
CSCI3390-Lecture 6: An Undecidable
Problem

September 21, 2018

1 Summary
• The language LTM recognized by the universal Turing machine is not de-

cidable. Thus there is no algorithm that determines, yes or no, whether a
given Turing machine accepts a given input string. This is proved by a vari-
ant of the Cantor diagonal argument, originally used to show that there are
uncountable infinite sets.

• As a consequence, we are able to show that a large number of basic ques-
tions about the behavior of Turing machines, and therefore about the behav-
ior of computer programs, are also undecidable. The main tool for proving
this is to reduce the problem that we want to show is undecidable to a prob-
lem we already know to be undecidable. We’ll discuss reductions in the
next lecture.

2 The main result: LTM is not decidable.
We showed that the language

LTM = {<M, w >:M accepts w}

is Turing-recognizable. When you strip away the formal description, LTM is the
decision problem:

Input: A Turing machineM and a string w ∈ {0, 1}∗,
Output: Yes, ifM accepts w, no ifM does not accept w.

1



The fact that LTM is Turing-recognizable translates to: there is an algorithm
for this problem that always answers ‘Yes’ when that is the correct output, and
never answers incorrectly. This is simply the procedure of simulatingM on the
string w, which you carried out in the first assignment.

However, this algorithm does not completely solve the decision problem, be-
cause it may fail to answer, by running forever. We want to know if there is an
algorithm that always answers ‘Yes’ whenM acceptsw, and always answers ‘No’
whenM does not accept w.

We will show that no such algorithm exists. That is,

Theorem 1 LTM is undecidable.

Before we proceed to the proof, let’s think about what a proof that LTM is
decidable would look like. Suppose we could prove something along the lines of

3 Cantor’s Diagonal Argument
You could skip right ahead to the proof of Theorem 1. This section is partly
historical background, partly motivation for the argument.

Below is a listing of the elements of several infinite sets: the natural numbers,
the integers, ordered pairs of integers, and strings of bits.

N: 0, 1, 2, 3, . . .

Z: 0, 1,−1, 2,−2, 3,−3 . . .

Z× Z: (0, 0), (0, 1), (0,−1), (1, 0), (−1, 0), (0, 2), (0,−2), (1, 1), (1,−1), . . .

{0, 1}∗ : ε, 0, 1, 00, 01, 10, 11, 000, 001, . . .

(In case it’s not clear, the method for listing the elements of Z × Z is to list all
those pairs such that the sum of the absolute values of the components is 0, then
those whose sum is 1, then 2, etc. There are only finitely many pairs in each of
these groups.)

An infinite set X whose elements can be listed this way is said to be a count-
able set. Another, more formal way to say this is that there is a bijective function
f : N→ X.

Are there any uncountable sets? The answer is yes. The mathematician Georg
Cantor, who invented the modern theory of sets, gave several proofs of this fact.

2



The one we give here was published in 1891. If X is a set, the P(X) denotes the
power set of X, the set of all subsets of X. For example,

P({1, 2, 3}) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Cantor’s result is

Theorem 2 Let X be a set. There is no onto function f : X → P(X).

If X is finite, this theorem is trivial, because P(X) contains more elements
than X. If X is an infinite set, this gives meaning to one infinite set having ‘more
elements than’ another infinite set. Observe that if Y is a countable set, then we
can list all its elements

y0, y1, y2, . . . ,

and thus there is an onto function f : N → Y defined by f(j) = yj. So, in
particular, the above theorem implies that P(N) is an uncountable set.

Proof of Theorem 2. Suppose to the contrary that such an onto function
f : X → P(X) exists. Define

Z = {z ∈ X : z /∈ f(z)}.

Z is a subset ofX, so since f is onto, there is some y ∈ X such that f(y) = Z. Is y
an element of f(y)? If y ∈ f(y), then by the definition of Z, y /∈ Z = f(y), and if
y /∈ f(y), then again, by the definition of Z, y ∈ f(y). So we get the paradoxical
conclusion that y is an element of f(y) if and only if it isn’t. But there’s really
no paradox, just a contradiction. Our original assumption that f is onto must be
false, so no such onto function exists.

This theorem tells us something about Turing machines and decidability as
well. Every Turing machine can be encoded by a bit string, so the set of Turing
machines is countable. Consider the function g that maps a Turing machineM
with input alphabet {0, 1} to the language L ⊆ {0, 1}∗ that it recognizes. Since
P({0, 1}∗) is uncountable, g cannot be an onto function, so there must be some
languages (in fact, almost all languages) that are not Turing-recognizable, and
therefore not decidable. But this observation is not terribly informative, since it
does not provide an example of an undecidable problem.

Cantor’s argument was used by Bertrand Russell in 1901 to formulate Rus-
sell’s Paradox: Let Z be the set of all sets that are not elements of themselves.
Then Z ∈ Z if and only if Z /∈ Z. The upshot is that no system of logic or set

3



theory should allow one to define this set Z—the problem was that the logician
Frege had just published a system that allows one to do precisely that. So this was
a big deal in the history of mathematical logic.

Russell explained the paradox this way: Imagine a group of men that includes
a barber. The barber shaves precisely the men in the group who do not shave them-
selves. So who shaves the barber? If he shaves himself, then by this criterion, he
doesn’t shave himself, and if he doesn’t, he does. (The resolution of the ‘paradox’
here is that no such group of men, with such a barber, can possibly exist.)

4 Proof of Theorem 1.
Suppose LTM is decidable: that is, we have a Turing machine V that decides
whether a given Turing machine accepts a given input string. In particular, we can
decide if a given Turing machineM accepts its own encoding <M > . In other
words, we would have that the language

{<M >:M accepts <M >}

is decidable. Let V2 be a TM that decides it. Now we tweak V2 simply by inter-
changing its ‘accept’ and ‘reject’ states, and get another TM V3. Let’s summarize
what V3 does on a given input u:

• If u is not the encoding of any Turing machine, the V2 rejects u, so V3
accepts u.

• If u =<M > for some TM M, andM accepts u, then V2 accepts u, so
V3 rejects u.

• If u =<M > for some TMM, andM does not accept u, then V2 rejects
u, so V3 accepts u.

We now ask ‘who shaves the barber?’ Does V3 accept its own encoding u =<
V3 >? The second rule above says that if V3 accepts u, then it rejects u, and if it
doesn’t accept u, then it accepts u. So we get the same sort of paradox.

This means that V3 cannot exist, but then neither can V2, nor V . So LTM is
undecidable.

4



5 A non-Turing-recognizable language
We showed earlier that a language is decidable if and only if both it and its com-
plement are Turing recognizable. Since LTM is Turing recognizable but not de-
cidable, its complement is not Turing-recognizable. In other words, the following
problem is not Turing-recognizable:

Input: A Turing machineM and a string w ∈ {0, 1}∗,
Output: Yes, ifM does not accept w, no ifM accepts w.

That is, there is not even an algorithm for this question that always answers
‘Yes’ when that is the correct answer.

6 Perspective
Theorem 1, and the related problems we discuss below, although stated about
Turing machines, are true in any computational model that is equivalent in power
to Turing machines. This includes any conventional programming language. So,
for example, there is no Java program to determine if a given Turing machine
accepts a given input, and there is no Java program to determine if a given Java
function

boolean f(int n)

returns true on a given integer argument. Similarly, the claim below that there is
no algorithm to determine if two Turing machines have the same behavior (accept
the same strings) implies that there is no algorithm to determine if two Python
functions behave identically.

7 A collection of undecidable problems about Tur-
ing machines

All of the problems below are undecidable. We will see how to deduce this from
the undecidability of LTM in the next lecture.

5



7.1 Halting Problem, version 1
Input: A Turing machineM and a string w ∈ {0, 1}∗.

Output: Yes ifM eventually halts when started on input w, No otherwise.

7.2 Halting Problem, version 2
Input: A Turing machineM.
Output: Yes ifM eventually halts regardless of the input string (i.e.,M is free of
infinite loops), No otherwise (i.e., ifM runs forever on some input).

7.3 Nonemptiness
Input: A Turing machineM.
Output: Yes if there is some w ∈ {0, 1}∗ accepted byM, no otherwise.

7.4 Finiteness.
Input: A Turing machineM.
Output: Yes if the set of strings accepted byM is finite, No ifM accepts infinitely
many strings.

7.5 Equivalence
Input: Two Turing machinesM,N .
Output: YesM and N accept exactly the same strings, no otherwise.

7.6 Minimality
Input: A Turing machineM.
Output: Yes ifM is the smallest Turing machine that recognizes the set of strings
it accepts, No if there is a smaller machine that recognizes the same language.

Here you have to say what exactly you mean by the size of a Turing machine.
One way to do this is to fix an encoding scheme, and use the length of the encoding
ofM as the size ofM.

6


