
CSCI3390-Lecture 18: Why is the P =?NP
Problem Such a Big Deal?

The conjecture that P is different from NP made its way on to several lists
of the most important unsolved problems in Mathematics (never mind Computer
Science, where it is the most important unsolved problem). It is relatively simple
to state, even simpler to paraphrase:

Is finding a solution harder than just verifying a solution?

and, judging by the strenuous efforts that have made to solve it during the past
four decades, very, very hard. Depending on whom you listen to, the conjecture is
either something that must be true, with unthinkable consequences otherwise—or,
something that might very well be false.

If it is false, then it will reshape our view of the computational universe,
in a way that goes beyond the development of efficient algorithms for a col-
lection of NP-complete combinatorial decision problems like CLIQUE and 3-
COLORABILITY. These notes are a summary of a few of these consequences.

1 Polynomial solution to optimization problems
If P=NP then we would have polynomial-time solutions for a number of hard
optimization problems, not just decision problems. We’ll concentrate on one such
problem, but the principle is quite general.

The Traveling Salesman Problem (TSP) has as its input a weighted undirected
graph G, together with a home vertex v. The weights are integers attached to
each edge of the graph. Thus the size of a problem instance includes the total
number of bits required to write down all the weights, as well as tabulate all the
vertices and edges. The output of the problem is a circuit, beginning and ending
at vertex v, that has minimum total weight. Think of the vertices of the graph as

1

the cities on a salesman’s route, and the weight of an edge between, say, Boston
and Philadelphia as the cost of traveling between these two cities. The problem is
then to visit every city on the salesman’s route as efficiently as possible.

First note that this problem is as hard as any problem in NP, in the sense that
if we had a polynomial-time solution, then it would follow that P=NP. To see this,
letG be a graph with n vertices, and let us assign weight 1 to every edge. Pick any
vertex v as the home. Then this weighted graph has an optimal traveling salesman
circuit of length n if and only if G has a Hamiltonian circuit. Thus a polynomial-
time solution to the TSP implies a polynomial-time solution to an NP-complete
decision problem, and thus P=NP.

We’ll show the converse: That is, suppose that P=NP. We will give a polynomial-
time algorithm that finds an optimal route for the salesman. Let N be an integer
that is greater than the number of vertices, the number of edges, and the number
of bits in each weight. We can take N as a measure of the size of the input in-
stance. The graph has no circuit at all if it is not connected, and this is something
that we can determine in polynomial time. If the graph is connected, then doing
a depth-first search would provide a circuit that traverses each edge exactly twice.
The total weight of this circuit is no more than twice the sum ofN N -bit numbers;
that is, no more than M = 2N · 2N .

Now consider the following decision problem (Problem 1): The input consists
of the TSP input, together with a threshold value T. The output is ‘Yes’ if and
only if there is a circuit of weight no more than T. This problem is easily seen to
be in NP, since if we had a candidate circuit we could efficiently verify that its
weight does not exceed the threshold. Thus if P=NP we have a polynomial-time
algorithm for this decision problem. We now couple this algorithm with binary
search, first testing if there is a circuit with weight no more than M/2. If there is,
we repeat with T = M/4, if not, with T = 3M/4. In no more than log2M < 2N
iterations, we will find the exact weight of the optimal path. Since each itera-
tion requires time p(N), where p is a polynomial (using our P=NP assumption!)
we have shown a polynomial-time algorithm for finding the exact weight of an
optimal circuit.

What about finding the optimal circuit itself? We now turn to another decision
problem (Problem 2). Here the input is the weighted graph G, a home vertex v, a
sequence of no more thanN vertices v = v0, v1, . . . , vk, and a target T. The output
is ‘Yes’ if and only if there is a circuit of weight T that starts with the sequence
v0, . . . , vk. Once again, this problem is in NP, so if P=NP, it can be decided in
polynomial time.

We now use for T the optimal value determined by our solution to Problem 1,

2

and try out every vertex of G for v1. We will thus run our algorithm no more than
N times to determine the first vertex on an optimal circuit. We proceed similarly
to find an appropriate value of v2, etc. Thus we find an optimal circuit in N2

iterations of our algorithm for Problem 2, so this is still polynomial time.

2 coNP, ∀∃P, and beyond (‘collapse of the polynomial-
time hierarchy’)

Consider the problem of determining whether a propositional formula φ is a tautology–
that is, whether every assignment is satisfying. This is equivalent to the problem
of determining whether ¬φ is a contradiction–i.e., has no satisfying assignments.
The naı̈ve algorithm for testing this is, as with SAT, to try out every one of the
2n assignments to the n variables in the formula. However, with SAT there was
the possibility of getting lucky and chancing upon a satisfying assignment before
all the possibilities are examined. With the tautology problem, or the equivalent
contradiction problem, there are no such lucky guesses to show that something
is a tautology, so ‘yes’ instances of this problem seem harder than SAT. (On the
other hand, we could get lucky and find a non-satisfying assignment which would
give us a quick ‘No’ answer.)

The contradiction problem is the complement of SAT. Similarly, the comple-
ment of the graph 3-colorability problem is the collection of graphs that can’t be
3-colored; the complement of the Hamiltonian circuit problem is the collection of
graphs that don’t have Hamiltonian circuits, etc. The class coNP consists of the
complements of NP problems. The tautology problem is also in here, because it
is the complement of the NP problem of determining if there is a non-satisfying
assignment.

If it happened that P = NP, then NP would be closed under complement
(because P is). We would then have NP = coNP = P, so all of these comple-
ment problems would also be solvable in polynomial time.

But there’s more. Suppose we are given two propositional formulas (or even
boolean circuits) φ and ψ and asked if they are equivalent–i.e., whether they agree
on all assignments. That is, we are asking whether

(φ ∧ ψ) ∨ (¬φ ∧ ¬ψ)

is a tautology. As noted, this is a problem is in coNP. To solve it, we would
presumably test every possible assignment.

3

Now, suppose we are given a single formula or circuit φ, and we ask if there
is a smaller formula or circuit ψ that is equivalent to φ. Ordinarily we would have
to run through every formula smaller than φ and test it for equivalence, which
requires us to run through every assignment. But now we can apply the hypothesis
P=NP twice: equivalence testing would be in P, so the existence of a witness
formula ψ would be in NP, and hence in P. So this problem, too, which appears
to be at a higher level of complexity, would also be solvable in P.

(More technical).What are these higher levels of complexity? We can define
these various compleA problem L in NP have the following form: There is some
polynomial-time computable, boolean-valued function F and positivek > 0 such
that

w ∈ L⇔ ∃x(|x| ≤ |w|k ∧ F (w, x)).

This is just a fancy way in the language of predicate logic to express the exis-
tence of a polynomial-size witness. We might paraphrase this and write

NP = ∃P.

Then coNP is characterized by

w ∈ L⇔ ∀x(|x| ≤ |w|k → F (w, x)),

or, more succinctly,
coNP = ∀P.

Continuing with this theme, our formula equivalence problem has another
layer of quantifiers:

∃ψ(|ψ| ≤ |φ| ∧ ∀x(x ∈ {0, 1}n → ψ(x) = φ(x))),

where by φ(x) I mean the result of substituting the assignment x for the variables
in φ. We might call the underlying complexity class

∃∀P.

The same argument we gave above shows that, if P=NP, then no matter how many
levels of quantification we apply, all such problems are solvable in polynomial
time. This is called the collapse of the polynomial-time hierarchy.

4

3 The End of Creativity in Mathematics and Sci-
ence?

This point was raised, in different language, by Gödel in a letter written in the
1950’s—long before the research on NP-complete problems began—and only dis-
covered after his death.

A sentence of arithmetic expressing a complex theorem, if written out com-
pletely, might take up perhaps one thousand (103) symbols. Any proof that we
are likely to comprehend, or, for that matter, check with a computer, would not
use more than one billion symbols (109). Now consider the set of sentences φ of
arithmetic that are theorems, and have proofs of length no more than |φ|3. This
problem is in NP. If P=NP then we would have a polynomial-time algorithm for
settling all such questions of arithmetic, and even finding the proofs. Some would
view this as a complete automation of the process of discovery and creation in
mathematics—and this has even been extrapolated to the discovery of scientific
theories. (I don’t find this terribly convincing, and I don’t really buy it, so I may
not be the best advocate or explainer of this line of thought.)

5

