
CSCI3390-Assignment 1 Solutions

1 Encoding problem instances as strings.
The scheme used for encoding graphs is illustrated in Figure 1. I have deliberately
chosen a flawed encoding scheme so that you can correct it in the last part of this
problem, but for all other parts of the problem, you should stick with this method.

A Hamiltonian path in a graph is a path that includes every vertex of the graph
exactly once. A Hamiltonian circuit is a path that starts and ends at the same
vertex and visits every other vertex exactly once.

(a) The pictured graph has a Hamiltonian circuit. Find it.

Solution. 1-2-5-6-4-3-1. This is not the only solution! Since it’s a circuit,
you can choose any vertex as the start and ending vertex, or traverse counter-
clockwise instead of clockwise, etc.

(b) Eliminate one edge of the pictured graph so that the resulting graph has a
Hamiltonian path but not a Hamiltonian circuit. (Tell which edge you are
elminating, and what the path is.)

Solution. Any edge (except the edge between 4 and 5, whose deletion pre-
serves the Hamiltonian circuit property) will work. For example, we can elim-
inate the edge from 5 to 6 and get the Hamiltonian path 6-4-3-1-2-5. There is
no Hamiltonian circuit in the resulting graph, however, because no path can
both enter and leave vertex 6 without hitting vertex 4 twice.

(c) Let HAMPATH be the language representing the decision problem ‘Does
this graph have a Hamiltonian path?’ relative to this encoding. Let HAMCIRC
be the language representing the problem ‘Does this graph have a Hamiltonian
cricut?’ Let w be the following string.

1#2#1#3#1#4#2#4.

1

Figure 1: The graph encoding scheme for Problem 1.

Is w ∈ HAMPATH? Is w ∈ HAMCIRCUIT? (Don’t just tell me yes or no;
explain your answer for all parts.) It helps to draw a picture.

Solution. The graph is pictured below. The translation of the problem is ‘does
this graph have a Hamiltonian path?’ a Hamiltonian circuit?’ The answer is
‘yes’ and ‘no’. 3-1-2-4 is a Hamiltonian path, but there is no Hamiltonian
circuit because you cannot both enter and leave vertex 3 without hitting vertex
1 twice.

(d) We can encode anything over the two-letter alphabet {0, 1}. Describe how to
adapt the encoding scheme for graphs so that it uses only these two symbols.
(A simple answer is: ‘encode the vertex numbers in binary, rather than deci-
mal’ but that doesn’t tell us how to handle the separator symbol # ! There are,
however, several different correct answers.)

Solution. Here are three solutions. (1) We can encode each vertex number in
binary, but let’s use two bits (00) for a binary 0, and two bits (01) for a binary
1. Then we can encode the separator # as 11. We then encode the graph
1#2#2#3 as

01 11 0100 11 0100 11 0101.

I put spaces in just to show you where the separate fields are, but the point is,
you don’t need the spaces. You parse the string by reading successive pairs of

2

Figure 2: The graph of Problem 1(c).

bits. The pair 11 can only mean a separator symbol. Observe that this doesn’t
work if we try to encode # as 11 but represent the integers in binary in the
ordinary way. If we tried to do things this way, what does

11111111111110

represent? Is it
1 11 11 11 11 11 110,

that is, 1#3#3#6, or is it

111111 11 111110,

which is 63#62?

(2) That was the first solution I thought of, but several students in office hours
came up with a better one: Let’s encode the separator # by 0 and each vertex
number n by n 1’s. Thus 1#2#2#3 would be encoded as

10110110111.

(3) There is still another method commonly used in Computer Science, and
that is to represent the graph by an n × n matrix, where n is the number of

3

vertices. The (i, j)-entry of the matrix is 1 if there is an edge between i and j
and 0 otherwise. Thus 1#2#2#3 is encoded by the matrix 0 1 0

1 0 1
0 1 0

 .

To get a string out of this, we have to ‘flatten’ it and just write

010101010.

Doing so removes the information about where the rows end, but we can still
recover this (with difficulty): Since the matrix must be square, there is only
one possible way to arrange the string into rows and have the same number of
rows and columns.

(e) Let V and E represent, respectively, the sets of vertices and edges of a graph,
and |V | and |E| the number of elements in these sets. Write an expression
using these numbers that gives the length of the encoding of the graph, or at
least a reasonable upper bound for the length of the encoding. (This problem
is a little subtle: It is tempting to write 4 · |E| because we use about 4 symbols
to encode each edge, or 4|V |2, because there are |V |2 pairs of vertices. But
these are not correct, because we will need more than one symbol to encode
a vertex number if we have ten or more vertices.)

Solution. Let’s do this first in terms of the number of edges. If every vertex
number was encoded by a single symbol, then we would get 4|E| − 1 as the
exact length of the encoding. The point is that in there are |V | vertices, then it
will require as many as log10 |V | decimal digits to encode a vertex number. If
we multiply by this ‘fudge factor’, we get an upper bound of 4|E| · log10 |V |.
If we bound the number of edges by |V |2, then we get an upper bound of
4|V |2 log10 |V |.
That is really all you need to write to solve the problem, but let’s pursue this a bit, because
there is an important point to make here. This is an upper bound, which means we’ve over-
counted. For instance, not every vertex number requires all log10 |V | digits, and the separator
symbols require only 1 symbol. Furthermore, the graph cannot have |V |2 edges: In the worst
case, where every edge is connected to every other edge (the so-called complete graph), we
have (

|V |
2

)
=

1

2
(|V |2 − |V |)

4

edges. But we have not overcounted that badly. If V = 10k, then ninety per cent of the
vertices will require all k = log10 |V | digits to encode them, and thus ninety percent of the
edges will contain a vertex that uses at least this many symbols. Thus for the complete graph
there are at least

0.45(|V |2 − |V |) log10 |V |

symbols in the encoding. If there are 2 or more vertices, then |V |2 − |V | ≥ 1
2 |V |

2, so we get
a lower bound of

0.2|V |2 log10 |V |.

Thus we have lower and upper bounds that both have the form

c · |V |2 log10 |V |.

In the CS lingo we would say something like, ‘the length of the encoding in the worst case is
proportional to n2 log n where n is the number of vertices’.

(f) The problem with this encoding scheme is that it only includes vertices that
are endpoints of edges. But a general graph can have isolated vertices that are
not connected by an edge to any other vertex. Describe a scheme for encoding
graphs by strings that behaves correctly for all undirected graphs. (There are
many good answers here.) Give an example illustrating how your encoding
works.

Solution. Almost anything you do here to include the isolated vertices will
work. For instance, we could include a list of the vertices at the beginning of
the encoding, and separate this from the list of edges by ##. Thus the graph
from part (c) with four vertices would be encoded by

1#2#3#4##1#2#1#3#1#4#2#4,

but if we added a fifth vertex that was not part of any edge we would get

1#2#3#4#5##1#2#1#3#1#4#2#4.

2 A Turing Machine
This problem refers to the Turing machine in Figure 3.

(a) Trace the execution of the machine (that is, give the complete sequence of
configurations) on the input 000, 11 and 1010. You can do this by hand (which
is a little tedious for the last example, but not too terrible), or you can use the

5

Figure 3: The Turing machine for Problem 2.

Turing machine simulator program. In the latter case, you should include
your specification file with your submitted assignment, as well as the output
printed by the program.

Solution.
Below is the specification file of this machine for the Turing machine simula-
tor.

You can use this specification to generate the required runs (omitted here).
The one for 1010 takes 24 steps and ends with 0011. The runs for 000 and
11 halt with the inputs unchanged, after many fewer steps.

(b) Describe in general the function f computed by this Turing machine.When
you figure out the answer, you should be able to find f(0110110110110110110110110)
quickly, without running the machine.

Solution. If you study the runs, or just run on a lot of examples, you can figure
out what is going on: The machine is sorting its input string, moving all the
0’s to the left and the 1’s to the right. So for the example in this problem the
result is

0000000001111111111111111,

6

0 0 0 0 R
0 1 1 1 R
0 B -3 B R
1 0 2 1 L
1 1 1 1 R
1 B -3 B R
2 1 3 0 L
3 0 3 0 L
3 1 3 1 L
3 B 0 B R

Figure 4: The Turing machine of Problem 2, as a specification for the simulator.

which you can also write as
09116.

The way the sorting takes place is this: In each phase, the machine scans the
tape left to right, looking for a 0 immediately preceded by a 1. It changes the
0 to 1, then moves left and changes the 1 to 0—that is, it interchanges these
two symbols, and then returns to the left end of the tape. If it discovers that
there is no 0 preceded by a 1, then the string is sorted, and the machine halts.

(c) Here is a harder, but important question. How many steps does it take (i.e,
how long is the complete sequence of configurations) on an input of length n?
The answer depends on the input string, of course: If it is 0n (all zeros) then
the computation terminates very quickly. Here you should give the worst-case
answer—what input causes the computation to take as long as possible, and
how many steps does it require?

An inversion in the input is a pair of symbols that are out of order—any 1 that
is somewhere to the left of any 0 is an inversion. Thus

111000

has 9 inversions, because each of the three ones precedes each of the three
zeros, while

101010

7

has 6 inversions, and
010101

has 3. During the sorting process, each 1 has to be interchanged with each 0 ,
and the machine requires a pass back and forth over its input to do the inter-
change. The pair to be interchanged might be found close to the beginning of
the string, or close to the end, but each pass will require at most 2n steps on
an input of length n. The number of such passes is the number of inversions.
How many inversions are there in the worst case? The worst case is

1n/20n/2,

which gives n2/4 inversions. Thus the number of steps is never larger than

2n · n2/4 = n3/2.

We have neglected the last pass, which requires an additional n steps, so we
get an upper bound of n3/2 + n. In this worst case, at least half of the inter-
changes take place in second half of the string, and thus there are at least n2/8
passes that require at least n steps, and consequently the number of steps is at
least n3/8. So we have both lower and upper bounds of the form cn3 on the
number of steps in the worst case

(That’s even more than I intended you to do, but it is possible to carefully
count the number of interchanges performed at each location in the string and
find an exact formula for the worst case number of steps. The answer is a
cubic polynomial with leading term n3/4.)

8

