
CSCI3390-Assignment 2.

due Tuesday, September 18

This is the only assignment in which you will actually have to design Turing
machines. For these problems (1,2 and 3) you must use the simulator software
provided and submit your specification files as part of your solutions. Note that
there are several options for Problems 1 and 2.

By the way, the simulator will reject if an applicable transition is not found,
so you don’t have to explicitly give the transitions into the reject state. This is the
same convention we use in drawing the state-transition diagrams.

Problem 4 asks you for a higher-level argument, describing a simulation of
one kind of machine by another, and Problem 5 asks you for a very high-level
argument, in which you need not talk about Turing machines at all.

In terms of difficulty, options (b) and (c) for Problem 1 are pretty involved, and
Problem 4 requires more of you than the others. Problem 5 requires something
different from you–an intuitive understanding of the terms decidable and Turing
recognizable.

1 TMs for Deciding Languages
Write the specification of a Turing machine recognizing one of the following three
languages. Do one of these problems. Options (b) and (c) are meant to be chal-
lenging and will get you extra-credit points. Part (a) can be approached very
similarly to the way we handled the design of Turing machines that reversed the
input, or determined if the number of as and bs was the same.

(a) {w#w : w ∈ {a, b}∗}. That is, the input alphabet is {a, b,#}, and the ma-
chine will accept a string if and only if it contains exactly one # and the por-
tion before the # matches the portion after. Thus the machine should accept
ab#ab but reject both ab#a and ab##ab#.
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(b) {ww : w ∈ {a, b}∗}. So the machine determines if the first half of the string
matches the second half. This is harder, because you don’t have a convenient
marker to tell you where the middle is.

(c) If v ∈ {0, 1}∗, then we denote by (v)2 the integer represented by v in binary.
So for example, (110)2 and (0110)2 are both equal to the integer 6. The
language is

{u#v : (u)2 < (v)2}.

In other words, the machine takes as input two integers encoded in binary
and determines is the first is less than the second. Thus it should accept
0110#1000 but reject both 111#0110 and #1#0.

2 The move-over machine
A key step in our proof that a two-tape machine can be simulated by a one-tape
machine is spreading out the original input string so that every second cell contains
a blank. Here you are asked to show how this is done. Part (a) is a warmup, and if
you solve both parts, you only need to submit your answer for (b).

(a) Design a Turing machine that puts a blank between its first input symbol and
second input symbol. That is, if the machine is started with

abba

on its tape, it will halt with
a�bba

on the tape.

(b) Design a Turing machine that puts a blank between every pair of consecutive
input symbols. So if it starts with

abba

on its tape, it will halt with
a�b�b�a

on the tape.
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3 One-way infinite tapes
Many texts give a different definition of the basic Turing machine: Instead of
having the tape extend infinitely in both directions, it is only infinite toward the
right. Thus there is a leftmost cell. We need to specify what happens if a transition
tells the reading head to move left if it is positioned on the leftmost cell. Crash the
program? Stay where it is? We will adopt the second of these rules: the machine
will continue to run, but the reading head will not change its position.

The simulator program includes the option to run in ‘one-way’ mode. The
way you do this (with, say, the reverse.tm specification) is by typing

runtm(’reverse’,’110’,bidirectional=False)

Try this out and make sure you understand the behavior you observe. Then modify
the specification file reverse.tm (give it a new name) so that it reverses its
input when run with these new rules. (HINT: You will have to somehow mark the
leftmost cell of the tape.)

4 *More on one-way infinite tapes
Prove that every Turing-recognizable language is recognized by a TM with a one-
way infinite tape. You will have to describe a simulation, much in the ‘higher-
level’ spirit of our proof that a two-tape machine can be simulated by a one-tape
machine. (However, the simulation is easier, and the time penalty is much less.)

5 Hilbert’s Tenth Problem
When we started the class, I mentioned the decision problem Hilbert’s Tenth Prob-
lem: Given a multivariable polynomial with integer coefficients, something like

x2y − 13x3y4 + 27,

determine whether there are integer values of x and y that make the polynomial
evaluate to 0. The solution to Hilbert’s problem is that ... there is no solution:
There is no general algorithm for solving this problem. In terms of our formal
definition, we can obviously encode polynomials as strings–the one above might
be encoded as
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x x y - 1 3 x x x y y y y = 2 7.

The question then becomes whether the set of encodings of polynomials that have
integer roots is a decidable language. The answer is ‘no’. (This is a very difficult
problem that took mathematicians many years to solve.)
(a) Prove that it is a Turing-recognizable language. You should give a very high-
level argument—so you don’t need to talk about Turing machines at all. Just
describe a procedure that will correctly answer ‘yes’ for exactly the polynomials
that have integer roots and never answer ‘yes’ for polynomials that have no roots.
(This is actually an easy problem with practically no technical detail, intended to
make sure that you understand the underlying concept of the difference between
‘decidable’ and ‘Turing-recognizable’.)
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