If you want some-
thing more detailed, you can alter the transitions in states 4 and 5 so that after
the machine makes a complete scan while looking for a b to cross out, and
finds no b, the machine rejects.

(e) On inputs of the form anbn,M takes roughly 4n2 steps to accept. Describe a
two-tape Turing machine that recognizes the same language L, and takes time
linear in the length of the input string to accept strings in L.

Solution. Scan the first tape left to right. Each time you see an a on the first
tape, move right and write an a on the second tape. Each time you see a b on
the first tape, move left and erase the last a on the second tape. If there are at
least as many b’s as a’s, when the end of the input is encountered on the first
tape, the head of the second tape will be looking at a blank, because all the a’s
will have been cancelled by b’s. Otherwise if there are more a’s than b’s, the
head of the second tape will be looking at an a. This requires a single scan of
the input on the first tape. Each step may require two or three transitions on
the second tape, but all in all, no more than 3n transitions are executed on an
input of length n. (Other solutions to this problem are possible. For instance,
you might scan the first tape left to right and copy a’s to the second tape, and
then scan it right to left, canceling a’s with b’s. Or you might mark the starting
cell on the second tape, move right for each a on the first tape, move left for
each b, and record in the state whether you are to the left or right of the mark.)

2 A word game
(14 points, 7 for each part) Here is a game played with bit strings. If the string
begins with 1, remove the 1 and append 00 to the right end of the string. If it
begins with 00, remove the 00 and append 10. If it begins with 01, remove the 01
and append 11. Thus if you run this game for several steps, starting with 1, you
get

1→ 00→ 10→ 000→ 010→ 011→ 111→ 1100→ · · ·

Let L be the set of all bit strings that can be derived from 1 in this manner. (So,
for example, every string in the example above is in L.)

4



(a) Show that L is Turing-recognizable (that is, describe an algorithm that semi-
decides L).

(b) Show that L is actually decidable (describe an algorithm that decides it).

Solution. The semi-deciding algorithm for (a) is just to keep applying the
rewriting rule as shown in the example. If you see your input w appear, then
w ∈ L and you answer ’Yes’. (Unlike some of the homework problems, this
does not require you to be clever about how you organize the work.) What
about the deciding algorithm? When do we get to say No? Observe that when
we apply the rewriting rule, the string never gets shorter, although it could
stay the same length. So to test whether w ∈ L, we apply the same algorithm,
but if we start to see strings longer than w, we can say No, because we can
never get back to w. There is one other situation in which we might be able to
say No–and that is if the strings stay the same length forever. But since there
are only finitely many strings of a given length, if this happens, we will see a
string repeat. So the complete algorithm for deciding L is:

Repeatedly apply the rewriting rule.

If you see w, answer Yes.

If you see a string longer than w, answer No.

If you see as string that has already appeared, answer No.

Anyway, that’s my solution. I leafed through the student papers at the end of
the class and saw a cleverer method. The idea is that you can always determine
from the last two symbols of v what the preceding word was—that is, you can
run the algorithm backwards. Thus if the string ends with 00, remove 00 and
prepend 1, if it ends with 10, remove 10 and prepend 00, and if it ends with
11, remove 11 and prepend 01. Do this repeatedly until either (a) you reach
1 (answer Yes); (b) you reach a different string from which you can’t make a
legal move—that is, anything ending in 01 (answer No); (c) a string repeats
(answer No).

3 A reduction...
(10 points) LetM be a Turing machine and w ∈ {0, 1}∗. Describe how to con-
struct a new Turing machineM′ such thatM′ accepts w and no other bit string

5



ifM accepts w, andM′ accepts no bit string at all ifM does not accept w.

Solution. Here is whatM′ does: It first scans its input to see if the input is equal
to w, and if it is not,M′ rejects its input. If the input is equal to w,M′ returns
to the start of the tape and runs identically toM. Thus ifM accepts w,M′ will
accept w, but reject every other string. IfM does not accept w, thenM′ accepts
no string at all.

4 ...and its consequences
(16 points, 2 for each correct answer) Now consider the following four decision
problems, described as languages.

LTM = {<M, w >:M accepts w}.

EMPTY = {<M >:M recognizes the empty language }.

NONEMPTY = {<M >:Maccepts some bit string }.

UNIQUE = {<M >:M accepts exactly one bit string}.

Tell whether the following statements are true or false. You may use the fact
proved in class that LTM is Turing-recognizable but not Turing-decidable.

(a) The construction in Problem 3 is a reduction of LTM to EMPTY. False.
Reductions have to take Yes instances to Yes instances, but the reduction de-
scribed in Problem 3 takes a Yes instance of LTM (M accepts w) to a No
instance of EMPTY (M′ accepts some string).

(b) ...a reduction of LTM to NONEMPTY. True.

(c) ...a reduction of LTM to UNIQUE. True.

(d) ...a reduction of NONEMPTY to LTM . False. This is the wrong direction.

(e) This reduction proves that EMPTY is undecidable. True. We reduced the
undecidable problem LTM toNONEMPTY,which provesNONEMPTY
is undecidable, but the complements of decidable problems are also decidable,
so undecidability ofEMPTY is the same as undecidability ofNONEMPTY.

(f) This reduction proves that LTM is undecidable. False While LTM is undecid-
able, the reduction here does not show it.

6



(g) This reduction proves that UNIQUE is undecidable. True.

(h) This reduction proves that EMPTY is not Turing-recognizable. True, but
this is rather subtle. The construction in 3 is a reduction from the comple-
ment of LTM (which is not Turing-recognizable) to EMPTY. If EMPTY
were Turing-recognizable, we could use this reduction to get an algorithm
that semi-decides LTM , which would make LTM Turing-recognizable, a con-
tradiction.

Incidentally, all of the assertions about decidability and recognizability in (e)-
(h) are true, but you are being asked if the reduction in 3 proves the assertion.

7


