
CSCI3390-Lecture 4: Closure Properties;
Some additional computational problems

September 13, 2018

1 Summary
• The classes of Turing-decidable and Turing-recognizable languages are both

closed under union and under intersection.

• We discuss a class of problems about string-rewriting that illustrates the
distinction between Turing-decidable and Turing-recognizable languages.

2 Closure properties of recognizable and decidable
languages.

Theorem 1 Let Σ be a finite alphabet and let L1, L2 ⊆ Σ∗ be languages.

• If L1 is Turing-decidable, then the complement Σ∗\L1 is Turing-decidable.

• If L1, L2 are both Turing-decidable, then L1 ∪ L2 and L1 ∩ L2 are Turing-
decidable.

• If L1, L2 are both Turing-recognizable, then L1∪L2 and L1∩L2 are Turing-
decidable.

Proof. We already saw how to prove the first item in the previous lecture: If L1 is
decided by a TMM1, then we get a TM deciding Σ∗\L1 just by interchanging the
accept and reject states. (This is a low-level proof, because we describe exactly
how to modify the Turing machine.)

1

For the second item, there is a simple high-level argument: If we have (one-
tape) machinesM1 andM2 deciding L1 and L2 respectively, then we can create
a 2-tape machine that decides L1 ∪ L2. first copies the input on the first tape to
the second tape, then runsM1 on the first tape. If this reaches an accept state of
M1, then we halt and accept. If it reaches a reject state ofM1, then we switch
to runningM2 on the second tape, and accept or reject according to whetherM2

accepts or rejects. Note how decidability comes in: The machinesM1 andM2

are guaranteed to halt in either accept or reject states on every input, which makes
this construction work. By the results in the previous lecture, we can now turn this
2-tape machine into a 1-tape machine. The argument for intersection is similar.

This argument does not work for the third item, precisely because we cannot
runM1 ‘until it halts’, if all we know is thatM1 recognizes L1: It might not halt
at all. Instead we adopt the strategy used in the proof at the end of the preceding
lecture: We still use a 2-tape machine, and we still copy the input from the first
tape to the second. But now we run the two machines in parallel, doing a step of
M1 on the first tape, then a step ofM2 on the second tape. If either of these two
accepts, our 2-tape machine accepts. Once again, the argument for intersection is
similar.

3 A string-rewriting problem
We’ll consider words over a finite alphabet Σ. You’re given the following input:

• A finite collection of pairs of words v 7→ v′. We’ll call these substitution
rules.

• A pair w1, w2 of words, which we’ll call the start word and the target word,
respectively.

If w,w′ ∈ Σ∗ then we write w ⇒ w′ if you can find the left-hand side of a rule
within w, and w′ results by replacing this by the right-hand side of the rule. That
is,

w = xvy, w′ = x′v′y,

where v 7→ v′ is a substitution rule.
For example, if ab 7→ bba is a rule, then aabbab⇒ abbabab, and also aabbab⇒

aabbbba. The problem is to determine whether the target word can be derived from
the start word in a finite sequence of steps.

2

Figure 1: The first few levels of the tree of words derived from babbab using the
rule ab 7→ baba.

This is a decision problem. Is it Turing-recognizable? Is it decidable?
First let’s look at a special restricted case of the problem. Suppose all the

rules v 7→ v′ have the property that |v| < |v′|, in other words, all the rules are
length-increasing. Then we can proceed as follows. We will illustrate this with
the example of a single rule ab 7→ baba with start word babbab, but the argument
is the same for any finite collection of length-increasing rules. Beginning from
the start word, we can construct, layer by layer, the tree of all words that can be
derived from the start word. The first few levels are illustrated in Figure 1.

Let us suppose that the target word has length 20. Since the source word has
length 6, and since the length of the word grows by 2 with each application of the
substitution rule, any word of length 20 that can be derived from the source word
will appear in the seventh generation. Thus this problem (for length-increasing
rules) is decidable: The algorithm for deciding it is to extend this tree, layer by
layer, until no more words of length less than the target word appear at the leaves.
If the target word appears in the tree, then the answer is ‘yes’, otherwise ‘no’.

Now suppose that instead of length-increasing rules, all the rules keep the
length the same: For example, suppose the substitution rules are abab 7→ bbab, baba 7→
abaa. If we are given a source and a target word, then obviously the answer is ‘no’
if the words do not have the same length. If they do have the same length, then
we can proceed as above, constructing the tree of words derivable from the source
word—but when can we stop?

Consider this: Let us suppose that source and target words both have length 8,
and that there is a very long derivation, e.g.,

abbababb⇒ ababaabb⇒ · · · ⇒ baabbbab.

3

If this sequence of words contains more than 28 = 256 elements, then some word
must appear twice in the derivation sequence. Thus there is a shorter derivation,
because we can simply cut out the loop. So now we have a decision algorithm: If
the source and the target word both have length n, construct the tree of derivable
words to a maximum depth of 2n. If the target word ever appears, stop and answer
‘Yes’. If the target word does not appear in the first 2n levels, answer ‘No’.

We can combine the two arguments above to similarly bound the depth of the
tree when every rule is either length-increasing or length-preserving.

What happens in the general case, where substitution rules can either increase,
decrease, or preserve the lengths? Here the only thing we can say at the outset
is that the decision problem is Turing-recognizable: The algorithm constructs the
tree of derivable words layer by layer, and if we ever encounter the target word,
we halt and answer ‘Yes’. But it is not clear when we can answer ‘No’. In fact we
will see later that the general problem is not decidable. There is no way, given the
substitution rules, and the source and target words, that we can a priori bound the
length of the derivation.

4

