
CSCI3390-Lecture 17: A sampler of
NP-complete problems

1 List of Problems
We now know that if L is any problem in NP, that

L ≤P SAT,

and thus SAT is NP-hard. Since SAT is also in NP we find that SAT is NP-
complete. Further,

SAT ≤P 3-SAT,

so 3-SAT is also NP-complete.
It turns out that most (though not all) of the problems in NP that we saw, unless

they are obviously in P, are NP-complete. These notes list a few of these results,
along with similar results for problems we haven’t discussed. We will then give a
detailed proof that the Hamiltonian path problem is NP-complete.

1.1 Cliques in Graphs
A k-clique in an undirected graph is a set of k vertices such that each is adjacent
to the other k − 1.

The following problem is NP-complete:

Input: An undirected graph G and an integer k ≤ n, where n is the
number of vertices of G.

Output: Yes if G contains a clique of size k, no otherwise.

An independent set in a graph is a set of vertices such that no vertex in the set
is adjacent to any other vertex in the set. (Think of trying to find a large group of
people so that no one in the group knows anyone else in the group.)

The following problem is NP-complete:

1



Input: An undirected graph G and an integer k ≤ n, where n is the
number of vertices of G.

Output: Yes if G contains an independent set of size k, no otherwise.

Comment: These are the same problem: A clique in a graph G is an independent
set in the dual graph G′ and conversely. The dual graph is obtained by adjoining
two vertices if and only if they are not adjoined in the original graph. Observe that
we can construct the dual graph of G in time polynomial in the size of G, so each
of these problems is polynomial-time reducible to the other; thus if one of them is
NP-complete, the other is as well.

There is still a third problem in this vein, the Vertex Cover problem.

Input: An undirected graph G and an integer k ≤ n, where n is the
number of vertices of G.

Output: Yes if there is a set S of vertices such that every edge of G
has at least one of its two vertices in S

(Think of trying to place mailboxes on corners of city streets so that everyone
is no more than one block away from a mailbox. The vertices of the graph here
are the intersection, and the edges the streets joining the intersections. So this is a
problem of finding a vertex cover.)
Comment: This too is equivalent to the preceding problems, since S is a vertex
cover of G if and only if V (G)− S is an independent set.

1.2 Graph coloring
A k-coloring of a graph G is a function f : V → {1, . . . , k}, where V is the
set of vertices of G, such that if v, v′ ∈ V are adjacent, then f(v) 6= f(v′). (Put
otherwise, adjacent vertices must be colored different colors.)

The following problem is NP-complete.

Input: An undirected graph G.

Output: Yes if G has a 3-coloring, no otherwise.

Comment. Based on this, it is easy to prove(homework problem) that 4-colorability
(and 5-colorability, etc) are all NP-complete.

2



1.3 Subset sum
The following problem is NP-complete:

Input: A set S = {k1, . . . , km} of positive integers, and a target value
M.

Output: Yes if S has a subset T such that
∑

s∈T s =M.

For example, if S = {14, 32, 53, 75, 96} and M = 181, then the output is yes,
because 181 = 32 + 53 + 96.
Comment: The integers are encoded in binary or decimal (or some other radix).
There is an ‘efficient’ dynamic programming algorithm for solving this problem
that works as follows. We construct a rectangular table T (i, j), for 1 ≤ i ≤ m
and 0 ≤ j ≤M, such that T (i, j) = 1 if and only if there is a subset of k1, . . . , ki
that sums to M. There is a simple recurrence that allows us to fill in the table row
by row:

T (0, j) = 1.

T (i, j) = 1 if j = ki.

T (i+ 1, j) = 1 ifT (i, j) = 1.

T (i, j + ki) = 1 ifT (i, j) = 1.

In all other cases T (i, j) = 0. The output is yes if T (m,M) = 1. There is no
contradiction here: note that the size mM of this table, and hence the number of
steps of the dynamic programming algorithm, is exponential in the size (m+ 1) ·
logM of the input. It makes a difference here that we code the numbers in binary
or decimal rather than in unary.

1.4 Hamiltonian Path
The following problem is NP-complete.

Input: An undirected graph G and vertices s, t of G.

Output: Yes if G contains an Hamiltonian path from s to t, no other-
wise.

Comment. Still NP-complete if the graph is directed, or if we ask for a Hamilto-
nian circuit rather than a path from s to t.

Compare this to the famous optimization problem the Traveling Salesman
Problem:

3



Input: An undirected graph with positive integer weights on the edges.

Output: A circuit in the graph that visits every vertex and has mini-
mum total weight for all such paths.

Suppose the weights are distances, or train ticket prices. The salesman wants
to visit every city on his route and return home, and do so covering the smallest
distance possible, or paying the least amount of money.

Unless P=NP, TSP has no polynomial-time algorithm. If it did, we could
apply it to a graph in which all edge weights are 1. The graph has a Hamiltonian
circuit if and only if the optimal path returned by TSP has total weight equal to the
number of vertices. Thus an efficient solution to TSP would imply a polynomial-
time algorithm for the Hamiltonian circuit problem, and thus that P=NP.

2 Some Proofs
It is easy to prove that these problems are in NP, the art is in proving they are
NP-hard

2.1 Directed Hamiltonian Path
We begin with the problem of determining if there is a Hamiltonian path from a
given source vertex s to a destination vertex t in a directed graph. We will do this
by showing a polynomial-time reduction

SAT ≤P Directed Hamiltonian Path.

So, given a formula φ in CNF, we will show how to construct a directed graph
G with two distinguished vertices s, t such that φ is satisfiable if and only if G
contains a Hamiltonian path from s to t. In other words, we have to translate a
logic problem into a graph problem. The reduction proceeds by the introduction
of a number of ‘gadgets’ (that is the term that is actually used).

Figure 1 shows variable gadgets. There are three of these, the diamond-shaped
figures stacked one on top of the other. The horizontal paths within each variable
gadget are divided into three stages. In general, the number of variable gadgets is
equal to the number of distinct variables in the formula, and the number of stages
in the horizontal path paths within each gadget is equal to the number of clauses
in the formula.

4



Figure 1: An assemblage of three variable gadgets. There are 8 different Hamil-
tonian paths from top to bottom, corresponding to the 8 different choices of a
sequence of starting directions from the top of each gadget.

5



Pause a moment and consider the problem of finding a directed Hamiltonian
path from the top vertex to the bottom vertex of Figure 1. There are clearly
many such paths. Within a single gadget I can begin by choosing to take the
left-branching or right-branching edge. Whichever edge I choose, I am obliged to
take the horizontal path across the gadget to the opposite side, and then continue
down to the top of the next variable gadget. In general, if there are k variables,
then there are 2k different Hamiltonian paths from the top to the bottom, one for
each sequence of choices for the starting direction in the k gadgets.

Now let’s add a new vertex (Figure 2) and connect it to the variable gadgets.
This is a clause gadget. The clause gadget represents a kind of detour away from
the rightmost stage of the horizontal paths in each gadget. A Hamiltonian path in
the enlarged graph must include this new vertex exactly once, so we have to take
exactly one of the available detours. Observe that if we take the top detour, we
must be traversing the horizontal path from right to left, so we must have started in
the right-branching direction in the top gadget. If we decide instead to take either
the middle or the bottom detour, then we must start in the left-branching direction
in the corresponding variable gadget.

Figure 3 shows the effect of adding a new clause gadget, associated with the
middle stage of the horizontal paths. We have provided three stages in our di-
agram, so we could add a third clause gadget, but the diagram is getting rather
cluttered, so we will leave it as it is. Figure 4 shows a Hamiltonian path in the
complete diagram. Observe that we have chosen to visit the blue clause gadget
from the second variable gadget, and the red clause gadget from the third variable
gadget, but there are a lot of different choices that work here. (It is just a coin-
cidence that the number of variable gadgets and clause gadgets are equal in this
example.)

Figure 5 shows a CNF formula, in this case consisting of a pair of clauses,
associated with this diagram. (In carrying out the reduction, of course we start
from the formula and construct the gadgets–the construction was presented this
way to help you understand how the diagrams worked). We arbitrarily associate
the directions left and right with true and false, so that choice of a starting di-
rection in each variable gadget corresponds to an assignment of a truth value to
the corresponding variable. We connect the clause gadgets to the variable gadgets
according to the following rule: if the variable appears negated in the clause, we
introduce a right-to-left detour from the corresponding variable gadget, otherwise
we introduce a left-to-right detour. Thus the only way to take the detour is to have
assigned the right truth value to the variable.

In this manner, every assignment that satisfies all the clauses gives a Hamilto-

6



Figure 2: Addition of a clause gadget. A Hamiltonian path must take a detour
through the new vertex, and we provide such a detour from each variable gadget.
But whether you can take that detour depends on the starting direction in that
variable gadget.

7



Figure 3: Addition of a second clause gadget, associated with the middle stage of
each variable gadget. There is room in the diagram for still another clause gadget,
but we don’t want to clutter things up too much.

8



Figure 4: A Hamiltonian path—can you find all the others?

9



Figure 5: The corresponding CNF formula. We show only two clauses, but the
diagram could accommodate a third. Each variable gadget is associated to a vari-
able, fixed directions are chosen corresponding to True and False, and the clause
gadgets are connected to the variable gadgets according to whether the variable in
question appears positively or negatively in the clause. Satisfying assignments for
the formula thus correspond to Hamiltonian paths.

10



Figure 6: Reduction of the Hamiltonian path problem for directed graphs to the
version for undirected graphs. Each vertex is replaced by a cluster of three con-
nected vertices.

nian path from the top to the bottom, and conversely, so a Hamiltonian path exists
if and only if the original formula is satisfiable.

Observe that the total number of vertices in the graph is O(km), where k is
the number of variables and m the number of clauses. The total number of edges
is likewise O(km). So the size of the graph is bounded above by a polynomial in
the size of the formula. Again, the algorithm for constructing the graph consists
basically of the instructions for writing down each vertex and edge (There is no
involved computation to do beyond counting the number of variables and clauses
and translating each literal into an edge.) So this is a polynomial-time reduction.

2.2 Undirected Hamiltonian Path
We show that the problem of determining the existence of a Hamiltonian Path
in an undirected graph is also NP-complete, by a reduction from the directed
case. Given a directed graph G and vertices s, t, we will show how to construct
in polynomial time an undirected Graph G′ with vertices s′ and t′, such that G
has a directed Hamiltonian path from s to t if and only if G′ has an undirected
Hamiltonian path from s′ to t′.

Figure 6 illustrates the construction: Each vertex of the directed graph is
mapped to a cluster of three vertices in the undirected graph, and a directed edge
from v to w is mapped to an edge from the right-hand vertex of the cluster corre-
sponding to v to the left-hand vertex of the cluster corresponding to w.

Easily, a directed Hamiltonian path from s to t in a digraph G gives rise to a
Hamiltonian path in G′ from the left-hand vertex s′ of the cluster corresponding

11



Figure 7: If s′ is the left-hand vertex of a cluster and t′ the right-hand vertex of
another cluster, then the two vertical edges shown in the diagram above cannot be
part of a Hamiltonian path from s′ to t′, because we would never be able to visit
the middle vertex of the cluster without retracing our steps. Thus a Hamiltonian
path from s′ to t′ can never follow edges in the ‘wrong’ direction.

to s to the right-hand vertex t′ of the cluster corresponding to t. It is a little more
delicate to argue that any Hamiltonian path in G′ from s′ to t′ must give rise to a
directed Hamiltonian path in G from s to t. We must argue that the Hamiltonian
path in G′ can never follow an edge between clusters in the ‘wrong’ direction,
from the left-hand vertex of cluster C1 to the right-hand vertex of a cluster C2. If
we did so, our path could never reach the middle vertex of C1: It would have to
get there from the right vertex of C1, and then have no exit without revisiting a
vertex already visited.

12


