
CSCI3390-Lecture 20: Probabilistic
Algorithms: Number Theory and

Cryptography

1 Two Problems
Problem 1. Generate Primes

Find a prime number p of between 200 and 1000 decimal digits that
has never been found before.

Problem 2. Factor into Primes

Given N = pq, where p, q are primes generated by an algorithm for Problem 1,
find p and q.

Comment.

We will see that Problem 1 has an easy solution—one that generates a prime in
time polynomial in the number of digits required, and which for large numbers of
digits (like those given in the problem) produces primes with an microscopically
small probability of ever having been encountered before.

A homework problem in Assignment 5 asked you to prove that if P = NP,
then Problem 2 has a solution whose running time is polynomial in the number of
digits of N. However, it is widely believed that this problem is intractable.

This question is not merely theoretical! Shown below is the ‘public-key cer-
tificate’ for amazon.com. The large value labeled ‘Public key’ is a number of 512
hexadecimal (base 16) digits, corresponding to 2048 bits in binary, or some six
hundred decimal digits. It is, indeed, an instance of an integer N formed by mul-
tiplying together two primes produced according to a fast algorithm for Problem

1

1. We believe that there is no practical method for factoring N. If there were, en-
crypted traffic between Amazon and its customers (and many, many other secure
websites and their clients) could be decrypted.

To get to the easy algorithm for Problem 1, we have to analyze the time com-
plexity of several number-theoretic algorithms.

2 Euclid’s Algorithm
Euclid’s algorithm computes the greatest common divisor d = gcd(m,n) of two
integers m and n, provided m and n are not both zero.

Repeatedly replace (n,m) by (m,n mod m) until n mod m = 0.
The gcd is the last value of m.

For example, with n = 114,m = 20, the algorithm produces the sequence of
pairs

(114, 20), (20, 14), (14, 6), (6, 2), (2, 0),

so the greatest common divisor is 2. Observe that Euclid’s algorithm performs
a single division at each step, but throws away the quotient of the division and
works exclusively with the remainders. A modification, often called the Extended
Euclid Algorithm retains the quotients, and uses them to arrive at a pair a, b of
integers such that am+ bn = d.

Each division can be done in time polynomial in the size (number of digits) of
n and m. How many divisions are performed? In two steps of the algorithm, the
larger number n of the pair is replaced by n mod m. Observe that

n mod m <
n

2

(Think of the two cases where m ≤ n
2

and m > n
2
.) Thus the larger number in

each pair decreases by a factor of at least 2 every 2 divisions. If we perform k
divisions and are still going, then

n/2
k
2 ≥ 1,

so
k ≤ 2 log2 n,

or twice the number of bits in the binary representation of n. Thus the algorithm
runs in time polynomial (in fact something like cubic time) in the number of digits

2

Figure 1: The public key of amazon.com is an integer N > 10600, shown here in
hexadecimal, that is the product of two large primes. The security of the website
depends on the conjectured practical impossibility of recovering the primes.

3

of the input. The moral is that Euclid’s algorithm is fast, and can be performed
efficiently with numbers thousands of bits long. The same holds for the extended
version, which performs a couple of additional operations for each division step.

3 Modular Exponentiation
Modular exponentiation is the problem of computing

ab mod c

for positive integers a, b, c. If a, b are very large (think ≈ 10600, then ab is literally
too big to write down, but we can compute the value of the expression above by
reducing modulo c at every step. The algorithm looks like:

• Set power← 1.

• Repeat b times:
Set power← (a× power) mod c.

Here the numbers do not get too big to write down, but the repetition of the
loop 10600 times cannot be carried out in practice. The solution to the dilemma is
a simple trick that does many fewer multiplications and divisions than this naı̈ve
algorithm.

Let us say that we need to compute 1430 mod 33. We begin with 14 and re-
peatedly square the last value and reduce it mod 33. This produces the following
values:

142 = 196 ≡ 31 (mod 33)

144 ≡ 312 ≡ (−2)2 = 4 (mod 33)

148 ≡ 42 = 16 (mod 33)

1416 ≡ 162 = 256 ≡ 25 (mod 33).

This first phase required four multiplications and four divisions. For the second
phase, we write the exponent 30 as a sum of distinct powers of 2:

30 = 16 + 8 + 4 + 2.

We then use this as a recipe to combine the values computed in the first phase:

1424 = 1416 × 148 ≡ 25× 16 = 400 ≡ 4 (mod 33).

4

1428 = 1424 × 144 ≡ 4× 4 = 16 (mod 33).

1430 = 1428 × 142 ≡ 16× 31 = 496 ≡ 1 (mod 33).

This second phase required three multiplications and four divisions, so we did
seven multiplications and divisions in all, compared to the 29 we would have had
to perform for the naı̈ve algorithm.

In general, this algorithm takes log2 bmultiplications and divisions to compute
the successive values a2k (mod c) in the first phase, and no more than this many
operations for the second, so the total number of multiplications is bounded by
2 log2 b, which is less than the number of decimal digits of b. Thus this algorithm
can be carried out in time polynomial in the size of the original input.

4 Fermat’s Theorem
Statement

Let p be prime, and let 1 ≤ a < p. Then

ap−1 ≡ 1 (mod p).

Let’s give an example, which may seem kind of strange at first. We compute
714 mod 15.Of course, 15 is not prime, and Fermat’s Theorem says nothing about
what the result here should be. We apply our repeated squaring algorithm:

72 = 49 ≡ 4 (mod 15).

74 ≡ 42 = 16 ≡ 1 (mod 15)

78 ≡ 12 = 1 (mod 15).

Then
714 = (78 × 74)× 72 ≡ 1× 1× 4 ≡ 4 (mod 15).

We didn’t get 1, but Fermat’s Theorem says that if 15 were prime, we would get 1.
So 15 is composite. This is a proof that 15 is composite that gives no information
about the factors of 15.

Of course, you already knew that 15 is composite! But because of the al-
gorithm for modular exponentiation with repeated squaring, we can apply this
algorithm to very large values, and obtain proofs of their compositeness without
the necessity of factoring them.

This gives a kind of partial algorithm for testing whether a given integer n > 1
is prime or composite:

5

• Pick a random value a such that 1 ≤ a < n.

• Compute b = an−1 mod n.

• If b 6= 1, answer ‘definitely composite’, otherwise answer, ‘might
be prime’.

This test can produce false positives. You may verify that 1114 mod 15 = 1,
so the algorithm would give ‘might be prime’ if 11 happened to have been selected
as the test value for n = 15.

How common are false positives? If n is very large, then false positives are
extremely rare: I ran this test with 100,000 randomly selected n in the range from
2 to 10200 and compared the result to the one given by a more reliable primality
test. There were no false positives—every n identified as ‘might be prime’ really
was prime.

Below we will prove Fermat’s Theorem, and give a kind of explanation of
why it works so well. As it turns out, there is a flaw in the algorithm that could
undermine its performance (although in practical terms it does not seem to matter),
and we will discuss some better alternatives.

Proof of Fermat’s Theorem
Let 1 ≤ a < p and let p be prime. We first show a property of the set of integers

G = {1, . . . , p− 1}.

It is this: If x, y, z ∈ G and

xz ≡ yz (mod p),

then
x ≡ y (mod p).

To see why, note that if xz ≡ yz, then p|xz − yz = z(x − y). Now if a prime
number divides a product z(x − y), then it must divide either z or x − y. Since
z ∈ G, we cannot have p|z, so p|(x− y), thus x ≡ y (mod p).

In other words, we can ‘divide’ both sides of an equation mod p by any z ∈ G.
Now let

H = {1, a, a2 mod p, . . .}.
H ⊆ G. Since H is finite, there must be 1 ≤ k ≤ ` such that

ak ≡ a` (mod p).

6

By the cancellation property we just proved, we can divide both sides of this
equation k times by a, and get

1 ≡ aj mod p

for some j > 0. If we let j denote the least such value, we have that H consists of
exactly j elements

H = {a, a2 mod p, . . . , aj−1 mod p, aj mod p = 1}.

If this is all of G, then j = p−1, so ap−1 ≡ 1 (mod p), which is what we wanted
to prove. If there is some b ∈ G\H, then we consider the elements

bH = {bak mod p : 1 ≤ k ≤ j}

for k = 1, . . . j. By the cancellation principle again, all j of these elements must
be distinct. Furthermore, we can never have an element in both bH and H. This
is because then

bak ≡ a` ≡ aj+` (mod p),

and we can cancel ak from both sides to get

b ≡ aj+`−k (mod p),

which would give b ∈ H, a contradiction. If this still does not exhaust all the
elements of G, we pick b′ ∈ G\(H ∪ bH), and repeat. In the end, we will have G
as the union of a bunch of pairwise disjoint sets,

G = H ∪ bH ∪ b′H ∪ · · · ,

each with j elements. Thus j|p − 1 so p − 1 = js for some positive integer s.
Accordingly

ap−1 = ajs = (aj)s ≡ 1s = 1 (mod p),

completing the proof.
Students who have done some abstract algebra will recognize that G is a finite

group, H a subgroup of G, and bH the cosets of H. We have given the standard
proof that the number of elements in a subgroup divides the number of elements
in the group.

7

What is the probability of a false positive?

The test for primality that we have given above can produce false positives: In
the example above this happened when 15 was erroneously identified as a prime
because we had the bad luck to choose 11 as the base. Experiments with very
large candidate primes show that when testing very large numbers at random, this
hardly ever happens. Let us try to quantify the likelihood of this kind of error, and
see what we can do about it.

Let n > 1 be a composite number. The set

G = {a : 1 ≤ a < n and gcd(a, n) = 1}

has the same cancellation properties as the set of integers 1 ≤ a < p when a is
prime, and it is also closed under multiplication modulo n. (That is, if a, b ∈ G,
then ab mod n ∈ G. In the language of abstract algebra, G is a group, just as it
was in the case where n is prime.)

Let
H = {a ∈ G : an−1 ≡ 1 (mod n)}.

This is the set of bases that produce false positives. H is nonempty (it includes 1)
and is also closed under multiplication, because if a, b ∈ H,

(ab)n−1 = an−1bn−1 ≡ 1 · 1 = 1 (mod p).

In the case n = 15, we have

G = {1, 2, 4, 7, 8, 11, 13, 14}, H = {1, 4, 11, 14}.

If G contains some element b that is not in H, then we can argue just as before
that bH has the same number of elements as H and is disjoint from it. Thus

n− 1 ≥ |G| ≥ 2 · |H|,

and thus |H| < (n−1)
2
.

This means that the probability of a randomly chosen positive integer less than
n being a false positive is less than 1

2
. Less than 1

2
doesn’t sound all that great, but

we can amplify the probability that we have not made an error by repeating the
test many times:

repeat 100 times:

8

• pick 1 ≤ a < n at random

• compute b = an−1 mod n

• if b 6= 1, return ‘composite’

return ‘probably prime’

Every integer n that this test identifies as composite actually is composite.
The test falsely identifies a composite as prime only if we get 100 successive false
witnesses to primality. Since the probability of a false witness at each draw is
less than 1

2
, such a succession of errors would occur with probability < 2−100,

probably a lot less.
Now 2−100 ≈ 10−30 is so very small, that the probability of some other kind

of error causing the calculation to fail (hardware glitch?) is vastly larger. Thus for
all practical purposes this always works.

Except...notice that in our calculation of the probability we assumed that H
was properly contained in G. What if H = G? This would mean that for every
positive value of a less than n and relatively prime to n, an−1 mod n = 1.

Numbers n with this property are called Carmichael numbers. There are in-
finitely many of them, but they are extremely rare, so if you were hunting for
primes at random, it would be very unlikely that you happened upon one of them
by chance. Furthermore, a Carmichael number would not necessarily give a false
positive to the above test, since we might choose a to be an integer that has a factor
in common with n, in which case we can correctly identify n as composite. But
our probability bound fails to hold in this case.

5 A Better Test, and a Better Test?
An improved test, in the same spirit, avoids this problem: If we find an−1 ≡
1 mod n, we don’t stop there and go on to the next a. The number n that we
are testing must be odd (otherwise we wouldn’t do any elaborate calculation to
determine whether n is prime) so we set k = n−1

2
and try again, computing b =

ak mod n. Observe that ak is then a square root of 1 modulo n.
If we now again have b = 1, and k even, we repeat the test again, dividing k

by 2. Eventually we will reach a point where we can go no further, either because
the exponent k is not divisible by 2, or because ak mod p 6= 1. In all cases, we
stop at a value b such that b is a square root of 1 mod n. If b is different from both

9

1 and n− 1, then
n|b2 − 1 = (b− 1)(b+ 1),

and neither b−1 nor b+1 is divisible by n. This means that n must be composite.
In all other cases, we treat n as a possible prime, and move on to the next random
a.

Here is an illustration of the test, with n = 561, assuming we have picked
a = 35.

35560 ≡ 1 (mod 561)

35280 ≡ 1 (mod 561)

35140 ≡ 1 (mod 561)

3570 ≡ 1 (mod 561)

3535 ≡ 494 (mod 561)

The last line shows that 561 is composite. Significantly, 561 is a Carmichael
number, but we still get a proof of compositeness for these values as well.

It can be shown once again that the probability that a randomly-chosen a is
a false witness for primality is less than 1

2
, and this holds without the additional

caveat we had in the Fermat test—it works for every n.
This test was first discovered by Gary Miller in 1976. He did not describe it

as an algorithm with random selection of a. Instead he showed that if a certain
conjecture in number theory, the Extended Riemann Hypothesis is true, then it
is sufficient to test all a ≤ 2 lnn, and thus the test determines primality with no
possibility of error in time polynomial in the number of digits of n. It was Michael
Rabin who suggested the method’s practical use as a randomized algorithm, and
the test is now known as the Miller-Rabin test.

So to summarize: The Miller-Rabin test as it is commonly used is a polynomial-
time probabilistic algorithm for testing primality; whenever it answers ‘compos-
ite’, the input is composite; whenever it answers ‘prime’, the input is prime with
very high probability, and the probability of error falls off exponentially with the
number of repetitions of the main loop of the test. If a certain number-theoretic
conjecture is true, the Miller-Rabin test can be turned into a polynomial-time de-
terministic algorithm for testing primality.

In 2002, a deterministic polynomial-time algorithm for testing primality was
discovered, the AKS algorithm (Aggarwal-Kayal-Saxena). In practice, Miller-
Rabin is much faster, so this has not supplanted probabilistic tests for practical
work.

10

6 The Distribution of Primes
While we have described an efficient algorithm for testing if a given integer n is
prime, we have not justified our original claim that Problem 1 is easy. While it
may be easy to test whether a given integer is prime, finding a prime in a given
range might be very hard. What if there were only a million primes that have 100
decimal digits? Randomly selecting 100-digit numbers and testing them for pri-
mality would then never yield a prime in practice, since the probability of hitting
a prime would then be about 10−93. Moreover, the probability that any prime that
you did happen to find had not been found before would be greater than 10−6,
a small probability, to be sure, but not small enough, since we could very well
have one million different parties trying to generate such primes for use in secure
websites.

An examination of a table of primes less than, say, 1000, might lead you to
worry that a scenario like the above is realistic, because the primes really do seem
to thin out as you go to larger and larger numbers. Let us denote by π(n) the
number of primes less than n. So, for example, π(12) = 5, because {2, 3, 5, 7, 11}
is the set of primes less than 12. There are infinitely many primes, a fact known
since antiquity, so

lim
n→∞

π(n) = +∞.

The fact that the primes thin out is expressed by the equation

lim
n→∞

π(n)/n = 0.

That’s the bad news. The good news is that this ratio does not approach 0 rapidly,
but more like 1

lnn
. The exact statement is

lim
n→∞

π(n)

n/lnn
= 1.

This fact is called the Prime Number Theorem. Let’s see what this means in prac-
tice. The number of primes with 1000 bits (approximately the size of the primes
used to generate amazon.com’s public key) is the number of primes between 2999

and 21000. By the Prime Number Theorem, the number of primes less than 21000 is
about

21000/(1000 ln 2) ≈ 21000/693.

Thus, roughly speaking, more than one in every 700 numbers less than 21000 is
prime. You get a same result for 2999. So an algorithm for finding primes in this

11

range is to follow 1 by 999 randomly selected bits, and test for primality. If you
do this repeatedly, you will find on the average one prime for every 700 attempts.
If you simplify matters by testing only odd integers, the average number of tries
goes down to one out of 350. Moreover, the probability of getting the same prime
twice by this procedure is for all practical purposes 0.

7 Public-key Cryptography
So now we know that Problem 1 at the beginning of these notes is easy. We believe
that Problem 2 is hard. Thus generating two large primes by the above algorithm
in effect locks up a secret that cannot be unlocked by someone who does not know
the primes. How can we use this in practice?

The following is reproduced verbatim from the textbook for the Logic and
Computation course. This is available on the canvas site, I am just repeating it
here for your convenience.

Two parties, Alice and Bob, want to communicate privately, so that their mes-
sages cannot be read by an eavesdropper, Eve. Alice and Bob thus decide to
encrypt their communications. To do this, they previously agreed on some secret
information —a key. To send a message M (the plaintext) to Bob, Alice combines
it with the key K and encrypts it using an encryption algorithm E. Bob receives
the output of this algorithm, the ciphertext C = E(M,K). To recover the plain-
text, Bob combines the ciphertext with the key and applies a decryption algorithm
D, and finds M = D(C,K). This setup is called symmetric encryption: Alice
and Bob share the same secret information K, and Bob can reply to Alice by en-
crypting his own plaintext messages M using the encryption algorithm E. (The
encryption and decryption algorithms D and E themselves are not secret.)

This begs the question of exactly how Alice and Bob agree on the key K in
the first place. In the kinds of practical applications of cryptography that you use
all the time, the two parties are typically an online retailer and a customer who
have not previously had any contact. The retailer cannot simply send the key K
to the customer in unencrypted form, since then any eavesdropper will be able to
recover K and encrypt and decrypt all subsequent communications between the
two parties.

The amazing solution to this dilemma is that the retailer actually does send
K to the customer. K is public information. The trick is that encryption and
decryption are not carried out using the same key. Instead there are two keys, the
public one K used for encryption, and a secret key K ′ used for decryption. The

12

Figure 2: Symmetric encryption: Eavesdropper Eve intercepts the ciphertext C
and knows the encryption and decryption algorithms E and D, but without access
to the shared secret key K, she cannot recover the plaintext message M.

13

Figure 3: Public key encryption: Eavesdropper Eve intercepts the ciphertext C
and knows both encryption and decryption algorithms E and D, and Bob’s pub-
lic encryption key K, but without access to Bob’s secret decryption key K ′, she
cannot recover the plaintext message M.

customer encrypts a plaintext message M by computing

C = E(M,K),

and the retailer decrypts it by computing

M = D(C,K ′).

This setup is called asymmetric, or public-key cryptography.
How is such a thing possible? If both the encryption algorithm and the en-

cryption key are publicly known, why can’t the adversary reverse-engineer the
algorithm to recover the plaintext M from E(M,K)?

7.1 The RSA algorithm
How can we harness the difficulty of factoring to create a public-key cryptographic
system? The first proposal for doing so, and the method still in widest use, is

14

called RSA (after its inventors Rivest, Shamir, and Adleman). We’ll describe the
steps of the algorithm, work through an example with artificially small parameters,
and then prove that the algorithm works.

7.1.1 Key Generation

The recipient, Bob, secretly generates two large primes p 6= q and forms the
products

N = pq,K = (p− 1)(q − 1).

He chooses an integer e so that e is relatively prime to K, and determines in-
tegers d and c such that de = cK + 1. This is an easy problem in light of Euclid’s
Algorithm and the extended Euclid Algorithm: we may have to test several differ-
ent candidate values of e before we find one that is relatively prime to K. Observe
that d can be chosen so that 0 < d < K, since if d were outside this range, we can
add multiples of K to ensure this. So we can assume d > 0, c ≥ 0.

Bob publishes the pair (e,N): this is the public key. The integer d is the
private key.

7.1.2 Encryption

Alice copies Bob’s public key. The message to be sent must be encoded as an
integer M < N. Alice then uses the public information and fast modular expo-
nentiation to compute

C =M e mod N.

The ciphertext C is sent to Bob.

7.1.3 Decryption

Bob uses his secret information and fast modular exponentiation to compute

Cd mod N.

We will prove below that this is identical to the original plaintext message M.

7.1.4 Example

We’ll illustrate the algorithm with an example that uses small integers, so you can
see what every step looks like. Of course, in practice, the algorithm is never used
with such small values.

15

Let’s choose p = 53, q = 61 as our primes. Then

N = pq = 3233, K = (p− 1)(q − 1) = 3120.

A little trial and error shows gcd(7, K) = 1, and we can apply the extended Euclid
algorithm to find

3120 = 7 · 445 + 5

7 = 1 · 5 + 2

5 = 2 · 2 + 1

so

1 = 5− 2 · 2
= (3120− 7 · 445)− 2 · (7− (3120− 7 · 445))
= 3 · 3120− 1337 · 7

This would give d = −1337, so we adjust by adding 3120, and get d = 1783.
This is the secret key. The pair (7, 3233) is the public key.

For purposes of this small example let’s suppose that the sender encrypts two-
letter pairs, first by encoding the pair as a four-digit integer. For example, the pair
‘TB’ would be encoded as 2002, since T is the 20th letter and B the 2nd letter of
the alphabet.

To encrypt this using the public key, the sender computes

20027 mod 3233.

We have already seen how to do this quickly using repeated squaring. We’ll let
the built-in Python function pow do the work here:

>>> pow(2002,7,3233)
2817

The recipient takes the ciphertext 2817 and uses the secret information to de-
crypt:

28171783 mod 3233.

We use pow again to get the result, which is the original plaintext.

>>> pow(2817,1783,3233)
2002

16

7.1.5 Proof of correctness of RSA

We have to show that encryption followed by decryption recovers the original
plaintext, in other words, that

Cd mod N =Mde mod N =M.

To do this we will show
Mde ≡M (mod p)

and
Mde ≡M (mod q).

This implies that both p and q divide Mde −M. Since p and q are distinct primes,
we have N = pq also divides Mde −M. Thus

Mde ≡M (mod N),

so Mde modM =M.
To establish the claims above, note that if p|M, then p|Mde, so

Mde ≡ 0 ≡M (mod p).

If p 6 |M, then M mod p = a, where 1 ≤ a < p. Since de = cK + 1 for some
integer c, we have:

Mde = M cK+1

= M c(p−1)(q−1)M

= (Mp−1)c(q−1) ·M
≡ (ap−1)c(q−1) ·M (by Fermat’s Theorem)
≡ 1 ·M
= M (mod p)

The proof that Mde ≡M (mod q) is identical.

7.1.6 Security and Efficiency of RSA

Since the exponent N in RSA is part of the public key, anyone who can find the
prime factors of N will be able to reproduce the computation of the secret expo-
nent d and decipher all subsequent messages. Knowledge of the secret exponent

17

can also be used to factor N. So RSA is only secure to the extent that factoring is
infeasible. Currently, the best factoring algorithms, coupled with massive compu-
tational effort, can factor integers of approximately 200 decimal digits, or about
660 bits in binary. Public RSA keys in wide use are typically 1024 or 2048 bits
long, with the latter becoming more common.

The conjecture that factoring is intrinsically hard does not itself guarantee the
security of RSA: no one has ruled out the possibility that there is some efficient
method for decryption that does not recover the secret exponent.

Thanks to tools like fast modular exponentiation, Euclid’s algorithm, and prob-
abilistic primality testing, RSA is ‘fast’, in the sense that the algorithms for key
generation and encryption can be carried out reasonably quickly on very large
numbers. Still, encryption with RSA is much slower than with conventional sym-
metric encryption, so it is not well-suited for large volumes of traffic. For this
reason, encryption on the Internet is a two-phase process: when you contact a
secure website, your browser downloads the RSA public key (e,N), generates a
symmetric key K, encrypts K with the RSA key and sends this to the server. Now
both you and the server share the symmetric key K, which is used to encrypt all
subsequent communication for the session.

18

