
CSCI3390-Lecture 14: The class NP

1 Problems and Witnesses
All of the decision problems described below have the form: ‘Is there a solution
to X?’ where X is the given problem instance. If the instance is a ‘Yes’ instance
of the problem, then a solution is called a ‘witness’ to this fact.

1.1 Example: Sudoku
The pair of grids in the figure below (which you have seen before) is an instance
of the following decision problem:

The grid on the left is an instance of this problem:

Input: A partially filled-in Sudoku grid. Output: Yes if a solution
exists, no otherwise.

It happens that the grid on the left is a ‘Yes’ instance of this problem, and the
grid on the right is a witness to this fact.

1.2 Hamiltonian circuit
This problem is

Input: A graph. Output: Yes if a there is a path, starting and ending at
the same vertex, that passes through every vertex of the graph exactly
once. No otherwise.

An instance of this problem is shown in Figure 2.
This is a ‘Yes’ instance, and a witness to this is the sequence of vertices

1, 2, 5, 6, 4, 3, 1. Observe that there are several different witnesses possible. For
this graph, there is, in a sense, only one Hamiltonian circuit, but we can choose
any vertex for the start and end point, and make the tour in either of two directions.

1

Figure 1: The pair of grids is an instance of the polynomial-time verifier problem
for Sudoku

Figure 2: Does this graph have a Hamiltonian circuit?

2

1.3 Graph k-coloring
Each value of k gives a different problem:

Input: A graph. Output: Yes if a there a way to assign a color to each
of the vertices of the graph, so that k or fewer colors are used, and so
that adjacent vertices are not assigned the same color. No otherwise.

Consider again the graph in Figure 1. If k = 2 this is a ‘No’ instance, but if
k = 3, the assignment:

1 : green, 2 : blue, 3 : blue, 4 : green, 5 : red, 6 : blue

is a witness, representing a legal coloring. Observe there are many different ways
to legally color this graph with three colors.

1.4 Compositeness
Input: An integer n given in binary. Output: Yes if there is an integer
m < n such that m|n. No otherwise.

A witness is a pair of integers m, k such that n = mk and m < n.

1.5 Rush Hour
A problem we’ve seen before:

Input: A setup of cars on an N × N Rush Hour grid. Output: Yes if
there is a sequence of moves that gets the red car out of the grid. No
otherwise.

Figures 3 and 4 below show a particularly difficult ‘Yes’ instance and its solu-
tion on a 6× 6 board.

1.6 Theoremhood
We’ve seen this before.

Input: A sentence φ of arithmetic. Output: Yes if φ is a theorem. No
otherwise.

A witness to a ‘Yes’ instance, of course, is a proof of φ.

3

Figure 3: Can this Rush Hour puzzle be solved?

Figure 4: An optimal 50-move solution to the puzzle in the preceding figure.
The symbols R,L,U,D mean ‘right’, ‘’left’ ‘up’ and ‘down’, and each instruction
includes the number of cells to slide the image.

4

2 NP Problems
All six problems described above share a common feature concerning the ease of
verifying a witness, and the first four share another feature concerning the size of
witnesses. The two features together define the class of decision problems called
NP.

2.1 Easy verification....
As we saw in the last lecture, if I give you the original Sudoku puzzle and the
proposed solution, then the algorithm for verifying that it is indeed a solution runs
in time polynomial in the size of the problem. This reflects the observed fact that
you can verify at a glance that a Sudoku grid has been filled in correctly.

Much the same observation holds for the Hamiltonian circuit problem. If I
give you a specification of the graph and a list of vertices, you can verify it as
follows:

create a checklist of all the vertices in the graph
check off the first vertex s in the list
for each subsequent vertex v in the list:

if v is not connected by an edge to the preceding vertex, reject
else:

check v off
if v is already checked off:

if v==s and all vertices have been checked off:
accept

else:
reject

reject

The number of passes through the loop is no more than the length of the list,
which in turn must be equal to the number n of vertices in the graph. Each pass
requires checking the graph representation to see if a pair of vertices is an edge,
and locating a vertex in the check list. The exact step count depends on how we
represent the graph, but in any case there will require O(n) steps. This more de-
tailed analysis again reflects a simple observation: If I give you the list of vertices
and the graph, it is an easy matter to scan through the list and verify that it is a
Hamiltonian circuit.

5

An identical observation holds for the k-coloring problem. For a relatively
small graph, you can spot adjacent vertices with the same color at a glance. A
careful algorithm takes time O(n2) on a graph with n vertices.

For compositeness, we only need to multiply together the two numbers m, k
in the witness. Observe that the size of the witness is the number of bits in the
representation of the two numbers (and not the values m and k themselves). Mul-
tiplication, done the usual way, takes time proportional to the square of the number
of bits.

For Rush Hour, once again we have a straightforward algorithm for verifying
the solution—we can just take that card with the solutions moves written on it,
grab our Rush Hour game, and move the cars around, following the script, and
checking that the red car does indeed exit the grid. A computer implementation
requires time linear in the length of the script, although this again might depend
on implementation details (but see below!).

To verify a proof, we need to check that each line is either an axiom, or follows
from a previous line or lines by a rule of inference. The exact details depend on
the axiomatic system, but typically this will be O(n2) where n is the length of the
proof, reflecting the intuition that proofs ought to be easy to verify.

2.2 Short witnesses...
While all six problems discussed above share the ‘easy to verify’ property, there
is a stark difference between the first four examples and the last two: In the first
four cases, the size of the witness was itself comparable to the size of the input.
On the other hand, in sliding-block puzzles like Rush Hour, it is possible that the
length of a solution is exponential in the size of the board. For theoremhood, we
can’t even guarantee that the length of a proof of φ is bounded by an exponential
function, or any computable function, in the length of the sentence: if this were
the case, we could in principle survey all possible proofs up to this bound, and
decide whether a sentence is a theorem. But we have already seen that this is an
undecidable problem.

So we are interested in decision problems that can be settled by verifying a
witness, subject to these constraints.

• The size of the witness is polynomial in the size of the problem instance.
That is, there is a positive integer k such that every guess has length O(nk)
for inputs of length n.

6

• The verification algorithm runs in time polynomial in the length of the wit-
ness.

The two properties together imply that the verification algorithm also runs in
time polynomial in the length of the input.

This class of decision problems is called NP.

2.3 Formal definition of NP
What follows is a more formal definition. It takes a bit of gymnastics to write it
down completely correctly. To properly understand the concept you should think
about the examples above

A language L ⊆ Σ∗ is in NP if there exist a positive integer k, and a language
L′ ⊆ Σ∗, such that

• L′ ∈ P

• w ∈ L if and only if there exists v ∈ Σ∗ with |v| ≤ |w|k, and w#v ∈ L′.

In this definition v is the witness, and L′ is the problem of determining whether
v is a solution to w.

Let’s observe a few things about this definition. First of all P ⊆ NP, because
if L ∈ P, we can just take L′ = L and v to be the empty string, so L satisfies the
definition of languages in NP.

Second, every language in NP is decidable by the brute-force algorithm: Given
an input w of length n, generate every string v of length no more than nk, and test
if w#v ∈ L′. This requires |Σ|nK calls to the polynomial-time verifier algorithm.

3 What does the ‘N’ stand for?
NP stands for ‘nondeterministic polynomial time’. This refers to another, equiva-
lent way of defining this complexity class.

3.1 Nondeterministic computation
Imagine a conventional procedural programming language, supplemented with a
kind of fantasy control structure: an either...or statement:

7

either:
<sequence S of statments>

or:
<sequence T of statements>

Conventional programs compute deterministically: Run the same program
twice on the same inputs, and it will do exactly the same thing. The either...or
statement causes the program to compute nondeterministically. The same pro-
gram run twice on the same inputs will in general give different results, depending
on which branch of code it decides to execute.

Here is an example of a function written in this fantasy language that deter-
mines whether a graph G is 3-colorable. The function calls the easy verification
algorithm described earlier as a subroutine:

def three_colorable(G):
for each vertex v in G:

either:
color v red

or:
color v green

or:
color v blue

#verify the coloring:
if the coloring is legal:

return True
else:

return False

Each run of the function requires time polynomial in the size of the graph—we
have already observed that this is true for the verification algorithm called at the
end, and the guessing phase at the beginning takes time proportional to the number
of vertices in the graph. What is different is the way in which this peculiar program
‘solves’ the problem of determining 3-colorability: If there is some sequence of
choices that leads to the function returning True, then the graph is 3-colorable.
To turn this into a normal deterministic computation, we would have to try out all
3n possible choices, where n is the number of vertices.

So here is an alternative, equivalent, definition of NP: It consists of those
decision problems solved by a boolean-valued either-or function that runs in
polynomial time on every input.

8

3.2 A Turing machine version...
In order to prove things about NP problems, we will require a more concrete
model. Once again, we turn to Turing machines:

Suppose you took a list of quintuples

(q, σ, q′, γ,D)

that we ordinarily associate with the transitions of a Turing machine. Does every
such list actually define a TM? The answer is no, because it might contain two
different quintuples with the same first two components (q, σ), and thus the action
of the machine when the current state is q and the currently scanned tape symbol
is σ would not be determined.

In a nondeterministic Turing machine (NDTM), such duplication is allowed.
Formally, the transition function is

δ : (Q− {accept, reject)× Γ→ P(Q× Γ× {L,R}).

If the machine is in a particular configuration, there may be several configurations
that can follow it. Thus the computation of the machine from a given starting
position is not a sequence of configurations, but a tree of configurations.

It is exactly ike the programming language with an ‘either-or’ statement: each
time this is encountered, the program can decide which branch to follow.

We say that the NDTM accepts its input, if there is some path from the root of
the tree—that is, some sequence of guesses—that leads to the accept state.

A polynomial-time NDTM has the additional property that for some integer
k > 0, every path from the root leads to either acceptance or rejection in O(nk)
steps, where n is the length of the original input.

3.3 ...and another.
Here is another, equivalent, model of a polynomial-time NDTM: At the start of
the computation, on input w, the machine goes through a guessing phase, during
which it writes |w|k additional symbols on the tape, changing the tape contents to
w#v. After that, the machine computes deterministically in polynomial time, like
an ordinary polynomial-time Turing machine. The machine accepts w if there is
some word v that leads to acceptance in the deterministic mode. This is just our
‘guess-and-verify’ process that we described originally. It’s not too hard to show
that this is equivalent to the model we described above—what we are doing is

9

Figure 5: Is this the right picture of the language classes we’ve studied?

pre-loading all of our guesses at the outset, instead of making them whenever a
decision is required.

In either version of the NDTM, another equivalent definition of NP is: L ∈
NP if and only if there is a polynomial-time NDTM that accepts exactly the
strings in L.

4 A picture of the world of computational problems
We have classified decision problems (=languages) according to their computa-
tional difficulty. We know that every problem in P is in NP, that every problem
in NP is decidable and that every decidable problem is Turing-recognizable. So
our picture looks like Figure 2.

But are these inclusions strict? That is, are any of the colored regions actually
empty? We know that the Turing-recognizable languages do not constitute all
languages. (Because, for instance, the language

{<M, w >:Mdoes not accept w}

is not Turing-recognizable.) And the language

{<M, w >:Maccepts w}

10

Figure 6: ..or is this?

is a Turing-recognizable language that is not decidable. It is a little harder to
separate NP from the decidable languages, but it is known that this inclusion is
also strict.

What about the inclusion P ⊆ NP? The question of whether this inclusion is
strict or not is still open. For all we know, the world might look like Figure 3.

This is the P
?
= NP problem. The common belief is that the inclusion is

strict. If P = NP, many strange things would follow (including the collapse
of cryptographic systems), but the question remains one of the great unsolved
problems of mathematics.

11

