
CSCI3390-Lecture 0

August 28, 2018

1 A sampler of computational problems
Problem 1. I give you an undirected graph and two vertices, and ask for the
shortest path between these two vertices.

In the example illustrated in the figure, there is a path of length 3 from 1 to 6:
1,2,5,6. And another path of length 3: 1,3,4,6. But there are not paths of length 2,
so both of these paths are solutions to the problem.

As you may know, there is a nice algorithm for solving this problem called
breadth-first search. Place the start vertex in a queue, and mark that vertex as
visited. At each step, remove the vertex at the head of the queue, and add its
unmarked neighbors to the rear of the queue, marking them as visited. Each edge
of the graph is examined at most twice, and there is a little bit of additional book-
keeping each time a vertex is placed in the queue. So this algorithm is fast, even
for very large graphs, since its running time is roughly proportional to the ‘size’
of the graph (total number of vertices and edges).

Problem 2. What if I asked for the longest path from 1 to 6? We have to qualify
this a bit, because if we allow the path to run around a loop or retrace its steps,
we can make it as long as we like: 1,2,5,4,3,1,2,5,4,3,...,1,2,5,6. To avoid this, we
should restrict to paths in which no vertex is repeated. With this understanding, in
the pictured graph 1,3,4,5,6 and 1,2,5,4,6 are both longest paths.

Is there a fast algorithm for solving this problem, analogous to the one in
Problem 3? There is a dumb algorithm: List all sequences starting at 1 and ending
at 6 with no repeated vertex, and check to see if any of them is a path. The
problem is that as the number |V | of vertices grows larger and larger, the number
of sequences grows very rapidly, something like |V |! (that’s not an exclamation,
it’s a factorial). For a graph with 100 vertices, our shortest path algorithm requires

1

Figure 1: What is the shortest path from vertex 1 to vertex 6? What is the longest?

a couple of hundred steps, and on a typical personal computer will give the answer
apparently instantaneously. The dumb algorithm for longest path could require
tabulating 100! ≈ 10158 sequences, which is about the square of the estimated
number of atoms in the observable universe. Can we do better? can we do as well
as Problem 3? Of can we prove that we can’t do that well? (Solve this problem
and you may win a million-dollar prize.)

Problem 3. I have a computer program, written in Python, or whatever your
favorite language is. I would like to eliminate ‘dead code’–that is, statements that
can never be reached in any possible execution. Is it possible to write a program
that checks programs for dead code, answering ‘Yes’ if the input program contains
such code, ‘No’ if it doesn’t?

Problem 4. (Known as Hilbert’s Tenth Problem.) I give you a polynomial in
several variables with integer coefficients (What does this mean? Just start with
the variables and repeatedly add, subtract, multiply.) Determine if there are integer
values of the variables that make the polynomial zero. For example, determine if
there are any solutions to an equation like:

y2 − 4z3 + 1 = 0.

2

In this case, the answer is ‘no’ (can you prove that?) But in other cases, like

2xy2 = z3,

the answer is yes (for example, x = 2, y = z = 4 is a solution). Is there a general
procedure for answering this question?

What might such a ‘general procedure’ look like? If the polynomial has only one variable,
then the highest-degree term dominates the value, and we can use this fact to show that any solution
must occur in a finite interval. For example, in

y3 + 6y2 − 4y + 2 = 0

we have |6y2 − 4y + 2| ≤ 12y2 and |y3| > 12y2 if |y| > 12. In particular y3 + 6y2 − 4y + 2

cannot be zero if |y| > 12, so we only have to check all the integers between -12 and 12 inclusive
to determine if there are any integer solutions. This method works for any polynomial with one
variable. Is there something like it for polynomials in several variables?

Problem 5. I give you a large integer N and ask you to determine whether it
is a prime, or, if it is not, to find its prime factorization. Here is a brute-force
algorithm: Divide N by 2,3,4,5,... until you find a divisor or the candidate divisors
exceed

√
N . In the latter case N is prime, in the former, we have found a prime

factor, and can repeat with the quotient by this factor.

If N is a really large number, say with 200 decimal digits, then this algorithm
requires about 10100 divisions to establish that N is prime, and we’re back in the
number-of-atoms-in-the-universe dilemma. Is there a better method?

There are actually two different problems here: determining if an integer is
prime, and determining the prime factorization. And the answers to the ‘better
method’ question are different for these two problems. We can determine if N is
prime quickly—the method gives no information about the factorization of N if
it turns out that N is composite, and the best method is a ‘randomized’ algorithm
that flips coins. For the factorization problem, the situation is not quite as bad
as the brute-force algorithm, but the best algorithms can barely factor 200-digit
integers, and doing so requires the equivalent of hundreds of years of processor
time. (The work is distributed among many different processors.)

This is not just a theoretical question: the easiness of testing for primality, and
the hardness of factoring, are the crucial ingredients of practical cryptographic
methods that we use every time we log into a secure website.

Problem 6. An algorithm that harnesses the power of 1000 supercomputers work-
ing co-operatively runs faster than the same algorithm on your laptop, which runs

3

faster than the same algorithm on a first-generation 8-bit microcomputer from the
1970’s, which in turn is faster than the vacuum-tube computers of 1950, them-
selves faster than the relay-based computers built in the late 1930’s, which would
have left the mechanical computers Charles Babbage dreamed of in the 1840’s
in the dust. But all these methods are subject to the same limitations when they
execute an algorithm whose running time grows very rapidly with respect to the
input size. If the best you can do with the brute-force algorithm for longest path
today is a graph with 20 vertices, and you make your computers a million times
times faster, you might get up to 25 vertices. There is a sense in which all of these
computers work the same way, and are subject to similar limitations.

But..is there a different kind of machine? That runs a different kind of algo-
rithm? Computer scientists have dreamed up (but not yet built) quantum-mechanical
computers that, because they work on quite different physical principles, execute a
different kind of algorithm. Quantum computers can factor numbers rapidly (and
break all those cryptographic systems).

2 Themes
1. What is an algorithm? Can every computational problem be solved by an

algorithm? It turns out that our dead code problem, and our polynomial
equation problem, cannot. But how would you ever prove such a thing?

2. A surprisingly related question: Can every true mathematical statement be
proved? The answer, in a sense we can make precise, is no.

3. What is an efficient algorithm? Do the longest-path problem and the fac-
torization problem have efficient algorithms? If they don’t, how would you
prove that?

4. What happens if we allow computer programs to flip coins (as in the primality-
testing methods mentioned above)? Can we make programs more powerful
by incorporating randomness?

5. Can computers built on different physical principles do more than present-
day computers?

4

