CSCI3390-Assignment 3.

due October 2, 2018

1 Turing-recognizable? Decidable?

Below I've described a number of computational problems. For each problem,
you are asked to show either that the problem is Turing-recognizable or decidable.
To do this, you need to describe an algorithm that either decides the problem
(gives a correct answer on every input) or ‘semi-decides’ it, in that it gives a
correct answer of ‘yes’ on every positive instance, but may fail to answer on some
negative instances.

(a) Sudoku. You probably know this one. You are given a 9 x 9 square grid,
partially filled in with the integers 1 through 9.

Input: The partially completed grid.

Output: Yes if it is possible to fill in all the cells with the numbers
1 through 9 such that every number appears exactly once in each
row, column, and 3 x 3 subsquare, No if this is not possible.

Show that this problem is decidable.

(b) Rush Hour. My favorite. You are given a grid of cars, as in the example shown
below. Each car is oriented either along a row or a column, and can move into
adjacent empty spaces as long as it remains in its row or column. The problem
is to get the red car out of grid.

Input: A grid of cars.

Output: Yes if it is possible to drive the red car out of the exit slot
at the right of the grid, No if it is not possible.

5|3 7 5(3]4]6|7|8]9|1]|2
6 119]5 6[7[2]1]{9]|5]3]|4]8
918 6 119[(8]|3|4[2]5[6]7
8 6 3118|5(9|7|6]|1]4]|2]|3
4 8 3 1114(2|6]8[5]|3]7]9]|1
7 2 6]17]1113]9]2[4]8[5]6
6 2|8 9(6(1]5(3]|7]2]|8]4
4119 511218|7]14]|1|9]6|3(5

8 719(13]4|5]12[8]|6]1]7]9

Figure 1: At left, ann instance of the Sudoku problem. The output for this instance
is Yes, as the filled-in grid at right shows.

=
SIS s

3

Figure 2: An instance of the Rush Hour problem. The answer here is ‘Yes’, but as
you can see, this is an ‘Expert’ instance, so finding a solution is hard!

Show that this problem is Turing-recognizable, and then (as a bit more of a
challenge), show that it is decidable.

(c) Here we consider a very special case of Hilbert’s Tenth Problem. In the pre-
vious solution you showed that the general problem is Turing-recognizable.
Here you are to show that in the special case of linear equations, the problem
is decidable.

Input: A linear equation in several variables with integer coeffi-
cients:
a1x1 + asxs + - - - + apx, = b,

where aq, ..., a,,b € Z. (For instance, 2z + 9y — 3z = 5 is such
an equation.)

Output: Yes if there is an integer solution to the equation, No other-
wise. (In the example above, the output is Yes, becausexr =y = 1,
z = 2 1s an integer solution.)

(HINT: This problem requires a little bit of very basic number theory knowledge—
I’'ll bet you’ve already seen the underlying algorithm, which even tells you
how to find a solution to the equation if one exists. To get you thinking in the
right direction, what would happen if we changed the equation in the example
above to 3z + 9y — 32 = 5.7)

(d) (This is a somewhat harder problem.) The input is the code for a Python
function £ with a single parameter, and whose only return statements are of
the form return True,return False. The problem is to determine if
there is any positive integer i such that a call to £ (i) returns True. Show
that this problem is Turing-recognizable.

HINT: An example of such a function is given below.

def f(n):
while n != 0:
n=n-=6
return True

This function returns the value True on 6,12,18, efc., however it loops for-
ever if the argument is any positive integer that is not divisible by 6. Thus the

3

answer to our problem on this instance is ‘Yes’. The problem is undecidable—
in fact, it is essentially the same problem as the non-emptiness problem for
Turing machines that we showed to be undecidable. Proving that it is Turing-
recognizable is not so easy: In earlier examples we proved Turing-recognizablility
by a strategy of ‘try out every possibility, and answer Yes if you find one that
works’. But we cannot use this strategy directly in the present problem. For
instance, if the function above is the input, and we ‘tried out 1°, the function
would never terminate, and we would never get to try out 2, or 3,....S0 we
need to find some refinement of this simple-minded strategy. What if when
you tried out a candidate value, you only ran the function for a fixed number
of steps?

2 Decidable and undecidable problems about Tur-
ing machines

(a) Show that the following problem is undecidable:

Input: A Turing machine M.

Output: Yes if M eventually halts when started on a blank tape, no
otherwise.

HINT: As usual, we prove this by a reduction from a known undecidable
problem. In this case, use a reduction from the first version of the halting
problem: Given M and w, determine whether M ever halts when started on
w. Show how, given M and w, we can devise another Turing machine N that
halts when started on a blank tape if and only if M halts when started on
w. Make sure you understand the logic of why this reduction shows that the
problem above is undecidable.

(b) Show that the following problem is undecidable:

Input: A Turing machine M and a tape symbol a.

Output: Yes if M eventually writes a when started on an blank
tape, no otherwise.

HINT: Once again, reduce from the first version of the halting problem.

(c) Show that the following problem is decidable:

4

Input: A Turing machine M. Output: Yes if M ever writes a non-
blank symbol when started on a blank tape, No otherwise.

(d) Show that the following problem is decidable:

Input: A Turing machine M and a string w over the input alphabet
of M. Output: Yes if M ever moves to the left when started on w.

